Виды электростанций
Содержание:
В каждом развитом государстве существует собственная энергетика. Данная область включает в себя разные виды электростанций. Они могут использовать традиционные и нетрадиционные источники энергии. В первом случае – это природные ресурсы в виде угля, газа, продуктов переработки нефти, ядерное топливо и т.д. Второй вариант предполагает использование энергии природных явлений – солнца, ветра, приливов-отливов, подземных источников тепла. Независимо от формы использования, каждая электростанция требует много дополнительного оборудования для передачи потребителям полученной энергии. Что такое электростанцияЛюбая электростанция представляет собой целый энергетический комплекс, включающий в себя различные установки, аппаратуру и оборудование, необходимые для получения, преобразования и транспортировки электроэнергии. Все эти компоненты размещаются в специальных зданиях и сооружениях, расположенных компактно на общей территории. Независимо от типа, они входят в состав Единой энергосистемы, созданной с целью эффективно использовать мощность электростанции, обеспечивая бесперебойное энергоснабжение потребителей. Принцип работы электростанций и их сопутствующих объектов основан на вращении вала генератора, который является основным элементом системы. Его основные функции заключаются в следующем:
Отличительными чертами каждого генератора являются формы и размеры, а также источник энергии, используемый для вращения вала. Кроме генератора, электростанция состоит из турбин и котлов, трансформаторов и распределительных устройств, средств коммутации, автоматики и релейной защиты. В настоящее время получило развитие направления в области компактных установок. Они позволяют обеспечить энергией не только отдельные объекты, но и целые поселки, находящиеся на значительном удалении от стационарных линий электропередачи. В основном, это полярные станции и предприятия по добыче полезных ископаемых. Теперь рассмотрим какие типы установок используются в российской энергетике. Основные типы электростанцийВсе электрические станции таблица ниже классифицирует в первую очередь по источникам используемой энергии. Среди них можно выделить следующие:
Каждая перечисленная электростанция представляет собой традиционные или альтернативные виды энергетики. В первом случае электричество вырабатывается на тепловых, гидро- и атомных установках. На ТЭС вырабатывается примерно 70-75% всей электроэнергии, поэтому они размещаются в местах с высоким энергопотреблением и большим количеством природных ресурсов. ГЭС привязаны к полноводным рекам, протекающим в равнинной или горной местности. АЭС строятся в местах с большим потреблением электроэнергии, при недостатке других видов энергоресурсов. Для того чтобы понять их роль и место в общей энергетической системе, следует рассмотреть более подробно типы электростанций, используемых в России. Тепловые электрические станции – ТЭСНа тепловых электростанциях России производится примерно 70% всей электрической энергии. Они работают на мазуте, газе, угле, а в определенных местностях используется торф и сланцы. Все ТЭС можно условно разделить на два основных вида. Первый вариант является так называемым паротурбинным, где первичным двигателем служит паровая турбина. Эти устройства могут быть конденсационными (КЭС), вырабатывающими только электроэнергию, и теплоэлектроцентралями (ТЭЦ), производящими не только электричество, но и тепло. Коэффициент полезного действия ТЭЦ составляет 60-70%, а у КЭС этот показатель равен 30-40%. Основным недостатком тепловых станций считается их обязательная привязка к потребителям тепла. Положительных качеств у тепловых электростанций значительно больше. Они свободно размещаются на всех территориях, где имеются природные ресурсы и не подвержены сезонным колебаниям погодных условий. Однако, используемое топливо является не возобновляемым, а сами установки негативно влияют на экологическую обстановку. Российские ТЭС не имеют достаточно эффективных систем очистки выходящих газов от вредных и токсичных веществ. Более экологичными считаются газовые установки, но трубопроводы, проложенные к ним, наносят непоправимый вред природе. Электростанции, расположенные в европейской части Российской Федерации, работают в основном на мазуте и природном газе, а в восточных районах они располагаются возле месторождений угля, добываемого открытым способом. Большинство установок относится к государственным районным электростанциям – ГРЭС, входящим в Единую энергосистему страны.Преимущества и недостатки гидроэлектростанцийПо своей значимости, ГЭС находятся на втором месте после тепловых электростанций. В своей работе они используют энергию воды, преобразующейся в электрический ток, и относящейся к возобновляемым ресурсам. Простое управление такими станциями не требует большого количества персонала. Коэффициент полезного действия доходит до 85%. Электричество, производимое на ГЭС считается самым дешевым, его цена примерно в 5-6 раз меньше, чем на тепловых электроустановках. Гидроэлектростанции отличаются высокой маневренностью и могут быть запущены в работу в течение 3-5 минут, тогда как на ТЭС для этого требуется несколько часов. Это качество особенно важно при перекрытии пиковых нагрузок в суточном графике электроснабжения. Основными недостатками подобных сооружений являются:
На российских реках сооружаются целые каскады гидроэлектростанций. Наиболее крупными считаются Ангаро-Енисейский каскад, включающий Братскую, Красноярскую, Саяно-Шушенскую, Усть-Илимскую ГЭС, а также Волжский каскад с Рыбинской, Угличской, Иваньковской, Саратовской, Волжской и другими ГЭС. Достаточно перспективным направлением считается гидроаккумулирующая электростанция – ГАЭС. В основе их работы заложен принцип действия, связанный с цикличным перемещением одинакового объема воды между верхним и нижним бассейнами. Ночью за счет излишков электроэнергии вода подается снизу-вверх, а в дневное время при резком росте энергопотребления она сбрасывается вниз и вращает турбины, производя электричество. Эти станции совершенно не зависят от естественных колебаний речного стока, а под водохранилища требуется гораздо меньше затапливаемых площадей. Атомные электростанцииНа третьем месте по количеству производимой электроэнергии находятся атомные электростанции. В России их доля в энергетике составляет чуть выше 10%. В США этот показатель равен 20%, в Германии – более 30%, во Франции – свыше 75%. Сокращение программ в области атомной энергетики произошло вследствие аварии на Чернобыльской АЭС. Рассматривая виды электростанций в России, следует отметить, что наиболее известными АЭС считаются Ленинградская, Курская, Смоленская, Нововоронежская, Белоярская и другие. Новым направлением является создание АТЭЦ – атомных теплоэлектроцентралей, вырабатывающих электрическую и тепловую энергию. Подобный объект построен на Чукотке в поселке Билибино. Еще одно направление – строительство АСТ – атомных станций теплоснабжения, предназначенных для производства тепла. Такие установки успешно функционируют в Нижнем Новгороде и Воронеже. Основные плюсы АЭС заключаются в следующем:
Рассматривая вопрос как работает АЭС, нужно в первую очередь остановиться на тяжелых последствиях в случае аварий. Кроме того, серьезные проблемы возникают с радиоактивными отходами в процессе их захоронения. Водоемы, используемые для технических целей АЭС, подвержены тепловому загрязнению. Дизельные электростанцииДля работы дизельных электростанций, которые называют ДЭС, используются различные виды жидкого топлива. Основой системы является дизель-генератор, включающий в себя дизельный двигатель, электрический генератор, системы смазки и охлаждения, пульт управления. Данные установки применяются как альтернативные в отдаленных районах, где являются основными источниками электроэнергии. Как правило, подведение стационарных ЛЭП в такие места экономически не выгодно. Кроме того, дизельные электростанции служат аварийными или резервными источниками питания, когда потребители не должны отключаться от электроснабжения. Виды дизельных электростанций могут быть стационарными (4-5 тысяч кВт) и мобильными (12-1000 кВт). Благодаря небольшим размерам, они могут размещаться в небольших зданиях и помещениях. Эти станции постоянно готовы к пуску, а сам процесс запуска не занимает много времени. Большинство функций установок автоматизировано, а остальные легко переводятся в автоматический режим. Основным недостатком дизельных станций является привозное горючее и все мероприятия, связанные с его доставкой и хранением. Нетрадиционные источники электроэнергииНетрадиционные источники представлены геотермальными электростанциями (рис. 1), работающими на тепловой энергии, поступающей из земных недр. Чем глубже от поверхности земли, тем выше температура данного слоя. В России такие установки построены на Камчатке и на Курильских островах. Существуют конструкции приливных электростанций (рис. 2), которые функционируют от энергии, создаваемой приливами и отливами в самом узком месте искусственного залива, отсеченного от моря. В качестве примера можно привести опытную Кислогубскую ПЭС, возведенную на Кольском полуострове. Классификация электростанций включает в себя солнечные и ветровые альтернативные установки (рис. 3). Все виды таких систем обеспечивают электроэнергией небольшие предприятия и производства, используются в частном секторе для удовлетворения бытовых потребностей. В основном, это районы и места, где отсутствует централизованное электроснабжение и нет возможности подключиться к обычным ЛЭП. |
electric-220.ru
1.Основные виды электростанций и их характерные отличия.
Тепловые электростанции. Среди них главную роль играют ГРЭС – государственные районные электростанции, которые обеспечивают потребности экономического района, работающие в энергосистемах. Большинство городов России снабжаются ТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы.
Гидроэлектростанции. ГЭС производят наиболее дешевую электроэнергию, но имеют довольно-таки большую себестоимость постройки. Более перспективным является строительство гидроаккумулирующих электростанций — ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.
Атомные электростанции. АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций:
При нормальных условиях функционирования они абсолютно не загрязняют окружающую среду;
Не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.
Однако работа АЭС сопровождается рядом негативных последствий:
Существующие трудности в использовании атомной энергии – захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле, на больших глубинах в геологических стабильных пластах.
Катастрофические последствия аварий на наших АЭС – следствие несовершенной защиты системы.
Тепловое загрязнение используемых АЭС водоёмов
2. Типы гидравлических электростанций и принцип их работы.
1. ГЭС. Принцип работы ГЭС . Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.
Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией(Деривацияв гидротехнике — отвод воды от русла реки по каналу. В более широком смысле — это совокупность гидротехнических сооружений, отводящих воду из реки, водохранилища или другого водоёма и подводящих её к другим гидротехническим сооружениям[3]. Различаются такие типы деривационных сооружений — безнапорные (канал, тоннель, лоток) и напорные[4] (трубопровод, напорный туннель). Современные деривационные каналы и водотоки имеют протяженность в десятки км, с пропускной способностью в несколько тысяч м.куб./сек.) — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.
Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.
2. ГАЭС-гидроаккумулирующие электростанции-предназначаются для покрытия пиков графика электрической нагрузки энергосистемы с использованием электроэнергии в период глубоких провалов нагрузки. ГАЭС практически не нуждается в постоянном водотоке, поскольку работает, используя воду, накопленную в водохранилище и таким водохранилищем (верхний бассейн) может быть озеро, море или искусственный бассейн, заполненный водами снеготаяния или реками с очень малыми расходами,т.е.такое водохранилище нуждается в подпитке лишь на потери. Но для работы необходим еще один-нижний бассейн. Между 2-мя этими бассейнами и образуется напор, необходимый для работы, как гидростанции, вырабатывающей электроэнергию в часы пика нагрузки в энергосистеме. В этот период вода из верхнего бассейна через турбины срабатывается в нижний бассейн. В часы провала нагрузки, когда появляется «свободная» электроэнергия, ГАЭС работает как насосная станция, перекачивая воду из нижнего бассейна в верхний.
3. ПЭС для выработки электроэнергии используют энергию приливов. Приливы являются следствием взаимного притяжения системы Земля-Луна-Солнце. Они поднимают уровень морей у берегов от нескольких см. до нескольких м. с периодичностью 12 час. 25мин. Идея ПЭС заключается: залив (губа,фиорд) отсекается от моря плотиной с водопропускными отверстиями. Во время прилива отверстия открыты, в залив поступает вода и уровень повышается. К началу отлива отверстия закрывается. В открытом море при отливе уровень понижается. А в заливе при открытых отверстиях-нет. В створе плотины образуется перепад уровней(напор),который используется для производства электроэнергии.
studfiles.net
их преимущества и недостатки, разновидности, классификация
Электростанцией называется комплекс зданий, сооружений и оборудования, предназначенный для выработки электрической энергии. То есть, электростанции преобразуют различные виды энергий в электрическую. Наиболее распространенными типами электростанций являются:
— гидроэлектростанции;
— тепловые;
— атомные.
Гидроэлектростанция (ГЭС) — это электростанция, преобразующая энергию движущейся воды в электрическую энергию. Устанавливаются ГЭС на реках. При помощи плотины создается перепад высот воды (до и после плотины). Возникающий напор воды приводит в движение лопасти турбины. Турбина приводит в действие генераторы, которые вырабатывают электроэнергию.
В зависимости от мощности вырабатываемой электроэнергии, гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор — от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.
Преимуществами гидроэлектростанций являются: выработка дешевой электроэнергии, использование возобновляемой энергии, простота управления, быстрый выход на рабочий режим. Кроме того, ГЭС не загрязняют атмосферу. Недостатки: привязанность к водоемам, возможное затопление пахотных земель, пагубное влияние на экосистему рек. ГЭС можно строить только на равнинных реках (из-за сейсмической опасности гор).
Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.
В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.
Тепловые электростанции подразделяются на:
— газотурбинные;
— котлотурбинные;
— комбинированного цикла;
— на базе парогазовых установок;
— на основе поршневых двигателей.
Котлотурбинные ТЭС, в свою очередь делятся на конденсационные (КЭС или ГРЭС) и теплоэлектроцентрали (ТЭЦ).
Преимущества теплоэлектростанций
— малые финансовые затраты;
— высокая скорость строительства;
— возможность стабильной работы вне зависимости от сезона.
Недостатки ТЭС
— работа на невозобновляемых ресурсах;
— медленный выход на рабочий режим;
— получение отходов.
Атомная электростанция (АЭС) — станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все АЭС мира выработали почти 11% электроэнергии.
Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров АЭС может быть разным.
АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на: кипящие, водоводяные, тяжеловодные, газоохлаждаемые, графито-водные.
В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:
Станции, предназначенные для выработки электроэнергии.
Станции, предназначенные для получения электрической и тепловой энергии (АТЭЦ).
Преимущества атомных электростанций:
— независимость от источников топлива;
— экологическая чистота;
Главный недостаток станций этого типа — тяжелые последствия в случае аварийных ситуаций.
Кроме перечисленных электростанций еще бывают: дизельные, солнечные, приливные, ветровые, геотермальные.
pue8.ru
Электростанции бывают различных типов
В современном мире для выработки большого количества энергии используются электростанции. Область эксплуатации электрических станций достаточно широкая, в частности, они могут применяться для снабжения энергий удаленных зданий и сооружений во множестве отраслей промышленности.
Типы электростанций
Электростанции бывают различных типов, наиболее распространенными из которых являются:
- Тепловые
- Гидравлические
- Атомные
Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.
Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.
Атомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.
Основы функционирования электростанций
Вне зависимости от того, какие бывают электростанции, они по большей части используют энергию вращения вала генератора. Назначение генератора заключается в том, что он:
- Должен обеспечивать продолжительную стабильную параллельную работу с энергосистемами различной мощности, а также функционирование на автономную нагрузку
- Претерпевает моментальный сброс и наброс нагрузки, сопоставимой с его номинальной мощностью
- Выполняет защитную функцию благодаря наличию специальных устройств
- Запускает двигатель, обеспечивающий функционирование станции
Электростанции являются наиболее оптимальным способом выработки энергии по ряду факторов. На сегодняшний день не существует аналогичных методов, которые смогут обеспечить производство электроэнергии в настолько больших масштабах.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
madenergy.ru
Основные виды электростанций и их характерные отличия.
Основные виды электростанций и их характерные отличия.
Тепловые электростанции. Среди них главную роль играют ГРЭС – государственные районные электростанции, которые обеспечивают потребности экономического района, работающие в энергосистемах. Большинство городов России снабжаются ТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы.
Гидроэлектростанции. ГЭС производят наиболее дешевую электроэнергию, но имеют довольно-таки большую себестоимость постройки. Более перспективным является строительство гидроаккумулирующих электростанций — ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.
Атомные электростанции. АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций:
· При нормальных условиях функционирования они абсолютно не загрязняют окружающую среду;
· Не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.
Однако работа АЭС сопровождается рядом негативных последствий:
· Существующие трудности в использовании атомной энергии – захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле, на больших глубинах в геологических стабильных пластах.
· Катастрофические последствия аварий на наших АЭС – следствие несовершенной защиты системы.
· Тепловое загрязнение используемых АЭС водоёмов
Приливные электростанции — принцип работы и роль в энергосистеме.
Прили́вная электроста́нция (ПЭС) — особый вид гидроэлектростанции, использующий энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.
Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов)..
Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в составе энергосистемы, располагающей достаточной мощностью электростанций других типов.
Суточные графики нагрузки и мощности. Каким образом они покрываются электростанциями разного вида?
Электроэнергетика и экология (сравнить ТЭС и ГЭС).
Критерий сравнения | ГЭС | ТЭС |
1.Использ.ресурсы | Ежегодно возобновл. энергия воды | Уголь, торф, горюч. сланцы, газ-ресурсы исчерпаемые |
2.Вид вырабатываемой энергии | электрическая | Теплов. электрич. |
3.Себестоимость электроэнергии. | На ГЭС она почти в 4 раза выше, чем на равных по мощности ТЭС | |
4.Маневренность | Высокоманевренность. Температура пуска от 1.5 до 5 мин. | Низкая. Температура пуска агрегата из холодного сост.6ч, из горячего резерва-3ч |
5.Роль в энергосистеме | И в базовой и в пиковой части нагрузки. Обеспечивает резерв мощности | Работают в базовой части нагрузки |
6.КПД | Теплов. 80-90% | Электрич. 60-70%. Тепловой 30-40% |
7.Влияние на окр.ср. 8.Затраты на собств.нужды | Затопление обширных территорий, изменение ландш.и берегов 0,3-0,5% | Значительное влияние на атмосферу и литосферу. 7-8% от того, что станция производит |
Что изучает инженерная гидрология? Основные гидрологические понятия. Примеры гидрографа реки средней полосы для многоводного и маловодного года.
Гидроло́гия — наука о воде в природе; изучает свойства и состояния воды, круговорот воды и формирование вод суши, явления в морях, реках, озерах, болотах, ледниках и взаимодействие их с окружающей средой.
- Створ-поперечноесечение реки.
- Живое сечение-площадь поперечного сечения реки.
- Сток-объем воды, протекающий через сечение реки за определенное кол-во времени.
- Расход-объем воды, протекающий через сечение реки в единицу времени.
- Гидрограф-график изменения расходов воды в реке в течение времени.
- Половодье-период повышения водности реки, повторяющийся ежегодно и связанный с таянием снега и ледников.
- Межень-фаза водного режима с наименьшим количеством воды в реке.
- Паводок-сравнительно кратковременное и непериодическое поднятие уровня воды в реке, вызванное усиленным таянием снега, ледников или обилием дождей. Периодически паводки не повторяются, и в этом их отличие от половодья. Продолжительность паводка от нескольких долей часа до нескольких суток. В отличие от половодья паводок может возникать в любое время года.
Способы создания напора.
При плотинной схеме река перегораживается довольно высокой плотиной и создается водохранилище. Сила напора в этом случае напрямую зависит от высоты плотины.
При деривационной(отвод воды от главного русла реки в сторону) схеме плотина имеет небольшую высоту и создает лишь небольшой подпор, необходимый для нормального функционирования водозаборного сооружения. Сток реки с помощью каналов или тоннелей отводится к участку, расположенному ниже места водозабора, где и находится здание ГЭС.
Смешанный: плотинно-деривационный подпор создается частично плотиной и частично деривацией, которая берет начало в створе плотины.
Читать стр 59-72
Стр. 67 рисунок
Ремонтные затворы.
Предназначаются для перекрытия водоводов и водосбросов на время -длительных ремонтных работ, либо на аварийно-ремонтных затворов и их приводе, в пазах и на порогах, либо в проточной части турбины, когда под какой то причине аварийно-ремонтный затвор не обеспечивает необходимую герметичность.
Устанавливается перед аварийно-ремонтными турбинными затворами и перед рабочими затворами водосбросов.
Ремонтные затворы опускаются только в спокойные воды, для опускания в поток они не рассчитаны.
Строительные затворы:
Служат для закрытия водопропускных отверстий в период строительства сооружений, для пропуска строительных расходов, а так же в качестве заграждений, выгораживающих участки сооружений от бьефов, когда сооружения не превышают еще уровня воды.
Основные виды электростанций и их характерные отличия.
Тепловые электростанции. Среди них главную роль играют ГРЭС – государственные районные электростанции, которые обеспечивают потребности экономического района, работающие в энергосистемах. Большинство городов России снабжаются ТЭС. Часто в городах используются ТЭЦ — теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. На размещение тепловых электростанций оказывает основное влияние топливный и потребительский факторы.
Гидроэлектростанции. ГЭС производят наиболее дешевую электроэнергию, но имеют довольно-таки большую себестоимость постройки. Более перспективным является строительство гидроаккумулирующих электростанций — ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность электроэнергии мала, вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой электростанциями ночью. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ТЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок. Важным недостатком ГЭС является сезонность их работы, столь неудобная для промышленности.
Атомные электростанции. АЭС являются наиболее современным видом электростанций и имеют ряд существенных преимуществ перед другими видами электростанций:
· При нормальных условиях функционирования они абсолютно не загрязняют окружающую среду;
· Не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде.
Однако работа АЭС сопровождается рядом негативных последствий:
· Существующие трудности в использовании атомной энергии – захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле, на больших глубинах в геологических стабильных пластах.
· Катастрофические последствия аварий на наших АЭС – следствие несовершенной защиты системы.
· Тепловое загрязнение используемых АЭС водоёмов
infopedia.su
Типы электрических станций.
Основы электроснабжения.
Работа современных предприятий нефтяной промышленности связана с потреблением электрической энергии, вырабатываемой электростанциями.
Система снабжения потребителей электроэнергией подразделяется на три взаимосвязанных части:
1) электрические станции, вырабатывающие электроэнергию путем преобразования в электричество энергии природных источников;
2) электрические сети, передающие электроэнергию от электростанций и распределяющие ее потребителям;
3) приёмники, преобразующие электрическую энергию в энергию других видов, так как электричество используется только как промежуточная форма энергии, удобная для передачи и преобразования.
Совокупность электростанций, электрических сетей и электропотребителей, связанная общностью производства, называется энергетической системой. На некоторых электростанциях вырабатывается не только электрическая, но и тепловая энергия. Поэтому энергосистема охватывает и установки производства, распределения и использования теплоты. Электрическая часть энергосистемы называется электрической системой.
Ту часть электрической системы, которая распределяет подведенную от электростанций электрическую энергию внутри предприятия и потребляет ее, т.е. преобразует электроэнергию в энергию других видов (тепловую, механическую, световую, химическую) называетсясистемой электроснабженияпредприятия.
Система электроснабжения включает в себя:
— источники питания предприятия электроэнергией,
— его электрические сети,
— аппаратуру управления и регулирования тока и напряжения,
— приемники электроэнергии.
Совокупность приемников электроэнергии на производстве, объединенная общим технологическим циклом, называется потребителем электроэнергии.
Источниками питания электрических систем служат электрические станции, которые в зависимости от вида используемой энергии природного источника делятся на тепловые, гидроэлектрические, атомные, а также приливные, ветряные, геотермальные, и пр.
Электрическая станция – это промышленное предприятие, вырабатывающее электроэнергию и обеспечивающее ее передачу потребителям по электрической сети. На электростанции происходит преобразование энергии какого-либо природного источника в механическую энергию вращения турбины и далее с помощью электрических генераторов – в электроэнергию.
Типы электрических станций.
Гидроэлектрическая станция (ГЭС) представляет собой совокупность сооружений, создающих напор воды, подводящих воду к турбинам и отводящих отработанную воду из здания станции. Технологическая схема ГЭС выгодно отличается от схем работы всех других электростанций простотой процессов и надежностью элементов.
На тепловых станциях (ТЭС) энергия, выделяемая при сгорании каменного угля, торфа, сланцев, газа, нефти и топлив других видов, преобразуется а электроэнергию по принципиальной технологической схеме (рис.1б). Добыча, доставка и подготовка топлива к сжиганию в котлоагрегатах – сложные и дорогие процессы. Тепловая энергия, получаемая при сгорании топлива, передается воде для получения в котлоагрегате перегретого пара высокого давления (до 30 МПа) и температуры (до 650ºС).
Главные недостатки ТЭС – сложность процессов и низкий КПД. Лишь 30-40% теплоты, полученной при сгорании топлива, используется полезно. А остальная часть теплоты (70-60%) отдаётся охлаждающей воде при конденсации пара и дымовым газам. Эта энергия безвозвратно теряется. Но это в конденсационных станциях (КЭС). Существуют еще ТЭЦ – теплоэлектроцентрали. В них существует промежуточный отбор пара из турбины, который направляется потребителям или используется для получения горячей воды, идущей на нужды теплоснабжения. В ТЭЦ, таким образом, осуществляется комбинированные производство и отпуск двух видов энергии – электрической и тепловой. Полный КПД теплоцентралей, на которых в основном устанавливают агрегаты мощностью от 100 до 250 Мвт, составляет 60-75% в зависимости от типа турбин. Строительство ТЭЦ в России активно продолжается.
Атомные электростанции (АЭС) – это тоже тепловые паротурбинные станции, но использующие в качестве природного источника энергии топливо особого вида – ядерное горючее. В технологической схеме (рис.1в) роль котла выполняет атомный реактор. Теплота, выделяющаяся в реакторе при делении ядер урана или плутония, передается теплоносителю – тяжелой воде, гелию или др. От теплоносителя тепловая энергия передается парогенератору. Далее – та же схема преобразования энергии пара в механическую энергию паровой турбины и в электрическую энергию, что и на ТЭС.
В настоящее время преимущественное развитие имеют ТЭС. Это обусловлено меньшими удельными капиталовложениями и сроками строительства ТЭС. Технико-экономические показатели АЭС находятся между показателями ТЭС и ГЭС.
Таблица
Тип электростанции | Удельные капиталовложения руб/кВт | Себестоимость электроэнергии коп/кВтч | Минимальные срок строительства, лет |
ТЭС | 0,72 | 2.5 | |
ГЭС | 0.14 |
Часто при освоении новых нефтяных месторождений, при разведочных работах, в начальный период эксплуатации для временного электроснабжения применяются дизельные, газотурбинные электростанции и энергопоезда.
Основной элемент дизельных электростанций (ДЭС) – дизель-генератор. В качестве первичных двигателей в основном применяются бескомпрессорные четырех и двухтактные дизели мощностью 5-1000 кВт, имеющие частоту вращения 375-15000 об/мин. Дизели комплектуются синхронными генераторами переменного тока. По назначению ДЭС делят на основные, резервные и аварийные.
Все электростанции укомплектованы генераторами, вырабатывающими электроэнергию на напряжении, которое называется генераторным. Генераторное напряжение от 6,3 до 38,5 кВ меньше напряжения линий электрической сети, наиболее рационального для передачи электрической энергии на значительные расстояния. Поэтому для преобразования генераторного напряжения в напряжение электропередачи (по ЛЭП) 500, 750 или 1050 кВ на станции сооружаются повышающие подстанции. Но поскольку ввод электроэнергии в города и промышленные предприятия осуществляется ЛЭП с напряжением 220, 110 и 35 кВ, мощные электродвигатели работают при напряжении 6 и 10 кВ, а номинальное напряжение большинства потребителей электрической энергии выбирают равным 220, 380 или 660 В, то снижение напряжения осуществляется в несколько ступеней с помощью понижающих подстанций. Основой повышающих и понижающих подстанций являются трансформаторы. Трансформаторы в системах распределения электроэнергии называют силовыми. Они имеют номинальную мощность от 10 кВ*А до 1 млн. кВ*А.
Похожие статьи:
poznayka.org
Типы солнечных электростанций. Типы СЭС. Башенные, тарельчатые, параболические, комбинированные, аэростатные электростанции
Все солнечные электростанции (сэс) подразделяют на несколько типов:
- СЭС башенного типа
- СЭС тарельчатого типа
- СЭС, использующие фотобатареи
- СЭС, использующие параболические концентраторы
- Комбинированные СЭС
- Аэростатные солнечные электростанции
- Мобильные солнечные электростанции
Солнечные электростанции башенного и с концентратором параболического типа продуктивно работают в составе объемных соединений с сетью электростанций мощностью 30-200 МВт, между тем конструкции тарельчатого вида состоят из модулей и могут использоваться как самостоятельно, так и группами общей мощностью в несколько Мегаватт. Современные автономные солнечные электростанции могут получить гораздо большее распространение в индивидуальной электрификации частных домов и небольших общественных зданий из-за своей мобильности и небольших размеров.
Электростанции башенного и тарелочного типа позволяют получить более высокое КПД преобразования солнечной энергии в электрическую при меньший стоимости оборудования, чем у параболических, поэтому они также есть все шансы стать электростанциями близкого будущего.
Солнечные электростанции башенного типа (СЭС башенного типа)
Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрыт чёрным цветом для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты.
Гелиостат — зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудоемкая задача — это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар.
В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20%) и высокие мощности.
Пример: СЭС, построенная в Крыму
Солнечные электростанции тарельчатого типа (СЭС тарельчатого типа)
Данный тип солнечных электростанций (СЭС) использует принцип получения электроэнергии, схожий с таковым у Башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приемник находится на некотором удалении от отражателя, и в нем концентрируются отраженные лучи солнца. Отражатель состоит из зеркал в форме тарелок (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал — нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).
Солнечные электростанции, использующие фотобатареи (СЭС, использующие фотобатареи)
СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением небольшого посёлка.
Солнечные электростанции, использующие параболические концентраторы
(СЭС, использующие параболические концентраторы)
Принцип работы данных солнечных электростанций (СЭС) заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.
Конструкция СЭС: на ферменной конструкции устанавливается параболическое зеркало большой длины, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.
Параболические установки на сегодняшний день наиболее развитая из солнечных энергетических технологий и именно они, вероятнее всего, будут применяться в ближайшем будущем в крупных проектах.
СЭС, использующие двигатель Стирлинга
Представляют собой СЭС с параболическими концентраторами, у которых в фокусе установлен двигатель Стирлинга. Существуют конструкции двигателей Стирлинга, которые непосредственно преобразуют колебания поршня в электрическую энергию, без использования кривошипно-шатунного механизма. Это позволяет достичь высокой эффективности преобразования энергии. Эффективность таких электростанций достигает 31,25%. В качестве рабочего тела используется водород или гелий.
Комбинированные солнечные электростанции (Комбинированные СЭС)
Комбинированные электростанции могут совмещать в себе несколько типов солнечных электростанций. Так например на одной территории станции будут запараллелены установки тарельчатого или параболического типа и солнечных батарей. Также, другим примером может служить то, когда на солнечной электростанции дополнительно устанавливают теплообменные конструкции для получения горячей воды, которая может быть использована для горячего водоснабжения, отопления или технических потребностей.
Часто на солнечных электростанциях (СЭС) различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.
Аэростатные солнечные электростанции
Солнечные аэростатные электростанции самые энергоэффективные электростанции, они способны собрать до 97% солнечной энергии, при этом этот тип сооружений занимает малые территории поверхности, так как расположенное на поверхности земли оборудование занимает слишком мало места, а громоздкий баллон аэростата с фотоэлектрическим слоем, расположен в воздухе и способен поглощать солнечные лучи практически полностью в любое время суток, независимо от погодных условий за счет способности подниматься и опускаться на необходимую высоту.
Особо стоит отметить, факт того, что расположение таких электростанций не ограничивается поверхностью земли и воды. Китайский ученый Ван Ли предположил такой вид электростанций для использования в горах Тибета, с расположением баллонов аэростатов выше слоя облаков, при этом электроэнергией по расчетам ученого обеспечатся не только высокогорные районы, но и близ лежащие Китайские провинции.
www.gigavat.com