Как идет ток по проводам: от плюса к минусу или наоборот

от плюса к минусу или наоборот

Электрический ток – одно из основных благ цивилизации, без которого жизнь современного человечества была бы невозможна. Применяемый во всех областях современного мира (от простого электрочайника, встречающегося на кухни почти любой домохозяйки до мощной дуговой электроплавильной печи) он делает жизнь людей более удобной и простой. В то же самое время очень мало из тех, кто пользуется многочисленными электроприборами, задумывается над природой данного явления. В частности, не все понимают, что оно собой представляет, на протекании каких процессов основывается, какое направление течения заряженных частиц в проводниках и электрических цепях.

Движение зарядов в проводнике

Движение зарядов в проводнике

Для того чтобы разобраться в том, как течет ток, необходимо понять его физическую сущность, основанную на атомарно-молекулярной теории строения материи, узнать, какие условия необходимы для его возникновения и существования, какие виды токов бывают, и какими характеристиками они обладают.

Физическая сущность течения тока в цепи

Наличие тока в цепи обусловлено направленным перемещением заряженных частиц. В твердых телах течение тока создается движением отрицательно заряженных электронов, в газах и жидкостях – положительными ионами. В таких широко распространенных веществах, как полупроводники, электрический ток возникает при движении частиц –  электронов и «дырок» (положительно заряженных частиц, представляющих собой атомы с недостающим количеством электронов на внешних уровнях).

Основными условиями возникновения и существования электрического тока являются:

  • Наличие носителей зарядов – перемещающиеся по проводнику, газу или электролиту частицы;
  • Создаваемое определенным источником питания электрическое поле – без данного силового поля движение свободных носителей зарядов будет хаотичным, не имеющим определенного направления;
  • Замкнутая цепь – направленное движение зарядов возможно только в замкнутых цепях. Так, например, состоящий из источника питания ключа (переключатель) и лампочки накаливания ток будет протекать только тогда, когда ключ, располагающийся в разрыве проводника между одним из полюсов питания и лампой, находится во включенном состоянии, позволяя носителям заряда перемещаться по замкнутой цепи от отрицательного полюса батареи к положительному.

Электрический ток и поток электронов

Разобравшись в том, что в большинстве случаев носителями электрических зарядов являются электроны, необходимо понять, почему они движутся. Для этого необходимо заглянуть в микромир частиц – атомов и понять их строение, физические процессы, происходящие с ними.

Атом состоит из ядра и вращающихся вокруг него множества электронов, количество которых зависит от суммарного заряда ядра. Электроны передвигаются по определенным траекториям – орбиталям (уровням). При этом те из них, которые располагаются ближе всего к ядру, удерживаются им очень сильно и не участвуют в химических реакциях и физических процессах. Те частицы, которые находятся на внешних уровнях, являются активными и определяющими способность того или иного атома к химическому взаимодействию и образованию свободных зарядов. Их называют валентными.

Ядро и электроны

Ядро и электроны

Активность и способность атомов к отщеплению свободных электронов зависят от количества частиц на внешних уровнях. Так, у одних веществ многочисленные электроны удалены от ядра, поэтому срываются со своих орбиталей и начинают устремляться к другим атомам, в результате чего наблюдается перемещение свободных зарядов. При подаче электрических потенциалов (напряжения) движение электронов становится направленным, появляется электрический ток. Поэтому твердые тела (например, металлы) с большим количеством свободных электронов являются проводниками.

У диалектиков частицы, способные переносить электрический заряд, отсутствуют – у них мало электронов на внешних уровнях, поэтому они не могут срываться, переходя сначала в хаотичное, потом и в направленное движение.

Промежуточное положение между диэлектриками и проводниками занимают полупроводники, электропроводность которых зависит от внешних факторов (температуры, освещенности и т.д.).

Электрический ток в параллельной цепи

В электрических схемах предусмотрены параллельные и последовательные соединения элементов. При параллельном соединении, например, резисторов, напряжение одинаково для каждого из них, а сила тока, протекающего через каждый элемент, пропорциональна его сопротивлению. Чтобы определить величину тока через каждый компонент при параллельной комбинации их соединения, используют закон Ома.

Параллельная электрическая цепь

Параллельная электрическая цепь

Вид цепи и напряжение

В зависимости от направления протекания тока и особенностей напряжения, различают два вида электрических цепей:

  • Цепи постоянного тока;
  • Цепи переменного тока.

Напряжение цепей постоянного тока является работой, совершаемой электрическим полем в ходе перемещения пробного плюсового заряда из точки A в точку Б. Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах. В таких цепях принято считать, что ток идет от плюса к минусу (от плюсового полюса к минусовому).

На заметку. В реальности ток течет не от плюса к минусу, а, наоборот, от минуса к плюсу. Сформировавшееся ошибочное представление о направлении течения именно от плюса не стали изменять и оставили для удобства понимания физической сущности данного явления.

Для цепей переменного тока характерны такие виды и значения напряжения, как:

  • мгновенное;
  • амплитудное;
  • среднее значение;
  • среднеквадратическое;
  • средневыпрямленное.

Напряжение в таких цепях – это достаточно сложная функция времени. Грубо говоря, ток в них течет от фазного провода, проходит через нагрузку и частично уходит в нулевой (течет от фазы к нулю)

Виды токов: постоянные и переменные

В зависимости от изменения направления протекания заряженных частиц, различают следующие виды токов:

  • Постоянный – формируется движением заряженных частиц в одном направлении. Его основные характеристики (сила тока, напряжение) имеют постоянные значения и не изменяются во времени;
  • Переменный – направление перемещения зарядов при таком виде движения заряженных частиц периодически меняется. Количество изменений направления движения за единицу времени, равную одной секунде, называется частотой тока и измеряется в Герцах. Так, например, значение данной характеристики в обычной бытовой электрической цепи равно 50 Гц. Это означает, что в течение 1 секунды движущиеся по цепи электроны меняют свое направление 50 раз, вызывая тем самым такое же количество изменений напряжения в фазном проводе от 220 до 0 В.
Основные характеристики переменного тока

Основные характеристики переменного тока

Двунаправленное перемещение зарядов

Наряду с упорядоченным движением носителей зарядов (электронов), в проводниках наблюдается также незначительный обратный процесс – условное перемещение положительных зарядов, потерявших отрицательные частицы атомов. Вместе с основным током данное явление получило название двунаправленное перемещение зарядов. Особенно оно ярко проявляется при протекании электричества через электролиты (явление электролиза).

Двунаправленное перемещение зарядов в аккумуляторной батарее

Двунаправленное перемещение зарядов в аккумуляторной батарее

Значение перемещения электронов в электрической схеме

Понимание того, как идет в цепи ток, необходимо при составлении такого графического изображения расположения электронных деталей, как схема. Важно понимать, откуда течет ток, для того чтобы правильно располагать на схеме, затем соединять различные радиоэлектронные элементы. Если для таких радиодеталей, как конденсатор, резистор, полярность подключения не имеет значения, то полупроводниковый транзистор,

диод необходимо размещать на схеме и затем запитывать, учитывая направление движения тока, иначе они и собираемое с их использованием устройство, электронный блок не будут правильно функционировать.

Таким образом, знание физической сущности направления течения заряженных частиц в проводнике, электролите, полупроводнике позволит любому человеку не только расширить свой кругозор, но и применять его на практике при монтаже электропроводки, пайке различных электронных блоков и схем. Также подобная информация поможет разобраться в том, почему произошла поломка того или иного электроприбора, как ее устранить и предотвратить в будущем.

Видео

Каким образом течет электричество?

Электрический ток может приводит в действие машины только тогда, когда он циркулирует в цепи. Электрическая цепь — это канал, по которому течет электричество. Начинается цепь в источнике питания (например, в батарейке), к которому соединительным проводом подключен потребитель, например, лампа накаливания.

Цепь не оканчивается на потребителе, а возвращается по кольцу снова к источнику питания. Сила, поддерживающая течение электрического тока в цепи, называется электродвижущей силой, или напряжением. Так как потребители ослабляют ток в цепи, они называются сопротивлениями.

Понимание взаимосвязи между электрическим током, напряжением и сопротивлением может быть облегчено путем проведения аналогии между электрическим током и водой, текущей по каналу (рисунок вверху). Батарейка может быть представлена в виде водяного насоса, а электрический ток — в виде определенного объема воды. Аналогами двух электрических сопротивлений (двух ламп накаливания) являются два водослива в канале.

В такой модели каждый раз, когда вода (электрический ток) встречает водослив (сопротивление), она падает на более низкий уровень (меньшее напряжение). Объем воды остается неизменным, однако ее уровень (энергия) уменьшается. То же самое происходит с электрическим током. Когда электрический ток проходит через сопротивление, его энергия отводится в окружающую среду, а напряжение уменьшается.

Вычисление падения напряжения

Когда электрический ток проходит через сопротивление, например, через лампу накаливания, силовое воздействие на заряды (напряжение) уменьшается. Это уменьшение называется падением напряжения. Изменение напряжения может быть определено численно, путем умножения величины сопротивления на силу тока.

Электрический ток и поток электронов

Электроны (синие шарики) текут по направлению к положительному полюсу источника тока, т.е. навстречу электрическому току, который движется от положительного полюса к отрицательному (большая голубая стрелка). Сила тока зависит от того, сколько электронов пройдет через поперечное сечение проводника в единицу времени.

Электрический ток в параллельной цепи

В параллельной цепи электрический ток (синие стрелки), прежде чем вернуться к своему источнику (красная батарейка), разделяется на две отдельные ветви.

Вид цепи и напряжение

Последовательная цепь содержит два сопротивления (R), которые поочередно снижают напряжение (V). Падение напряжения определяется суммой сопротивлений.

В параллельной цепи электрический ток проходит по различным путям. Такое расположение сопротивлений (R) вызывает одновременное падение напряжения.

Направление тока в проводнике, как, откуда и куда течет электрический ток.

 

 

 

Тема: в какую сторону идёт ток в проводах, электрических цепях, схемах.

 

Направление тока в проводнике, как, откуда и куда течет электрический токЭлектрический ток представляет собой упорядоченное движение заряженных частиц. В твердых телах это движение электронов (отрицательно заряженных частиц) в жидких и газообразных телах это движение ионов (положительно заряженных частиц). Более того ток бывает постоянным и переменным, и у них совсем разное движение электрических зарядов. Чтобы хорошо понять и усвоить тему движение тока в проводниках пожалуй сначала нужно более подробно разобраться с основами электрофизики. Именно с этого я и начну.

 

Итак, как вообще происходит движение электрического тока? Известно, что вещества состоят из атомов. Это элементарные частицы вещества. Строение атома напоминает нашу солнечную систему, где в центре расположено ядро атома. Оно состоит из плотно прижатых друг к другу протонов (положительных электрических частиц) и нейтронов (электрически нейтральных частиц). Вокруг этого ядра с огромной скоростью по своим орбитам вращаются электроны (более мелкие частицы, имеющие отрицательный заряд). У разных веществ количество электронов и орбит, по которым они вращаются, может быть различным. Атомы твердых веществ имеют так называемую кристаллическую решетку. Это структура вещества, по которой в определенной порядке располагаются атомы относительно друг друга.

 

как возникает электрический ток, в каком направлении он движентся, течёт

 

А где же тут может возникнуть электрический ток? Оказывается, что у некоторых веществ (проводников тока) электроны, что наиболее удалены от своего ядра, могут отрываться от атома и переходить на соседний атом. Это движение электронов называется свободным. Просто электроны перемещаются внутри вещества от одного атома к другому. Но вот если к этому веществу (электрическому проводнику) подключить внешнее электромагнитное поле, тем самым создав электрическую цепь, то все свободные электроны начнут двигаться в одном направлении. Именно это и есть движение электрического тока внутри проводника.

 

 

 

 

Теперь давайте разберемся с тем, что собой представляет постоянный и переменный ток. Итак, постоянный ток всегда движется только в одном направлении. Как говорилось в самом начале — в твердых телах движутся электроны, а в жидких и газообразных движутся ионы. Электроны, это отрицательно  заряженные частицы. Следовательно, в твердых телах электрический ток течет от минуса к плюсу источника питания (перемещаются электроны по электрической цепи). В жидкостях и газах ток движется сразу в двух направлениях, а точнее, одновременно, электроны текут к плюсу, а ионы (отдельные атомы, что не связаны между собой кристаллической решеткой, они каждый сам по себе) текут к минусу источника питания.

 

в какую сторону идёт ток в проводах, электрических цепях, схемах

 

Учеными же было принято официально считать, что движение происходит от плюса к минусу (наоборот, чем это происходит в действительности). Так что, с научной точки зрения правильно говорить, что электрический ток движется от плюса к минусу, а с  реальной точки зрения (электрофизическая природа) правильнее полагать, что ток течет от минуса к плюсу (в твердых телах). Наверное это сделано для какого-то удобства.

 

Теперь, что касается переменного электрического тока. Тут уже немного все сложнее. Если в случае постоянного тока движение заряженных частиц имеет только одно направление (физически электроны со знаком минус текут к плюсу), то при переменном токе направление движения периодически меняется на противоположное. Вы наверное слышали, что в обычной городской электросети переменное напряжение величиной 220 вольт и стандартной частотой 50 герц. Так вот эти 50 герц говорят о том, что электрический ток за одну секунду успевает 50 раз пройти полный цикл, имеющий синусоидальную форму. Фактически за одну секунду направление тока меняется аж 100 раз (за один цикл меняется два раза).

 

ps smail

P.S. Направление тока в электрических схемах имеет важное значение. Во многих случаях если схема рассчитана на одно направление тока, а вы случайно его поменяете на противоположный или вместо постоянного тока подключите переменный, то скорее всего устройство просто выйдет из строя. Многие полупроводники, что работают в схемах, при обратном направлении тока могут пробиваться и сгорать. Так что при подключении электрического питания направление тока должно быть вами строго соблюдаться.

 

Протекание тока — Основы электроники

Электрический ток это есть медленное движение потока электронов в область положительного заряда из области отрицательного заряда. В качестве единицы измерения силы тока используют ампер (А). Названа эта единица в честь французского ученого Андре Мари Ампера. Один ампер это сила тока, возникающая в проводнике при перемещении заряда через заданную точку величиной в один кулон за одну секунду.
Следующая формула показывает соотношение между силой тока и зарядом за секунду:

I=Q/t


где I — сила тока в амперах, Q — величина электрическо¬го заряда в кулонах, t — время в секундах.


Пример. Чему будет равна сила тока в цепи, если через заданную точку в цепи прошло 12 кулон заряда за 4 секунды.
Решение.
Q=12 Кл;
T=4 с;
I=Q/t=12/4=3 (А).

Рассмотрим протекание тока по проводнику. Обычно носителями заряда в цепи являются отрицательно заряженные электроны. Тогда ток это есть поток отрицательно заряженных электронов. Так исторически сложилось, что направление протекания тока не совпадает с направлением потока электронов, то есть противоположно. Однако в свое время было открыто, что когда электроны перемещаются от одного атома к другому, то возникают положительные заряды, названные дырками. (рис 2.2).

Можно сказать, что дырка это место на оболочке, откуда ушел электрон. Дырки перемещаются в направлении противоположном потоку электронов (рис 2.3).

В том случае, если электроны берутся с одного конца проводника и добавляются на другой конец проводника, то по проводнику будет течь ток. В результате медленного движения свободных электронов по проводнику, они сталкиваются с атомами, при этом освобождая другие электроны. Эти освободившиеся электроны движутся к положительному заряженному концу проводника, так же сталкиваясь с другими атомами. Это перемещение (или его еще называют дрейф) происходит как следствие отталкивания зарядов. К тому же положительно заряженный конец проводника, где присутствует дефицит электронов, притягивает отрицательно заряженные электроны.
Так вследствие «работы» законов взаимодействия электрических зарядов происходит медленный дрейф электронов. Хотя отдельные электроны сталкиваются с атомами и освобождают другие электроны, скорость которых достигает скорости света.
Для наглядности возьмем полую трубу и заполним ее шариками (рис. 2.4.).

Если добавить шарик в один конец трубы, то из второго конца шарик выталкивается. Отдельные шары тратят для перемещения некоторое время, но частота их столкновений иногда будет достаточно высокой.

Устройство, которое забирает электроны с положительно заряженного конца проводника и отдает их в отрицательно заряженный конец проводника, называют источником напряжения. В сравнении с системой водопровода источник напряжения может рассматриваться как своего рода насос (рис. 2.5).

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Постоянный электрический ток. Направление тока, формула

 

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: постоянный электрический ток, сила тока, напряжение.

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — энергетика, транспорт, радио, телевидение, компьютеры, мобильная связь — основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

• Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу».
Это — пример тока в металлах.

• Бросим в стакан воды щепотку поваренной соли . Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы и отрицательные ионы . Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы начнут направленное движение к отрицательному электроду, а ионы — к положительному.
Это — пример прохождения тока через раствор электролита.

• Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.
Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

• Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является (при возникновении тока свободные заряды продолжают совершать тепловое движение! Просто в этом случае к хаотическим перемещениям заряженных частиц добавляется их упорядоченный дрейф в определённом
направлении).
Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

 

Направление электрического тока

 

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов.

Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

\rm Cl^-

Рис. 1. Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером (договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки) в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

 

Действия электрического тока

 

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.

2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.

3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе положительные ионы двигаются к отрицательному электроду, и этот электрод покрывается медью.

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд.

Постоянный ток наиболее прост для изучения. С него мы и начинаем.

 

Сила и плотность тока

 

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда , прошедшего через поперечное сечение проводника за время , к этому самому времени:

(1)

Измеряется сила тока в амперах (A). При силе тока в А через поперечное сечение проводника за с проходит заряд в Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока.
Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода (сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке).

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за с.

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

(2)

где — сила тока, — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2.

 

Скорость направленного движения зарядов

 

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше.

Итак, подчеркнём ещё раз, что мы различаем две скорости.

1. Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи. Близка к км/с.

2. Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока через скорость направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна .

n

Рис. 2. К выводу формулы

Какой заряд пройдёт через поперечное сечение нашего проводника за время ?

С одной стороны, разумеется,

(3)

С другой стороны, сечение пересекут все те свободные заряды, которые спустя время окажутся внутри цилиндра с высотой . Их число равно:

Следовательно, их общий заряд будет равен:

(4)

Приравнивая правые части формул (3) и (4) и сокращая на , получим:

(5)

Соответственно, плотность тока оказывается равна:

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока A.

Заряд электрона известен: Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

м

Положим мм . Из формулы (5) получим:

м/с.

Это порядка одной десятой миллиметра в секунду.

 

Стационарное электрическое поле

 

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное (то есть — постоянное, не зависящее от времени) электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость
поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов и обеспечивать стационарное электрическое поле, создающее ток в проводниках?

Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи (именно эту разность потенциалов мы измеряем вольтметром).
Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.
2. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника (дело в том, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации).
Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула , где — напряжение на концах проводника, — напряжённость стационарного поля в проводнике, — длина проводника.

Электроника как искусство: электрический ток / Хабр

Не влезай. Убьет! (с)

Среднестатистическая грамотность населения в области электроники и электротехники оставляет желать лучшего. Максимум, спаять схемку, а как она работает — темный лес. К сожалению, все русскоязычные учебники пестрят формулами и интегралами, от них любого человека потянет в сон. В англоязычной литературе дела обстоят несколько лучше. Попадаются довольно интересные издания, но камнем преткновения здесь уже выступает английский язык. Постараюсь изложить основные понятия по электротехнике максимально доступно, в вольном стиле, не от инженера инженеру, а от человека человеку. Сведущий читатель, возможно, тоже найдет для себя несколько интересных моментов.
Электрический ток

Пути электрического тока неисповедимы. (с) мысли из интернета

На самом деле, нет. Все так или иначе можно описать с помощью математической модели, моделирования, да даже прикинув по-быстренькому на бумажке, а некоторые уникумы делают это в голове. Кому как удобнее. На самом деле, эпиграф этой главы родился от незнания, что же такое электрический ток.

Электрический ток характеризуется несколькими параметрами. Напряжением U и током I. Конечно, все мы помним определения по физике, но мало кто понимает их значения. Начну с напряжения. Разность потенциалов или работа по перемещению заряда, как сухо и неинтересно пишут в учебниках. На самом деле, напряжение всегда измеряется между двумя точками. Оно характеризует способность создавать электрический ток между этими двумя точками. Назовем эти точки источником напряжения. Чем больше напряжение, тем больше ток. Меньше напряжения – меньше ток. Но об этом чуть позже.

Что же такое ток? Представьте аналогию русло реки – это провода, электрический ток – это скорость потока воды в реке. Тогда напряжение здесь – перепад высоты между начальной точкой реки и конечной точкой. Или напряжение – это насос гоняющий воду, если река течет в одной плоскости. Такие аналогии на начальных этапах очень помогают понять, что же происходит в электрической схеме. Но, в конечном итоге, лучше от них отказаться. Лучше представить ток как некий поток электронов. Количество заряда, перемещаемое в единицу времени. Конечно, в учебниках говорится, что де электроны движутся со скоростью несколько сантиметров в минуту и значение имеет лишь электромагнитное поле, но пока забудем про это. Итак, под током можно понимать движение электрического тока, т.е. заряда. Носители заряда, электроны, отрицательно заряжены и двигаются от отрицательного потенциала к положительному, электрический ток же имеет направление от положительного потенциала к отрицательному, от плюса к минусу, так принято для удобства и так мы будем пользоваться в дальнейшем, забыв про заряд электрона.

Конечно, сам по себе ток не появится, нужно создать напряжение между двумя точками и нужна какая-либо нагрузка для протекания тока через нее, подключенная к этим двум точками. Очень полезно знать свойство, что для протекания тока нужно два проводника: прямой, до нагрузки, и обратный, от нагрузки до источника. Например, если не замкнуты проводники источника напряжения, то тока не будет.

Что же такое источник напряжения? Представим его в виде черного ящика, имеющего как минимум два вывода для подключения. Самые простые примеры из реальной жизни: электрическая розетка, батарейка, аккумулятор и т.п.


Идеальный источник напряжения обладает неизменным напряжением при протекании через него любого значения тока. Что же будет, если замкнуть зажимы идеального источника напряжения? Потечет бесконечно большой ток. В реальности источники напряжения не могут отдать бесконечно большой ток, потому что обладают некоторым сопротивлением. Например, провода в сетевой розетке 220в от самой розетки до подстанции имеют сопротивление, пусть и малое, но довольно ощутимое. Провода от подстанций до электростанций тоже имеют сопротивление. Нельзя забывать про полное сопротивление трансформаторов и генераторов. Батарейки имеют внутреннее сопротивление, обусловленное внутренней химической реакцией, которая имеет конечную скорость протекания.

Что же такое сопротивление? Вообще, это тема довольно обширная. Возможно, опишу в одной из следующих глав. Если кратко – это параметр, связывающий ток и напряжение. Оно характеризует, какой ток потечет при приложенном напряжении к этому сопротивлению. Если говорить «водной» аналогией, то сопротивление – это дамба на пути реки. Чем меньше отверстие в дамбе – тем больше сопротивление. Эту связь описывает закон Ома: . Как говорится: «Не знаешь закон Ома, сиди дома!».

Зная закон Ома, не сидя дома, имея какой-либо источник тока с заданным напряжением и сопротивление в виде нагрузки, мы очень точно можем предсказать какой потечет ток.
Реальные источники напряжения имеют какое-то свое внутреннее напряжение и отдают некий конечный ток, называемый током короткого замыкания. При этом батареи и аккумуляторы еще и разряжаются со временем и имеют нелинейное внутреннее сопротивление. Но пока тоже забудем об этом, и вот почему. В реальных схемах удобнее проводить анализ с использованием сиюминутных мгновенных значений напряжения и тока, поэтому будем считать источники напряжения идеальными. За исключением того факта, когда потребуется посчитать максимальны ток, который способен отдать источник.

Насчет «водной» аналогии электрического тока. Как я уже писал, она не очень правдива, поскольку скорость движения реки до дамбы и после дамбы будет разным, также разным будет кол-во воды до и после дамбы. В реальных схемах электрический ток втекающий в резистор и вытекающий из него будет равен между собой. Ток по прямому проводу, к нагрузке, и по обратному проводу, от нагрузки до источника, тоже равен между собой. Ток ни откуда не берется и никуда не девается, сколько «втекло» в узел схемы, столько и «вытечет», даже если путей несколько. Например, если есть два пути протекания тока от источника, то он потечет по этим путям, при этом полный ток источника будет равен сумме двух токов. И так далее. Это и есть иллюстрация закона Кирхгофа. Это очень просто.


Также есть еще два важных правила. При параллельном соединении элементов, напряжение в каждом из элементов одинаково. Например, напряжение на резисторе R2 и R3, на рисунке выше, одинаковы, но токи могут быть разными, если резисторы имеют разные сопротивления, по закону Ома. Ток через батарейку равен току на резисторе R1 и равен сумме токов на резисторах R2 и R3. При последовательном соединении напряжения элементов складываются. Например, напряжение которое выдает батарея, т.е. ее ЭДС, равно напряжению на резисторе R1 + напряжение на резисторе R2 или R3.

Как я уже писал, напряжение измеряется всегда между двумя точками. Иногда, в литературе можно встретить: «Напряжение в точке такой-то». Это означает напряжение между этой точкой и точкой нулевого потенциала. Создать точку нулевого потенциала можно, например, заземлив схему. Обычно «землят» схему в месте самого отрицательно потенциала около источника питания, например, как на рисунке выше. Правда это бывает не всегда, да и применение нуля довольно условно, например, если нам нужно двухполярное питание +15 и -15 вольт, то «землить» надо уже не -15в, а потенциал посредине. Если же заземлить -15в, то мы получим 0, +15, +30в. См. рисунки ниже.


Заземление также применяется в качестве защитного или рабочего. Защитное заземление называют зануление. Если нарушится изоляция схемы в каком-нибудь другом участке, отличном от земли, то по нулевому проводу потечет большой ток и сработает защита, которая отключит часть схемы. Защиту мы должны предусмотреть заранее, поставив автоматический выключатель или иное устройство на пути протекания тока.

Иногда «землить» схему нельзя или невозможно. Вместо земли применяют термин общая точка или ноль. Напряжения в таких схемах указываются относительно общей точки. При этом вся схема относительно земли, т.е. нулевого потенциала может располагаться где угодно. См. рисунок.


Обычно, Xv близко к 0 вольт. Такие незаземленные схемы с одной стороны более безопасны, поскольку если человек прикоснется одновременно к схеме и земле ток не потечет, т.к. нет обратного пути протекания тока. Т.е. схема станет «заземлена» через человека. Но с другой стороны такие схемы каверзны. Если вдруг нарушится изоляция схемы от земли в какой-либо ее точке, то мы этого не узнаем. Что может быть опасно, при больших напряжениях Xv.

Вообще земля — это термин довольно обширный и расплывчатый. Есть очень много терминов и названий земли, смотря где «землить» схему. Под землей может пониматься как защитная земля, так и рабочая земля (по протеканию тока через нее при нормальной работе), как сигнальная земля, так и силовая земля (по роду тока), как аналоговая земля, так и цифровая земля (по роду сигнала). Под землей может пониматься общая точка или наоборот, под общей точкой пониматься земля или и быть ей. Также в схеме могут присутствовать все земли одновременно. Так что надо смотреть по контексту. Есть даже такая забавная картиночка в иностранной литературе, см. ниже. Но обычно земля – это схемные 0 вольт и это точка от которой измеряют потенциал схемы.


До сих пор, упоминая источник напряжения, я не касался рода этого самого напряжения. Напряжение есть меняющееся со временем и есть не меняющееся. Т.е. переменное и постоянное. Например, напряжение, меняющееся по синусоидальному закону всем хорошо знакомо, это напряжение сети 220в в бытовых розетках. С постоянным напряжением работать очень просто, мы это уже делали выше, когда рассматривали закон Кирхгофа. А что же делать с переменным напряжением и как его рассматривать?

На рисунке приведены несколько периодов переменного напряжения 220в 50Гц (синяя линия). Красная линия – постоянное напряжение 220в, для сравнения.


Определимся, сначала что такое напряжение 220в, кстати, по новому стандарту положено считать 230в. Это действующее значение напряжения. Амплитудное значение будет в корень из 2х раз выше и составит примерно 308в. Действующее значение – это такое значение напряжения, при котором за период переменного тока в проводнике выделяется столько же теплоты, сколько и при постоянном токе такого же напряжения. Выражаясь математическим языком – это среднеквадратичное значение напряжения. В английской литературе используется термин RMS, а приборы, которые измеряют истинное действующее значение имеют знак «true RMS».

На первый взгляд это может показаться неудобным, какое-то действующее значение, но это удобно для расчетов мощности без необходимости конвертации напряжения.

Переменное напряжение еще удобно рассматривать как постоянное напряжение, взятое в какой-либо точке времени. После чего проводить анализ схемы несколько раз, изменяя знак постоянного напряжение на обратный. Сначала рассмотреть работу схемы с постоянным положительным напряжением, потом, изменить знак, с положительного на отрицательный.
Для переменного напряжения также необходимо два провода. Они называются фаза и ноль. Иногда ноль заземляют. Такая система называется однофазной. Напряжение фазы измеряется относительно нуля и меняется со временем, как показано на рисунке выше. При положительной полуволне напряжения ток протекает от фазы к активной нагрузке и от нагрузки возвращается обратно по нулевому проводу. При отрицательной полуволне ток течет по нулевому проводу и возвращается по фазному.

В промышленности широко применяют трехфазную сеть. Это частный случай многофазных систем. По сути все тоже самое, что и однофазная система, только умноженная на 3, т.е. применение одновременно трех фаз и трех земель. Впервые изобретено Н. Тесла, впоследствии усовершенствовано М. О. Доливо-Добровольским. Усовершенствование состояло в том, что для передачи трехфазного электрического тока можно было выкинуть лишние провода, достаточно четырех: три фазы ABC и нулевой провод или же вовсе три фазы, отказавшись от нуля. Нулевой провод очень часто заземляют. На рисунке ниже ноль общий.


Почему же 3 фазы, и не больше, не меньше? С одной стороны, 3 фазы гарантированно создают вращающееся магнитное поле, так необходимое электрическим двигателям для вращения или получаемое от генераторов электростанций, с другой стороны это экономически выгодно с материальной точки зрения. Меньше нельзя, а больше и не нужно.

Чтобы гарантировано создавать вращающееся поле в трехфазной сети нужно чтобы фазы напряжения были сдвинуты друг относительно друга. Если принять полный период напряжения за 360 градусов, то 360/3 = 120 градусов. Т.е. напряжение каждой фазы сдвинуто относительно друг друга на 120 градусов. См. рисунок ниже.


Здесь показан график напряжения 3-х фазной сети 380в по времени. Как видно из рисунка, все тоже самое, что и с однофазной сетью, только напряжений стало больше. 380в – это так называемое линейное напряжение сети Uл, т.е. напряжение, измеряемое между двумя фазами. На рисунке показан пример нахождения мгновенного значения Uл. Оно также изменяется по синусоидальному закону. Также наряду с линейным напряжением различают фазное Uф. Оно измеряется между фазой и нулем. Фазное напряжение в данной трехфазной сети равно 220в. Под фазным и линейным напряжение, конечно же подразумевается действующее напряжение. Соотносятся линейное к фазному напряжению, как корень из трех.
Нагрузку к трехфазной сети можно подключать как угодно – к фазному напряжению: между какой-либо фазой и нулем, либо к линейному напряжению: между двумя фазами. Если нагрузка подключена к фазному напряжению, то такая схема соединения называется звездой. Она и показана выше. Если к линейному напряжения – то соединение треугольником. Если одинаковая нагрузка подключается к линейным напряжениям между всеми тремя фазами, то такие сети симметричные. Ток через нулевой провод в симметричных сетях не течет. См рис. ниже. Промышленные сети также считаются условно симметричными. Как правило ноль в таких сетях присутствует, но лишь в защитных целях. Иногда может и отсутствовать вообще. Веселая картиночка из вики наглядно иллюстрирует как протекает ток в таких сетях.
На этом кратенький обзор по электросетям и электричеству завершен. Возможно в будущем объясню на пальцах как работает диод и транзистор, что такое стабилитрон, тиристор и другие элементы. Пишите, про что вам интересно почитать.
Библиографический список

  1. Искусство схемотехники, П. Хоровиц. 2003.
  2. GROUNDS FOR GROUNDING. A Circuit-to-System Handbook, Elya B. Joffe, Kai-Sang Lock.
  3. Wiki и интернет ресурсы.

Магнитное поле, связанное с током | Электромагнетизм

10.2 Магнитное поле, связанное с током (ESBPS)

Если вы держите компас рядом с проводом, через который проходит ток течет, стрелка компаса отклоняется.

Так как компасы работают, указывая вдоль силовых линий магнитного поля, это означает, что должно быть магнитное поле рядом с проводом, по которому течет ток.

Магнитное поле, создаваемое электрическим током, всегда ориентированы перпендикулярно направлению тока.Ниже приведен эскиз того, как выглядит магнитное поле вокруг провода, когда в нем течет ток. Мы используем \ (\ vec {B} \) для обозначения магнитного поля и стрелки на силовых линиях, чтобы показать направление магнитного поля. Обратите внимание на , что если нет тока, то не будет магнитного поля.

Направление тока в проводе (проводе) показано центральной стрелкой. Кружки являются линиями поля, и они также имеют направление, указанное стрелками на линиях.Как и в случае с линиями электрического поля, чем больше количество линий (или чем они ближе друг к другу) в области, тем сильнее магнитное поле.

Важно: Все наши обсуждения направлений поля предполагают, что мы имеем дело с условным током .

Чтобы визуализировать эту ситуацию, поставьте ручку или карандаш прямо на стол. Круги центрируются вокруг карандаша или ручки и должны быть нарисованы параллельно поверхности стола.Кончик ручки или карандаша указывал бы в направлении тока.

Вы можете посмотреть на карандаш или ручку сверху, и карандаш или ручка будут точкой в ​​центре кругов. Направление силовых линий магнитного поля в этой ситуации — против часовой стрелки.

Чтобы было легче увидеть, что происходит, мы будем рисовать только один набор круговых линий полей, но учтите, что это только для иллюстрации.

Если вы положите лист бумаги за карандаш и посмотрите на него сбоку, то увидите, что круговые линии поля расположены сбоку, и трудно понять, что они круглые.Они проходят через бумагу. Помните, что линии поля имеют направление, поэтому когда вы смотрите на лист бумаги сбоку, это означает, что круги входят в бумагу с одной стороны карандаша и выходят из бумаги с другой стороны.

Когда рисуем направления магнитных полей и токов, используем символы \ (\ odot \) и \ (\ otimes \). Символ \ (\ odot \) представляет собой стрелка, выходящая со страницы, и символ \ (\ время \) представляет собой стрелку, ведущую на страницу.

Значения символов легко запомнить, если вы подумаете о стрела с острым концом на голове и хвост с перьями в форме креста.

Датский физик Ганс Христиан Эрстед однажды в 1820 году читал лекцию о возможности связи электричества и магнетизма друг с другом и в процессе убедительно продемонстрировал это с помощью эксперимента перед всем своим классом. Пропуская электрический ток через металлический провод, подвешенный над магнитным компасом, Эрстед смог вызвать определенное движение стрелки компаса в ответ на ток.То, что начиналось как предположение в начале урока, в конце подтвердилось как факт. Излишне говорить, что Эрстеду пришлось пересматривать свои конспекты лекций для будущих занятий. Его открытие открыло дорогу совершенно новой отрасли науки — электромагнетизму.

Теперь мы рассмотрим три примера токоведущих проводов. Для каждого примера мы определим магнитное поле и проведем силовые линии магнитного поля вокруг проводника.

Магнитное поле вокруг прямого провода (ESBPT)

Направление магнитного поля вокруг токоведущей проводник показан на рисунке 10.1.

Рисунок 10.1: Магнитное поле вокруг проводника, когда вы смотрите на проводник с одного конца. (а) Ток течет со страницы и магнитное поле против часовой стрелки. (б) Ток течет в страницы, а магнитное поле — по часовой стрелке. Рисунок 10.2: Магнитные поля вокруг проводника, смотрящего на проводник. (а) Ток течет по часовой стрелке. (б) ток течет против часовой стрелки.

Направление магнитного поля

Используя направления, приведенные на Рисунке 10.1 и 10.2 попытаемся найти правило, которое легко скажет вам направление магнитного поля.

Подсказка: используйте пальцы. Возьмите проволоку в руки и попытайтесь найти связь между направлением большого пальца и направлением их сгибания.

Существует простой способ найти взаимосвязь между направлением тока, протекающего в проводнике, и направлением магнитного поля вокруг того же проводника. Метод называется Правило правой руки .Проще говоря, Правило правой руки гласит, что силовые линии магнитного поля, создаваемые токоведущим проводом, будут ориентированы в том же направлении, что и согнутые пальцы правой руки человека (в положении «автостоп»), при этом большой палец должен указывать внутрь. направление тока.

Ваша правая и левая рука уникальны в том смысле, что вы не можете повернуть одну из них, чтобы она находилась в том же положении, что и другая. Это означает, что правая часть правила важна. Вы всегда получите неправильный ответ, если воспользуетесь не той рукой.

Правило правой руки

Используйте Правило правой руки, чтобы нарисовать направления магнитных полей для следующих проводников с токами, текущими в направлениях, показанных стрелками. Первая задача выполнена за вас.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Магнитное поле вокруг проводника с током

Аппарат

  1. один \ (\ text {9} \) \ (\ text {V} \) аккумулятор с держателем

  2. два соединительных провода с зажимами типа «крокодил»

  3. компас

  4. секундомер

Метод

  1. Подключите провода к батарее, оставив один конец каждого провода неподключенным, чтобы цепь не замкнулась.

  2. Обязательно ограничивайте ток до \ (\ text {10} \) \ (\ text {seconds} \) за раз (вы можете спросить, у провода очень маленькое сопротивление, поэтому батарея разряжается квартира очень быстро). Это необходимо для продления срока службы батареи, а также для предотвращения перегрева проводов и контактов батареи.

  3. Поднесите компас к проводу.

  4. Замкните цепь и посмотрите, что происходит с компасом.

  5. Поменяйте полярность батареи и замкните цепь. Понаблюдайте, что происходит с компасом.

Выводы

Используйте свои наблюдения, чтобы ответить на следующие вопросы:

  1. Создает ли ток, протекающий по проводу, магнитное поле?

  2. Присутствует ли магнитное поле, когда ток не течет?

  3. Зависит ли направление магнитного поля, создаваемого током в проводе, от направления тока?

  4. Как направление тока влияет на магнитное поле?

Магнитное поле вокруг токоведущей петли (ESBPV)

До сих пор мы рассматривали только прямые провода, по которым проходит ток, и магнитные поля вокруг них.Мы собираемся изучить магнитное поле, создаваемое кольцевыми витками провода, по которому проходит ток, потому что это поле имеет очень полезные свойства. Например, вы увидите, что мы можем создать однородное магнитное поле.

Магнитное поле вокруг петли проводника

Представьте себе две петли из проволоки, по которым течет ток (в противоположных направлениях) и которые параллельны странице вашей книги. Используя правило правой руки, нарисуйте то, что, по вашему мнению, будет выглядеть магнитное поле в разных точках вокруг каждой из двух петель.В петле 1 ток течет против часовой стрелки, а в петле 2 ток течет по часовой стрелке.

Если вы сделаете петлю из проводника с током, то направление магнитного поля будет получено путем применения правила правой руки к различным точкам петли.

Обратите внимание, что есть разновидность правила правой руки. Если вы заставите пальцы правой руки следовать направлению тока в петле, ваш большой палец будет указывать в том направлении, где выходят силовые линии.Это похоже на северный полюс (где силовые линии выходят из стержневого магнита) и показывает вам, какая сторона петли будет притягивать северный полюс стержневого магнита.

Магнитное поле вокруг соленоида (ESBPW)

Если мы теперь добавим еще одну петлю с током в том же направлении, то магнитное поле вокруг каждой петли можно будет сложить вместе, чтобы создать более сильное магнитное поле. Катушка из множества таких петель называется соленоидом . Соленоид — это цилиндрическая катушка с проволокой, действующая как магнит, когда электрический ток течет по проволоке.Картина магнитного поля вокруг соленоида аналогична картине магнитного поля вокруг стержневого магнита, который вы изучали в 10-м классе, у которого были определенные северный и южный полюсы, как показано на рисунке 10.3.

Рисунок 10.3: Магнитное поле вокруг соленоида.

Реальные приложения (ESBPX)

Электромагниты

Электромагнит представляет собой кусок проволоки, предназначенный для создания магнитного поля при прохождении через него электрического тока. Хотя все проводники с током создают магнитные поля, электромагнит обычно сконструирован таким образом, чтобы максимизировать силу магнитного поля, которое он создает для специальной цели.Электромагниты обычно используются в исследованиях, промышленности, медицине и потребительских товарах. Примером обычно используемого электромагнита являются защитные двери, например на двери магазина, которые открываются автоматически.

Как электрически управляемый магнит, электромагниты являются частью широкого спектра «электромеханических» устройств: машин, которые создают механическую силу или движение за счет электроэнергии. Возможно, наиболее очевидным примером такой машины является электродвигатель , который будет подробно описан в Grade 12.Другими примерами использования электромагнитов являются электрические звонки, реле, громкоговорители и краны для свалок.

Электромагниты

Цель

Магнитное поле создается, когда электрический ток течет по проводу. Одиночный провод не создает сильного магнитного поля, в отличие от провода, намотанного на железный сердечник. Мы исследуем это поведение.

Аппарат

  1. аккумулятор и держатель

  2. длина провода

  3. компас

  4. несколько гвоздей

Метод

  1. Если вы не проводили предыдущий эксперимент в этой главе, сделайте это сейчас.

  2. Согните провод в несколько катушек перед тем, как прикрепить его к батарее. Обратите внимание, что происходит с отклонением стрелки компаса. Прогиб компаса стал сильнее?

  3. Повторите эксперимент, изменив количество и размер витков в проводе. Посмотрите, что происходит с отклонением компаса.

  4. Намотайте проволоку на железный гвоздь, а затем прикрепите катушку к батарее.Обратите внимание, что происходит с отклонением стрелки компаса.

Выводы

  1. Влияет ли количество катушек на силу магнитного поля?

  2. Железный гвоздь увеличивает или уменьшает силу магнитного поля?

Воздушные линии электропередачи и окружающая среда

Физическое воздействие

Линии электропередач — обычное явление для всей страны.Эти линии подводят электричество от электростанций к нашим домам и офисам. Но эти линии электропередач могут иметь негативное воздействие на окружающую среду. Одна из опасностей, которые они представляют, — это летающие на них птицы. Защитник природы Джессика Шоу провела последние несколько лет, изучая эту угрозу. Фактически, линии электропередач представляют собой основную угрозу для синего журавля, национальной птицы Южной Африки, в Кару.

«Нам повезло, что в Южной Африке обитает широкий спектр видов птиц, в том числе множество крупных птиц, таких как журавли, аисты и дрофы.К сожалению, существует также множество линий электропередач, которые могут воздействовать на птиц двояко. Они могут быть поражены электрическим током, когда садятся на некоторые типы пилонов, а также могут быть убиты, столкнувшись с линией, если они влетят в нее, либо от удара о веревку, либо после удара о землю. Эти столкновения часто происходят с крупными птицами, которые слишком тяжелы, чтобы избежать линии электропередачи, если они видят ее только в последнюю минуту. Другие причины, по которым птицы могут столкнуться, включают плохую погоду, полет стайками и отсутствие опыта у молодых птиц.

В течение последних нескольких лет мы изучали серьезное влияние столкновений линий электропередач на «Голубых журавлей» и «Дроф Людвига». Это два наших эндемичных вида, а это значит, что они встречаются только в южной части Африки. Это большие птицы, которые живут долго и медленно размножаются, поэтому популяции могут не восстановиться после высокой смертности. Мы прошли и проехали под линиями электропередач через Оверберг и Кару, чтобы подсчитать мертвых птиц. Данные показывают, что ежегодно тысячи этих птиц гибнут в результате столкновений, а дрофа Людвига теперь внесена в список исчезающих видов из-за такого высокого уровня неестественной смертности.Мы также ищем способы уменьшить эту проблему и работаем с Eskom над тестированием различных устройств для маркировки линий. Когда на линиях электропередач вешают маркеры, птицы могут видеть линию электропередач с большого расстояния, что дает им достаточно времени, чтобы избежать столкновения ».

Воздействие полей

Тот факт, что вокруг линий электропередачи создается поле, означает, что они потенциально могут иметь воздействие на расстоянии. Это было изучено и продолжает оставаться предметом серьезных дискуссий.На момент написания руководства Всемирной организации здравоохранения в отношении воздействия на человека электрических и магнитных полей указано, что нет четкой связи между воздействием магнитных и электрических полей, с которыми население сталкивается от линий электропередач, поскольку это поля чрезвычайно низкой частоты. .

Шум в линии электропередач может мешать радиосвязи и радиовещанию. По сути, линии электропередач или связанное с ними оборудование неправильно генерируют нежелательные радиосигналы, которые перекрывают полезные радиосигналы или конкурируют с ними.Шум от линии электропередачи может повлиять на качество приема радио и телевидения. Также может произойти нарушение радиосвязи, например, любительского радио. Потеря критически важной связи, такой как полиция, пожарные, военные и другие аналогичные пользователи радиочастотного спектра, может привести к еще более серьезным последствиям.

Групповое обсуждение:

Когда молния поражает корабль или самолет, она может повредить или иным образом изменить его магнитный компас. Были зарегистрированы случаи удара молнии, меняющего полярность компаса, так что стрелка указывала на юг, а не на север.

Присоединяйтесь к тысячам учащихся, улучшающих свои научные оценки онлайн с помощью Siyavula Practice.

Зарегистрируйтесь здесь

Магнитные поля

Упражнение 10.1

Привести доказательства существования магнитного поля возле токоведущего провода.

Если вы поднесете компас к проводу, по которому течет ток, стрелка на компасе отклонится. Поскольку компасы работают, указывая вдоль силовых линий магнитного поля, это означает, что рядом с проводом, по которому течет ток, должно быть магнитное поле.Если ток перестает течь, компас возвращается в исходное направление. Если ток снова начнет течь, отклонение произойдет снова.

Опишите, как вы будете использовать правую руку, чтобы определять направление магнитного поля вокруг проводника с током.

Мы используем правило правой руки, которое гласит, что силовые линии магнитного поля, создаваемые токоведущим проводом, будут ориентированы в том же направлении, что и согнутые пальцы правой руки человека (в положении «автостоп»), при этом большой палец указывает по направлению тока:

Со страницы

на страницу

Используйте Правило правой руки, чтобы найти направление магнитных полей в каждой из точек, обозначенных A — H на следующих диаграммах.

  • A: против часовой стрелки
  • B: против часовой стрелки
  • C: против часовой стрелки
  • D: против часовой стрелки
  • E: по часовой стрелке
  • F: по часовой стрелке
  • G: по часовой стрелке
  • H: по часовой стрелке
.

Почему текут электроны?

Что заставляет двигаться электрический заряд?

Вы знаете, что нужно проделать работу, чтобы поднять объект, потому что гравитационное поле Земли тянет объект вниз. Аналогичным образом необходимо проделать работу по перемещению заряженной частицы в электрическом поле. Объем работы, необходимый для перемещения заряда между точками или работа на единицу заряда, называется «разностью электрических потенциалов » между двумя точками.Единица измерения разности потенциалов называется вольт. Разница потенциалов может быть как положительной, так и отрицательной, в зависимости от движения заряда.

Для перемещения зарядов нам нужно устройство, которое может работать. К таким устройствам относятся: батареи, генераторы, термопары и батареи.

Как электроны движутся по проводу?

Электроны не движутся по проводу, как автомобили по шоссе. Фактически, любой проводник (вещь, через которую может проходить электричество) состоит из атомов.В каждом атоме есть электроны. Если вы поместите новые электроны в проводник, они соединятся с атомами, и каждый атом доставит электрон к следующему атому. Следующий атом забирает электрон и посылает другой с другой стороны.

Что такое электродвижущая сила (ЭДС)?

Электродвижущая сила, также называемая ЭДС (и измеряемая в вольтах), — это напряжение, развиваемое любым источником электрической энергии, например батареей или генератором.Обычно его определяют как электрический потенциал источника в цепи. Устройство, которое поставляет электрическую энергию, называется электродвижущей силой или ЭДС. ЭДС преобразовывают химическую, механическую и другие формы энергии в электрическую. Слово «сила» в данном случае используется не для обозначения механической силы, измеряемой в ньютонах, а для обозначения потенциала или энергии на единицу заряда, измеряемой в вольтах.

Что такое проводники?

В таких металлах, как медь, серебро и алюминий, электроны не связаны прочно с атомами.Их называют «свободными электронами». Это делает их хорошими проводниками. Проводники — это материалы, которые позволяют электричеству легко течь. Когда отрицательный заряд приближается к одному концу проводника, электроны отталкиваются. Когда положительно заряженный объект помещается рядом с проводником, электроны притягиваются к объекту.

ВЫШЕ — АТОМ МЕДИ — ОДНОЗНАЧНЫЙ ЭЛЕТРОН СЛАБО СВЯЗАН

Металлы содержат свободно движущиеся делокализованные электроны.Когда прикладывается электрическое напряжение, электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца к другому концу проводника. Электроны будут двигаться в положительную сторону.

Медь является хорошим проводником, потому что самые внешние электроны ядра еженедельно связываются и отталкиваются, так что небольшое возмущение, такое как разность потенциалов между двумя концами провода, может выбить валентные электроны из атома, которые затем вызовут возмущение. соседние валентные электроны и так далее, что приводит к каскадному возмущению движущихся зарядов или тока по всему материалу.Энергия, необходимая для освобождения валентных электронов, называется энергией запрещенной зоны, поскольку ее достаточно для перемещения электрона из валентной зоны или внешней электронной оболочки в зону проводимости, где электрон может перемещаться через материал и влиять на соседние атомы. Приведенная выше диаграмма иллюстрирует эту концепцию.

Что такое изоляторы?

Изоляторы — это материалы, в которых электроны не могут свободно перемещаться.Примеры хороших изоляторов: резина, стекло, дерево,

.

Что такое аккумулятор и как он работает?

Батарея преобразует химическую энергию в электрическую с помощью химической реакции. Обычно химические вещества хранятся внутри батареи. Он используется в цепи для питания других компонентов. Батарея вырабатывает электричество постоянного тока (DC) (электричество, которое течет в одном направлении и не переключается взад и вперед, как при переменном (AC) токе).Для получения дополнительной информации о батареях см .: Как работает батарея?

Генераторы

Генератор обычно означает машину, вырабатывающую электрическую энергию. У него есть генераторная головка с проводами, вращающимися внутри магнитного поля. Возникающая в результате электромагнитная индукция заставляет электричество течь по проводам. Гибридные электромобили оснащены генератором, достаточно мощным, чтобы заставить их двигаться. Самые большие генераторы никуда не денутся; они остаются на своей электростанции.

Термопары

Термопара, сокращенно ТС, — это устройство, которое преобразует тепло непосредственно в электричество. Термопара также может работать в обратном направлении — используя электрический ток для преобразования в тепло, а также в холод.


Проверьте свой Понимание:

.

0 comments on “Как идет ток по проводам: от плюса к минусу или наоборот

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *