Измерения осциллографом
Измерения осциллографом, как пользоваться осциллографом
Осциллограф — это эффективный современный прибор, предназначенный для измерения частотных параметров электрического тока во времени и позволяющий отображать их в графическом виде на мониторе, либо фиксировать их с помощью самопишущих устройств. Он позволяет измерять такие характеристики электрического тока внутри цепи, как его сила, напряжение, частота и угол фазового сдвига.
Зачем нужен осциллограф?
Нет лаборатории, которая смогла бы функционировать долго без измерительных приборов или источников сигналов, токов и напряжения. Если же в планах заняться проектированием или созданием высокочастотных устройств (особенно серьёзной вычислительной техники, скажем, инверторных блоков питания), тогда осциллограф — это отнюдь не роскошь, а необходимость.
Особенно же хорош он тем, что помогает визуально определить форму у сигнала. Чаще всего именно такая форма хорошо показывает, что именно происходит в измеряемой цепи.
Центром всяких осциллографов выступает электронно-лучевая трубка. Можно сказать, что она вроде радиолампы, внутри, соответственно, вакуум.
Катод осуществляет выброс электронов. Установленная фокусирующая система создаёт тоненький луч из излучаемых заряженных частиц. Специальный слой люминофора покрывает весь экран внутри. Под воздействием заряженного пучка электронов возникает свечение. Наблюдая снаружи, можно заметить по центру светящуюся точку. Лучевая трубка укомплектована двумя парами пластин, которые управляют созданным таким образом лучом. Работа электронного луча осуществляется в направлениях, находящихся перпендикулярно. В итоге получаются две управляющие системы, которые создают на экране синусоиду, в которой вертикаль обозначает величину напряжения, а горизонталь — период времени. Таким образом, можно наблюдать параметры поданного на прибор напряжения в определённых временных промежутках. В зависимости от типа подаваемого на осциллограф сигнала с его помощью возможно измерение не только параметров напряжения, но и других величин того или иного тестируемого агрегата.
Какими они бывают
В настоящее время распространены осциллографы двух типов — аналоговый и цифровой (последний отличается большим удобством, расширенными функциями и зачастую более точен). Оба они работают по одинаковому принципу, и указанные ниже способы измерения физических величин могут применяться на любых моделях этого прибора.
Правильное подключение
При проведении измерений важно правильное подключение прибора к измеряемому участку цепи. Осциллограф имеет два выхода с подключаемыми к ним клеммами или щупами. Одна клемма — фазовая, она соединена с усилителем вертикального отклонения луча. Другая — земля, соединенная с корпусом прибора. На большинстве современных приборов фазовый провод заканчивается щупом либо миниатюрным зажимом, а земля — небольшим зажимом типа «крокодил» (см. фото)
На осциллографах советского производства и некоторых российских моделях оба щупа одинаковы, различить их можно либо по значку «земля» на соответствующем проводе, либо по длине — фазовый провод короче. Подключаются они к входам осциллографа, как правило, стандартным штекером (см. рисунок)
Если маркировка отсутствует, а по внешним признакам выяснить, где какой щуп, не удалось, то проводят простой тест. Одной рукой дотрагиваются до одного щупа, при этом другую руку держат в воздухе, не прикасаясь ни к чему. Если этот щуп идет на фазовый вход, то на мониторе появятся заметные помехи (см. рисунок). Они представляют собой значительно искаженную синусоиду с частотой 50 Герц. Если щуп идет к «земле», то монитор останется без изменений.
При подключении осциллографа на измеряемый участок цепи, не имеющий общего провода, щуп «земля» может быть подключен к каждой из измеряемых точек. Если общий провод имеется (это точка, соединенная с корпусом прибора либо заземленная и условно имеющая «нулевой» потенциал), то «землю» предпочтительнее подключать к ней. Если этого не сделать, то точность измерений сильно упадет (в некоторых случаях такие измерения окажутся очень далеки от истинных значений и доверять им будет нельзя).
Измерение напряжения осциллографом
За основу измерения напряжения берется известное значение вертикального масштаба. Перед началом измерений надлежит закоротить оба щупа прибора либо переключить регулятор входа в положение. Нагляднее см. следующую картинку.
После чего рукояткой вертикальной регулировки надлежит выставить линию развертки на горизонтальную ось экрана, чтобы можно было корректно определять высоту.
После этого прибор подключается на измеряемый участок цепи и на мониторе появляется график. Теперь остается только посчитать высоту графика от горизонтальной линии и умножить на масштаб. Например, если на ниже приведенном графике одну клетку считать за 1 вольт (соответственно, она разбита на штриховые деления в 0,2, 0,4, 0,6, и 0,8 вольт), то получаем общее напряжение в 1,4 вольта. Если бы цена деления была 2 вольта, то напряжение бы равнялось 2,8 вольт и так далее…
Выставление нужного масштаба осуществляется вращением специальных ручек настройки.
Определение силы тока
Для узнавания силы тока в цепи с помощью осциллографа в нее последовательно включают резистор, имеющий значительно меньшее сопротивление, чем сама цепь (такое, чтобы он практически не влиял на ее исправную работу).
После этого производят измерение напряжения по принципу, указанному выше. Зная номинальное сопротивление резистора и общее напряжение в цепи несложно, пользуясь законом Ома, рассчитать силу тока.
Измерение частоты с помощью осциллографа
Прибор позволяет успешно измерять частоту сигнала, исходя из его периода. Частота находится в прямо пропорциональной зависимости от периода и рассчитывается по формуле f=1/T, там f — частота, Т — период.
Перед измерением линию развертки совмещают с центральной горизонтальной осью прибора. При проведении измерений осциллограф подключают в исследуемую сеть и наблюдают на экране график.
Для большего удобства, используя ручки горизонтальной настройки, совмещают точку начала периода с одной из вертикальных линий на экране осциллографа. Успешно посчитав количество делений, которое составляет период, следует умножить его на величину скорости развертки.
Рассмотрим на конкретном примере подробнее. Например, период составляет 2,6 делений, развертка — 100 микросекунд/деление. Умножая их, получаем величину периода равную 260 микросекунд (260*10-6 секунд).
Зная период, рассчитываем частоту по формуле f=1/T, в нашем случае частота примерно равна 3,8 кГц.
Измерение сдвига фаз
Сдвиг фаз — это величина, указывающая взаимное положение двух колебательных процессов в течение времени.
Измерение его производят не в секундах, а в долях периода (Т) сигнала. Достичь максимальной точности измерений этого показателя возможно в том случае, если период растянут масштабированием на весь экран.
В современном цифровом осциллографе абсолютно каждый из сигналов имеет свой цвет, что очень удобно при измерениях. В старых же аналоговых вариантах их яркость и цвет, к сожалению, одинаковы, поэтому для большего удобства следует сделать их амплитуду различной. Подготовка измерения сдвига фаз требует точных подготовительных операций.
Первое, что нужно сделать — не подключая прибор к измеряемой цепи, установить ручками вертикальной настройки линии развертки обоих каналов на центральную ось экрана. Затем ручками настройки усиления каналов вертикального отклонения (плавно и ступенчато) 1-й сигнал устанавливается с большей амплитудой, а второй — с меньшей. Ручками регулирования скорости развертки ее величина устанавливается такой, чтобы оба сигнала на экране имели примерно одинаковый период. После этого, регулируя уровень синхронизации, совмещают начало графика напряжения с осью времени. Ручкой горизонтальной настройки устанавливают начало графика напряжения в крайней налево вертикальной линии. Затем ручками регулировки скорости развертки добиваются того, чтобы конец период графика напряжения совпадал с крайней направо вертикальной линией сетки монитора.
Все эти подготовительные операции производят по порядку до тех пор, пока график периода напряжения не растянется на экран полностью. При этом он должен начинаться и заканчиваться в линиях развертки (см. рисунок).
После завершения подготовительного этапа следует выяснить, какой из параметров опережает другой — сила тока или напряжение. Величина, начальная точка периода которой начинается раньше во времени, является опережающей, и наоборот. Если опережающим является напряжение, то параметр угла сдвига фаз будет положительным, если сила тока — отрицательным. Углом сдвига фаз (по модулю) является дистанция между началами и концами периодов сигналов в величине сетки делений монитора. Он рассчитывается по такой формуле:
В ней величина N — это количество клеток сетки, которые занимает один период, а α — количество делений между началами периодов.
Если графики периодов силы тока и напряжения имеют общие начальную и конечную точки, то угол сдвига фаз равняется нолю.
При ремонте радиоаппаратуры поиск неисправностей ведут, измеряя осциллографом обозначенные выше параметры на отдельных участках электронной цепи или у конкретных электронных компонентов (например, микросхем). Затем их сравнивают с указанными в технологических каталогах величинах, стандартных для этих компонентов, после чего и делают выводы о безошибочной работе или неисправности того или иного элемента цепи.
Если статья была вам полезна, поделитесь ею, пожалуйста, в соц.сетях, воспользовавшись кнопками внизу страницы!
Заходите на мой канал в YouTube и в группы «Телемастерская» в Одноклассниках и «Самоделкин» ВКонтакте!
Всем успехов!
Осциллограф. Часть 4. Параметры приборов
Полоса частот
Это один из наиболее важных параметров осциллографа. Определяет диапазон сигналов, которые вы можете наблюдать на экране (существенно влияет на стоимость прибора). Для того, чтобы осциллограф мог отображать в надлежащем виде сигнал на экране, ему требуется полоса частот в три раза больше полосы исследуемого сигнала. Второй, не менее важный параметр, имеющий отношение к полосе частот — частота дискретизации.
Частота дискретизации (количество выборок в сек)
В отличие от аналогового, цифровой осциллограф воспроизводит сигнал на экране несколько иначе. Сигнал с его входа, через делитель и усилитель попадает на АЦП (аналоговый цифровой преобразователь). Здесь сигнал приобретает форму дискретного сигнала, и уже представляет собой некую импульсную последовательность. В параметрах каждого из импульсов будет заложена информация о конкретной выделенной точке, с огибающей входного сигнала.
И главное, пока идет обработка сигнала со входа осциллографа, пока развертка заполняет экран — сигнал на входе не прекращается.
Внутренняя память осциллографа
После АЦП оцифрованный сигнал записывается в высокоскоростную память осциллографа. Без нее цифровой осциллограф работать не сможет. Объем внутренней памяти — важный параметр осциллографа. Важно понимать в каких целях используется внутренняя память осциллографа.
Первое: это анализ в автономном режиме; захват точек данных, и последующее их масштабирование для получения более подробной информации.
Второе: это данные для автоматического анализа и выполнения математических функций;
Многие ошибочно полагают, что максимальная частота дискретизации находится в области полной развертки изображения. Это не так. Для обеспечения этого условия потребовалась бы громадная внутренняя память. А реализация в «железе» повлекла бы за собой значительное увеличение стоимости. Можно встретить осциллограф с высокой частотой дискретизации и небольшой внутренней памятью. Такой осциллограф будет просто вынужден снизить количество выборок в секунду, если ставить развертку 2ms и меньше, поскольку необходимая полоса частот для воспроизведения сигнала будет незначительной.
Но чем больше память осциллографа, тем больше времени выделяется на захват точек данных для просмотра и анализа. Это не всегда удобно, не всегда нужно, это может несколько усложнять процесс работы с прибором.
Поэтому все же на внутреннюю память тоже могут вводиться ограничения исходя из области применения прибора. Если вам необходимо просматривать сигналы:
* при захвате
* длительный период времени
* с большим разрешением между точками,- тогда память осциллографа должна быть большой.
Необходимый объем памяти можно оценить по двум параметрам:
* временной интервал
* частота дискретизации
А теперь несколько простых формул, которые могут потребоваться при выборе прибора.
1. Полоса частот сигнала = 0.5/скорость нарастания фронта импульса;
2. Полоса частот осциллографа = 3 х полосы частот тестируемого сигнала;
3 Минимальная частота дискретизации осциллографа в реальном времени = 4 х полосы частот осциллографа;
4. Объем памяти = Частота дискретизации х время прохождения сигнала по экрану осциллографа.
Остался необъясненным п.1 из списка. Время нарастания амплитуды во фронте импульса или время спада амплитуды(в данном случае употребление слова «спад» корректно, поскольку разговор идет о времени, а не о амплитудных значениях. Это понятие принятое)
Любой периодический сигнал, кроме прочих характеристик имеете еще и частоту. Следовательно, необходимо согласовывать частотные характеристики сигнала с входным трактом осциллографа. Если этого не сделать, то получим искажение формы сигнала и временных промежутков. АЧХ (амплитудно — частотная характеристика), оценивается для синусоидального сигнала. А в реальности имеем дело далеко не с синусоидами. Поэтому в осциллографах, для более полной и справедливой оценки введены ПХ (переходные характеристики). Оценка этих характеристик основана на том, как воспроизводит осциллограф сигнал с бесконечным спектром. Тестовым сигналом может служить прямоугольный импульс, у которого время нарастание во фронте и время спада близки к нулю. Такой импульс формирует большое количество гармонических составляющий основного сигнала. Часть из них будут обрезаны полосой пропускания осциллографа, а значит время нарастания во фронте (спаде) увеличится и увеличится время установления импульса; часть гармоник усилится за счет неравномерности АЧХ и приведет к выбросу на вершине импульса.
Составляющие ПХ (переходные характеристики):
—время нарастания во фронте — это время в течение, которого импульс изменяет свое значение от 0,1 до 0,9.(спад – наоборот 0,9-0,1), измеряется в сек.
— время установления импульса — это время, в течение которого колебательные процессы на вершине импульса станут меньше 1% от амплитуды импульса.
—выброс на вершине (спаде) это отношение превышения амплитуды установившегося импульса, к амплитуде импульса. Измеряется в процентах. Почему это нужно знать? А потому, что если это не знать, то при измерениях могут быть ошибки. И как следствие неправильные выводы и уход от неисправности в противоположную сторону. Как это выглядит на экране осциллографа:
Фото№35
Фото№ 36
Вот осциллограммы одного и того же сигнала. Видны выбросы и на вершине и на спаде. Сигнал можно масштабировать, растягивать разверткой, изменять порог сигнала. И может оказаться, что человек увидит то, что совершенно не нужно. Но бывают моменты, когда это нужно сделать для того, чтобы рассмотреть и понять причину неисправности. И тогда все, о чем сказано выше, надо учитывать.
МАРКИН Александр Васильевич
г. Белгород
Таврово мкр 2, пер. Парковый 29Б
(4722) 300-709
© 1999 – 2010 Легион-Автодата
Как пользоваться осциллографом и для чего он вообще нужен. Часть II
- Вступление
- Амплитуда, частота, период
- Как измерить частоту
- Как измерить, оценить сдвиг фаз
Эта заметка будет постепенно пополняться простыми, но полезными приёмами работы с осциллографом.
Вступление
Главный вопрос, на который следует ответить: «что можно измерить с помощью осциллографа?» Как ты уже знаешь, этот прибор нужен для изучения сигналов в электрических цепях. Их формы, амплитуды, частоты. По полученным данным можно сделать вывод и о других параметрах изучаемой цепи. Значит с помощью осциллографа в основном можно (я не говорю про супер функции супер-современных приборов):
- Определить форму сигнала
- Определить частоту и период сигнала
- Измерить амплитуду сигнала
- Не напрямую, но измерить ток тоже можно (закон Ома в руки)
- Определить угол сдвига фазы сигнала
- Сравнивать сигналы между собой (если прибор позволяет)
- Определять АЧХ
- Забыл что-то упомянуть? Напомните в комментариях!
Все дальнейшие примеры следует делались с рассчетом на аналоговый осциллограф. Для цифрового всё тоже самое, но больше умеет, чем аналоговый и в определённых вопросах снимает необходимость думать там, где можно просто показать цифру. Хороший инструмент таким и должен быть.
Итак, перед работой следует подготовить прибор: поставить на стол, подключить к сети =) Да ладно, шучу. Но если есть возможность, то следует его заземлить. Если есть встроенный калибратор, то по инструкции к прибору надо его откалибровать. (подсказка: инструкции есть в сети).
Подключать свой осциллограф к исследуемой цепи ты будешь с помощью щупа. Это такой коаксильный провод, на одном конце которого разъем для подключения к осциллографу, а на втором щуп и заземление для подключения к исследуемой цепи. Какой попало провод в качестве щупа использовать нельзя. Только специальные щупы. Иначе вместо реальной картины дел увидишь чушь.
Я не буду рассматривать каждый регулятор осциллографа подробно. В сети есть море таких обзоров. Давай лучше учиться как проводить любительские измерения: будем определять амплитуду, частоту и период сигнала, форму, полосу пропускания усилителя, частоту среза фильтра, уровень пульсаций источника питания и т.д. Остальные хитрости и приёмы придут с практикой. Тебе понадобится осциллограф и генератор сигнала.
Виды сигналов
Буду говорить без барских штучек, по-мужицки. На экране осциллографа ты будешь видеть либо синусоидальный сигнал, либо пилу, либо прямоугольнички, либо треугольный сигнал, либо просто какой-нибудь безымянный график.
Все виды сигналов не перечесть. Да и сами сигналы не знают, что относятся к какому-то там виду. Так что твоя задача не названия запоминать, а смотреть на экран и быстро соображать, что означает увиденное на нём, какой процесс идёт в цепи.
Амплитуда, частота, период
Осциллограф умеет измерять как постоянное, так и переменное напряжение. У всех приборов для этого есть два режима: измерение только переменного сигнала, измерение постоянного и переменного одновременно.
Это значит, что если ты выберешь измерение переменного сигнала и подключишь щуп к батарейке, то на экране прибора ничего не изменится. А если выберешь второй режим и проделаешь тоже самое, то линия на экране прибора сместится приблизительно на 1.6В вверх (величина ЭДС пальчиковой батарейки). Зачем это нужно? Для разделения постоянной и переменной составляющей сигнала!
Пример. Решил ты измерить пульсации в только что собранном источнике постоянного напряжения на 30В. Подключаешь к осциллографу, а луч убежал далеко вверх. Для того, чтобы удобно наблюдать сигнал придется выбрать максимальное значение В/дел на клетку. Но тогда ты пульсаций точно не увидишь. Они слишком малы. Что делать? Переключаешь режим входа на измерение переменного напряжения и крутишь ручку В/Дел на масштаб в разы поменьше. Постоянная составляющая сигнала не пройдет и на экране будут показываться только только пульсации источника питания.
Амплитуду переменного напряжения легко определить зная цену деления В/дел и просто посчитать число клеток по оси ординат, которые занимает этот сигнал от нулевого значения (среднего), до максимального.
Если посмотреть на экран осциллографа на картинке выше и предположить, что В/дел = 1В, тогда амплитуда синусоиды будет 1.3В.
А если предположить, что Время/дел (развертка) установлено в 1 миллисекунду, тогда период этой синусоиды будет занимать 4 клетки, а зачит период T = 4 мс. Легко? Давай теперь вычислим частоту этой синусоиды. Частота и период связаны формулой: F = 1/T (Т в секундах). Следовательно F = 1/ (4*10-3) и равняется 250 Гц.
Конечно, это очень грубая прикидка, которая годится только для вот таких чистеньких и красивых сигналов. А если подать вместо чистой синусоиды какую-нибудь музыкальную композицию, то в ней будет множество разных частот и на глазок уже не прикинешь. Чтобы определить какие частоты входят в эту композицию потребуется анализатор спектра. А это уже другой прибор.
Измерение частоты
Как я уже писал выше, с помощью осциллографа можно измерять и частоту. А ещё можно не просто измерить частоту какого-нибудь синусоидального сигнала, а даже сравнить частоты двух сигналов, к примеру, с помощью фигур Лиссажу.
Измерения в цифровых осциллографах и обработка результатов измерения
Измерения в цифровых осциллографах и обработка результатов измерения
Измерения в цифровых осциллографах и обработка результатов измеренияА.А. Дедюхин, АО «ПриСТ» |
Современные цифровые запоминающие осциллографы (ЦЗО), построенные на базе открытой платформы дают возможность пользователю визуально наблюдать исследуемый сигнал, зачастую достаточно сложной формы. Использование длинной памяти, расширенных режимов синхронизации и сегментированной развертки позволяют инженеру фиксировать различные артефакты во входном сигнале или же наоборот «отлавливать» полезные сигналы, имеющие определенные параметры. Эти возможности в том или ином виде присутствуют практически в любом современном цифровом осциллографе.
Но исключительная полезность цифрового осциллографа определяется не только его способностью визуально отображать форму входного сигнала, но и производить различного рода измерения, что, в общем, и классифицирует осциллограф как «средство измерения».
Большинство ЦЗО способно производить измерения достаточно большого типа параметров, так например, осциллографы серии WaveRunner производства компании LeCroy способен производить измерения до 40 параметров сигнала, с одновременной индикацией 8 результатов измерений в штатном режиме, а при инсталляции дополнительных опций осциллографы LeCroy старших серий способны приводить измерения до 170 различных параметров. Это широкий набор различных амплитудно-временных измерений вполне достаточных для удовлетворения потребностей широкого круга пользователей. Список измерений доступных для осциллографов LeCroy приведен в Приложении 1.
В основе всех видов измерений современного осциллографа лежат два вида измерений – это амплитудные и временные. Так же цифровые осциллографы способны осуществлять безразмерные виды измерений, например подсчет числа целых периодов сигнала, числа точек дискретизации, числа пиков гистограммы и пр. Амплитудные измерения предназначены для измерений параметров амплитуды входного сигнала (или же результатов математической обработки) – это такие как, непосредственно, амплитуда, нижнее значение, верхнее значение, пиков значение, выбросы, среднеквадратическое значение и многие другие. Временные измерения предназначены для измерений параметров сигнала нормированных по времени – это частота, период, длительность, фазовые сдвиги, время нарастания и спада, параметры джиттера и многие другие. Так же современные ЦЗО имеют некоторые производные виды измерений от амплитуды и времени, например измерение площади сигнала, что применительно к импульсному сигналу определяет его энергию, измерение числа периодов сигнала на заданном участке или измерение числа точек дискретизации образующих форму сигнала на всем экране или на заданном участке. В ЦЗО так же присутствуют специализированные виды измерений, предназначенные для измерения параметров специфических устройств или режимов, например измерение параметров мощности электрического сигнала, измерение параметров систем последовательной передачи данных, измерение параметров дисковых или оптических приводов, измерения джиттера и многие другие. Но и даже эти специализированные виды измерений базируются на основных результатах измерения амплитудно-временных параметров сигнала.
Измерения амплитудных параметров
Погрешность измерения амплитудных параметров определяется тем, что в большинстве современных ЦЗО используются 8-и битные АЦП, что дает теоретическую относительную погрешность измерения
,
с учетом нелинейности входных усилителей, нелинейности АЦП, температурного дрейфа, погрешности коэффициента усиления входных усилителей и т.д., погрешность измерения постоянного напряжения составляет порядка 3 % , а погрешность дифференциальных измерений напряжения (читай как амплитуды), составляет порядка 1,5%. Это достаточно большое значение погрешности измерения, учитывая тот факт, что средний вольтметр обеспечивает погрешность измерения постоянного напряжения около 0,025%. Но принимая во внимание, что осциллограф, первично, это визуальный прибор и то, что линейность АЧХ большинства современных осциллографов составляет порядка 0,7 от значения полосы пропускания, а полоса пропускания современного ЦЗО может достигать 18 ГГц (LeCroy SDA 18000), то очевидно, что даже на частотах около 1000 МГц, ЦЗО составляет конкуренцию вольтметрам переменного тока или измерителями мощности имеющим погрешность порядка 3%. А принимая во внимание тот факт, что осциллограф способен производить измерения среднеквадратического значения напряжения сигнала любой формы, а ВЧ вольтметры переменного тока только сигнала синусоидальной формы, то преимущества осциллографа при измерении амплитудных параметров сигнала становятся очевидными.
Так на рисунке 1 приведена осциллограмма синусоидального сигнала частотой 350 МГц и уровнем 1 Вольт полученная с экрана осциллографа LeCroy WaveRunner WR-6051A с полосой пропускания 500 МГц. Измерения СКО (окно измерения Р1) индицирует значение 970 мВ. Погрешность измерения амплитуды в данном случае составляет 3%.
Рисунок 1 |
Для того, что бы пользователь не воспринимал осциллограф, в режиме измерения как вещь саму в себе или же наоборот четко представлял какие параметры и какой алгоритм измерения используется в данный момент, компания LeCroy в своих осциллографах при включении измерений сопровождает осциллограмму, на которой производятся измерения, автоматическими маркерами помощи. Так на рисунке 1 при измерении циклического СКЗ, виды маркеры, выделяющие полный цикл (полное число периодов) измеряемого сигнала. Но сигнал представленный на рисунке 1 достаточно простой. На рисунке 2 приведена осциллограмма одиночного радиоимпульса в режиме измерения циклического СКЗ, видны области измерения СКЗ и результат измерения – 355 мВ.
Рисунок 2 |
Если же для данного сигнал применить алгоритм полного измерения СКЗ, то результат измерения будет абсолютно другой. Так на рисунке 3 изображена осциллограмма измерения полного СКЗ, результат измерения составляет 182 мВ.
Рисунок 3 |
Напомним, что среднеквадратическое значение сигнала переменного тока эквивалентно значению постоянного напряжения, способного выделять такое же значение тепла на нагрузке, как и исходный сигнал переменного тока. Очевидно, что для режима измерения циклического СКЗ, расчет значения напряжения производится только на полезной части сигнал, обладающей энергией и способной производить работу (в том числе выделять тепло). Для полного СКЗ в расчет принимаются и участки сигнала, имеющие нулевое значение амплитуды, и не способные совершать работу, что уменьшает значение СКЗ с 355 мВ до 182 мВ. Это становится наиболее очевидным и наглядным именно при использовании осциллографов способных дать инженеру подсказку в виде маркеров, которые кроме всего прочего индицируют в виде горизонтальной зоны значение СКЗ, именно в виде эквивалентного постоянного напряжения.
Ранее уже отмечалось, что любой средний вольтметр способен производить измерения амплитуды гораздо более точно, чем цифровой осциллограф. Но это справедливо только для измерения постоянного напряжения или НЧ напряжения переменного тока синусоидальной формы. При измерении СКЗ сигналов сложной формы погрешность измерения вольтметра увеличивается исходя их коэффициента формы сигнала. Для стандартных сигналов, коэффициент формы можно учесть при определении дополнительной погрешности измерения напряжения и погрешность может возрастать в десятки раз, так, например, для вольтметра Agilent Technologies 34401 при измерении импульсных сигналов погрешность измерения напряжения может составлять 46%. Для сигналов непредсказуемой формы коэффициент формы учесть невозможно, поэтому и погрешность измерения напряжения становится неопределенной. Цифровой осциллограф производит математическое вычисление среднеквадратического значения формы сигнала из массива данных, полученных в процессе сбора информации, по формуле:
,
где X1 ;X2 ; X3 ….. Xn отсчеты амплитуды полученные в результате дискретизации входного сигнала, а n – число отсчетов, и такой алгоритм измерения СКЗ не требует никаких дополнительных поправочных коэффициентов. Для однократных и редких сигналов цифровой осциллограф остается единственным средством измерения СКЗ, да и других амплитудных параметров сигнала тоже. А принимая во внимание тот факт, что осциллограф при измерении СКЗ производит «полное» измерение сигнала, имея ввиду одновременное измерение как постоянной составляющей DC, так и переменной составляющей AC, а большинство вольтметров производит измерения отдельно DC и AC, и лишь за редким исключением некоторые типы вольтметров способны производить измерения DC +AC, то становится очевидным, что возможности амплитудных измерений ЦЗО дают пользователю значительные преимущества по отношению к универсальным вольтметрам.
Как ни странно, но даже среди опытных инженеров существует мнение, что цифровой осциллограф производит измерение напряжения по одному периоду периодического сигнала, но как видно из выкладок выше, это не соответствует действительности. Для определения различных амплитудных параметров сигнала, измерения производятся по всему массиву данных составляющих форму сигнала, но в силу особенности измерения амплитудных параметров, осциллограф действительно может выдать только один результат измерения за один проход развертки, поскольку именно это и является циклом измерения. Так на рисунке 4 приведен пример измерения пикового значения напряжения. Пиковое значение — это разность межу минимальным и максимальным значениями формы сигнала на одной развертке. Очевидно, что вычисления этого параметра прежде всего необходимо определить как минимальное так и максимальное значение на всей форме сигнала, а для этого опять же необходим анализ всего массива данных точек образующих форму сигнала.
Рисунок 4 |
Очевидно, что для обеспечения достоверных и быстрых измерения при большом массиве данных, осциллограф должен обладать достаточным быстродействием для обеспечения необходимых вычислений. И в этой ситуации не все осциллографы ведут себя одинаково. Так, например, осциллограф LeCroy, осциллограммы которого приведены выше, при длине памяти 10 М при отсутствии измерений обеспечивает время сбора осциллограмм 210 мс, при включении одного измерения время сбора осциллограммы увеличивается до 340 мс, а при включении четырех одновременных измерений увеличивается до 430 мс. То есть при включении четырех измерений время сбора осциллограмм увеличивается в 2,04 раза. Если же аналогичные режимы измерений произвести используя осциллограф Tektronix DPO-4034, то результата получаются следующие – при отсутствии измерений время сбора осциллограмм составляет 170 мс, при включении одного измерения время сбора осциллограммы увеличивается до 16 секунд, а при включении одновременно четырех измерений — увеличивается до 40 секунд. То есть при включении четырех измерений время сбора осциллограмм у осциллографа Tektronix DPO-4034 увеличивается в 235 раз…
Современные профессиональные осциллографы, например LeCroy, в штатной комплектации (т.е. без дополнительных опций) могут обеспечить возможность измерения 11 амплитудных параметров, подробный перечень параметров приведен в [2].
Важной особенность обеспечения измерений является возможность проведения измерения в выделенной области. В этом случае измерения параметров производятся не по всему массиву данных осциллограммы, а только в пределах указанной области. Большинство же пользователей привыкло, что измерения с использованием ЦЗО нужно производить для простого периодического сигнала по всей осциллограмме, что присутствует на экране ЦЗО и только в этом случае результат измерения будет достоверным. На рисунке 5 проведен наглядный пример сложного сигнала, представляющего собой прямоугольный сигнал с модулированными базой и верхом. На первый взгляд автоматические измерения амплитудных параметров такого сигнала должно вызвать сложности у пользователя, но только не у пользователей осциллографов LeCroy.
Рисунок 5 |
Для измерения некоторых амплитудных параметров модулирующего сигнал задействуем измерения Р1, Р2 и Р3. Для измерения СКЗ модулирующего сигнала базы (измерения Р1) выделяется только часть модулирующего сигнал базы. Результат составляет 147 мВ. Для измерения СКЗ модулирующего сигнала верха (измерения Р2) выделяется только часть модулирующего сигнал верха. Результат составляет 1,01 В. Для измерения пикового значения модулирующего сигнала верха (измерения Р3) выделяется только часть модулирующего сигнал верха. Результат составляет 482 мВ. Измерения Р4 и Р5 обеспечивают измерения амплитудных параметров основного прямоугольного сигнала — уровня верха и уровня базы и эти измерения производятся без выделения области.
Таким образом, обеспечивая возможность одновременного измерения до 8 параметров сигнала, осциллографы LeCroy так же обеспечивают возможность измерения в 8 различных областях этого сигнала. Справедливости ради отметим, что и другие осциллографы, например Tektronix DPO-7000 или DPO-4000, так же дают возможность измерения параметров в выделенной области, но для всех измерения (DPO-7000 это 8 измерения, а для DPO-4000 это 4 измерения) существует всего одна выделенная область, что существенного ограничивает возможности измерения сложных сигналов.
Измерения временных параметров
Измерения временных параметров – это набор наиболее расширенных и точных видов измерений цифрового осциллографа. Так уже сложилось, что при анализе сигнала по временной оси существует наибольший набор параметров, в штатной комплектации осциллографы LeCroy способны обеспечить до 69 видов измерения, а при инсталляции дополнительных опций общее число всех видов измерений может достигать 180. Основными отличиями цифровых осциллографов по отношению к традиционным аналоговым осциллографам при измерении временных интервалов являются:
- Цифровой осциллограф обеспечивает автоматическое измерение временных параметров (не стоит забывать и про автоматическое измерение амплитудных параметров), аналоговый осциллограф обеспечивает измерения временных интервалов, используя деления временной шкалы на экране.
- Цифровой осциллограф обеспечивает погрешность измерения временных до 0,0001%, а лучшие экземпляры аналоговых осциллографов имеют погрешность измерения всего 1,5%.
Погрешность измерения временных параметров (ΔT) цифрового осциллографа определяется погрешностью опорного генератора, частотой дискретизации и собственным джиттером, что может быть выражено формулой:
(1) , где
Tоп – погрешность установки частоты опорного генератора;
Fд – частота дискретизации;
Tдж – собственный джиттер осциллографа.
Современные технологии электронных элементов дают возможность применения в осциллографах опорных генераторов с погрешностью установки до 10-6 в год (или 1 ppm), частота дискретизации для наиболее массовых моделей ЦЗО составляет 5 ГГц или 10 ГГц, собственный джиттер современного осциллографа удается снизить до значений 3 пс (хотя есть «уникальные» модели ЦЗО, например DPO-4000 серии, имеющие джиттер 400 пс). Из этих выкладок следует, что наиболее существенным при определении погрешности измерения временных интервалов как раз и является погрешность установки частоты опорного генератора.
Но на этом и заканчивается идентичность подходов при измерения временных интервалов различных производителей цифровых осциллографов. Разные производители при измерении временных интервалов накладывают дополнительные требования для достижения декларируемой погрешности измерения. Так, например, компания Tektronix для своих осциллографов серии TDS-5000B для обеспечения погрешности указанной в формуле (1), дополнительно требует:
- Обеспечить амплитуду сигнала не менее 5 делений;
- Должен быть установлен режим сбора информации «усреднение», с числом усреднений не менее 100;
- Результат измерения определяется как среднее из массива данных при накоплении 1000 результатов измерения частоты. Это требование в общем, тоже понятно, поскольку классический частотомер, при измерении частоты имеет такой параметр как «время счета», за это время происходит определение среднего значения частоты за весь период измерения, и чем больше время счета, тем более точный результат можно получить. Поскольку осциллограф не имеет времени счета при измерении частоты, то эквивалентом этого параметра является накопление статистики измерения частоты.
Но и это еще не все, различные производители ЦЗО использую различные алгоритмы измерения временных интервалов. Большинство производителей, например Tektronix или Agilent Technologies, используют алгоритм измерения частоты по одному периоду сигнала, находящегося сразу после точки запуска развертки или по первому целому периоду сигнала в левой части экрана. При таком алгоритме измерения, первое, что приносится в жертву время измерения – оно бесспорно увеличивается. Так, практические измерения показывают, что для упомянутого выше осциллографа Tektronix серии TDS-5000B (при длине памяти 2000 точек для минимизации временных затрат на вычислительный процесс), измерение частоты 10 МГц, полученной от рубидиевого стандарта частоты с погрешностью воспроизведения 10-10, время измерения, при выполнении всех требований производителя, составляет 1 минута 23 секунды. Компания LeCroy в своих осциллографах использует алгоритм измерения временного интервала не по одному периоду, а по всем периодам сигнала присутствующим в массиве данных.
Кроме того, компания LeCroy для обеспечения погрешности указанной в формуле (1), дополнительно требует выполнения двух условий:
- Обеспечить амплитуду сигнала не менее 5 делений;
- Результат измерения определяется как среднее из массива данных при накоплении 1000 результатов измерения частоты.
Очевидно, что такой алгоритм измерения обеспечивает следующие преимущества:
- Значительно повышается скорость измерений;
- Обеспечивается возможность создания и обработки статистических данных полученных на основе массивов результатов измерений;
- Возможность получения результатов измерения для динамических сигналов.
Практическое измерение, показывает, что для накопления статистики и получения достоверного результата при измерении частоты 10 МГц, при частоте дискретизации 5 ГГц, необходимо время 100 мс, что в 930 раз меньше, чем требовалось осциллографу Tektronix. Тем более, что за время измерения 1,23 минуты осциллограф Tektronix обеспечил погрешность измерения 27,64 ppm (при допустимой погрешности измерения 15 ppm) смотри рисунок 6
Рисунок 6 |
А осциллограф LeCroy WR-6051А, за время измерения 100 мс обеспечил погрешность измерения 1 ppm (при допустимой погрешности измерения 10 ppm) смотри рисунок 7.
Рисунок 7 |
Практическая ценность измерения временных интервалов по всему числу периодов существующих во входном сигнале, обусловлена не только увеличением скорости измерений, но и увеличением достоверности измерения – очевидно, что если сигнал имеет вандер (медленная флуктуация во времени), то при достаточно большом времени измерения и тем более при использовании функции усреднения, достоверность измерения будет уменьшаться.
Так же совместно совмещение особенности измерения временных интервалов по всей осциллограмме и режима измерения в выделенной области, дает новые возможности в измерениях сигналов. Так например, на рисунке 8 праведен пример частотно-модулированного сигнала (осциллограмма С1) и модулирующего сигнала (осциллограмма С2). Очевидно, что поскольку модулирующий сигнал имеет вид «ступенька», то и частоты в модулируемом сигнале так же изменяются дискретно.
Рисунок 8 |
Включив режим измерения частоты осциллограммы С1 для всех восьми измерений Р1…Р8, с той лишь разницей, что для каждого измерения Р1…Р8 измерения частоты производятся в пределах выделенного окна равного времени одной ступеньки, возможно измерить частоту модулируемого сигнала, соответствующей каждому уровню модулирующего сигнала.
В заключение обзора «простых» режимов измерения хочется особо отметить, что для получения результатов измерения сложных сигналов, иногда не достаточно просто включить тот или иной режим измерения. Комбинирование различных режимов работы цифрового осциллографа, включая математическое операции над сигналом, может оказать существенную пользу при измерении параметров сигнала. Так, например, существует задача измерения временных параметров радиоимпульса – частоты заполнения и периода повторения и длительности импульсов. Если для измерения частоты заполнения, можно использовать методы, описанные выше, то автоматическое измерение периода повторения и длительности радиоимпульсов может вызвать затруднение. Для решения этой задачи необходимо выделить огибающую радиоимпульса и измерить период повторения и длительность. Огибающую радиоимпульса можно выделить используя математическую функцию «прореживание».
Так на рисунке 9 приведен пример радиоимпульса представляющего собой пакет синусоидальных колебаний частотой 1 МГц и периодом повторения 1,543 мс, каждый пакте содержит 428 колебаний частоты 1 МГц.
Рисунок 9 |
- Осциллограмма С1 – осциллограмма исходного сигнала.
- Осциллограмма Z1 – растяжка одного пакта исходного сигнала.
- Осциллограмма F1 – результат математической обработки функции «прореживание».
Из исходной осциллограммы С1 можно получить следующие результаты:
- Измерение частоты сигнала заполнения. Измерение производится по всему экрану и результат представлен в окне Р1 – 1,0000062 МГц
- Числа периодов сигнала в одном пакете — для этого используется измерение в выделенном окне (крайнего левого пакета) и результат представлен в окне Р5 – 428 периодов сигнала.
Из осциллограммы растяжки Z1 можно визуально оценить форму сигнала заполнения и так же измерить частоту сигнала заполнения (но более т
что это, какие бывают, что измеряют, как пользоваться
Чтобы отремонтировать современную электронную технику одного мультиметра порой недостаточно. Им можно определить целостность радиодеталей. Но определить работает или нет микросхема мультиметром не получится. Для этого нужен осциллограф. Что это за прибор, что он делает? Об этом и будет статья.
Содержание статьи
Что такое осциллограф
Осциллограф — это прибор для визуального отображения и измерений параметров сигналов различной формы (процесс называется «осциллографирование»). Сигналы подаются на вход и отображаются на экране. Экран разбит на квадраты, по центру проходят две оси координат. По горизонтали измеряется время. По вертикали — амплитуда и/или напряжение. Цена деления задается при помощи ручек калибровки. Режим отображения подстраивается под каждый сигнал. Выбирается такой режим, который наиболее удобен в данном случае (в пределах возможностей прибора).
Осциллограф — это не обязательно большая, громоздкая вещь. Есть портативные цифровые модели, есть приставки. Есть даже программы, которые можно с адаптером установить на стационарный компьютер или ноутбук.
Так выглядит цифровой осциллограф Tektronix DPO 3054. На дисплее отображает сигнал, регуляторами выбираются параметры
По количеству одновременно отслеживаемых сигналов осциллографы есть однолучевые (одноканальные/моноканальные) и многолучевые (многоканальные). Однолучевые могут одновременно принимать только один сигнал, многолучевые — два, три, четыре и больше — до 16. Зависит от прибора.
Какой тип лучше? Многолучевой. Вы одновременно можете отслеживать сигнал в нескольких точках схемы. Изменяя параметры будете видеть реакцию устройства не только на выходе, но и в разных точках схемы.
Для чего он нужен
Для чего нужен осциллограф? Это просто необходимая вещь при ремонте электронной аппаратуры, при самостоятельной сборке или усовершенствовании каких-либо устройств. Многим хватает тестера или мультиметра. Да. Но для ремонта простых устройств без микросхем и микропроцессоров. Мультиметром вы можете проверить наличие обрыва, короткого замыкания, измерить напряжение и ток. Ни форму сигнала, ни конкретные параметры синусоиды или импульсов не измерить и не увидеть.
Осциллограф нужен для измерения напряжения и визуального отображения сигналов. На фото цифровой двухканальный осциллограф Hantek DSO5102B в рабочем режиме
А ведь бывает так, что все детали, вроде исправны, но устройство не работает. А все потому что некоторые детали требовательны не только к физическим параметрам питания (напряжение, сила тока), но и к форме сигнала. Этим «страдают» некоторые полупроводниковые детали, практически все микросхемы и процессоры. А без них сейчас обходятся только самые элементарные приборы типа кипятильника. Вот и получается, что найти сгоревший резистор, пробитый транзистор можно и мультиметром. Но для чуть более сложную поломку уже не устранить. Вот для этих случаев и нужен осциллограф. Он позволяет видеть форму сигнала, определять есть ли отклонения и находить источник проблемы.
Виды осциллографов
По принципу преобразования сигнала осциллографы бывают аналоговыми и цифровыми. Есть еще смешанный тип — аналогово-цифровой. Принципиальная разница между ними — в методах обработки сигналов и в возможности запоминания. Аналоговые модели транслируют «живой» сигнал в режиме реального времени. Записывать его на таком приборе нет возможности.
Аналогово-цифровые и цифровые уже имеют возможность записи. На них можно «открутить» время назад и просмотреть информацию, увидеть динамику изменения амплитуды или времени.
Еще одно отличие цифровых осциллографов от аналоговых — размеры. Цифровые приборы имеют значительно меньшие габариты
Цифровые осциллографы сначала оцифровывают синусоиду, записывают эту информацию в запоминающее устройство (ЗУ), а затем передают на экран монитора. Но не все цифровые модели имеют долговременную память — в таком случае запись ведется циклически. Это когда вновь пришедший сигнал записывается поверх предыдущего. В памяти хранится то, что появлялось на экране, но промежуток времени не такой большой. Если вам необходима запись длиной пять-десять минут, нужен запоминающий осциллограф.
Что измеряет осциллограф
На экране осциллографа отображается двухмерная картинка сигнала, который подали на измерительный вход. На экране есть две оси координат. Горизонтальная — ось времени, вертикальная — напряжение. Эти параметры и измеряют. А уже из них высчитывают остальные.
На экране осциллографа отображаются сигналы, которые подаются на его входы. Это например, двухлучевой аналоговый осциллограф, который показывает форму сигнала на входе (синусоида) и выходе (прямоугольный) импульсного преобразователя напряжения
Вот что можно измерить и отследить при помощи осциллографа:
- Напряжение (амплитуду).
- Временные параметры, по которым можно рассчитать частоту.
- Отслеживать сдвиг фаз.
- Видеть искажения, которые вносит элемент или участок цепи.
- Определить постоянную и временную составляющие сигнала.
- Увидеть наличие шума.
- Рассчитать соотношение сигнал/шум.
- Видеть/определить параметры импульсов.
Сигнал, который показывает осциллограф, довольно информативен. Видны искажения, которые вносит та или иная деталь, можно отследить, как меняется форма/амплитуда/частота в каждой точке схемы, после каждой детали.
Кроме наблюдения за формой сигнала, осциллограф можно использовать для определения целостности сопротивлений, конденсаторов, катушек индуктивности (см. видео ниже).
Устройство и принцип работы
Рассмотрим блок-схему и алгоритм работы аналогового осциллографа. Как уже говорили, изменять изображения можно по горизонтали и по вертикали. Приборы на основе электронно-лучевой трубки (ЭЛТ) для этого имеют две пары пластин. Одна пара для изменения масштаба по вертикали (амплитуда или напряжение). Вторая — для растягивания или сжатия по горизонтали (временные параметры).
Устройство аналогового осциллографа: блок-схема
Отслеживаемый сигнал подается на входной усилитель, где усиливается или уменьшается до заданных значений. Значение задается переключателями. Коэффициент усиления обычно от 100 до 1000. Усиленный сигнал идет на пластины вертикальной развертки электронно-лучевой трубки.
Горизонтальная развертка формируется на основе пилообразного сигнала, который генерируется в соответствующем блоке (генератор развертки). Его параметры также задаются соответствующим переключателем. Отображение на экране ЭЛТ идет в режиме реального времени, с некоторой задержкой. Величина задержки прописывается в технических характеристиках прибора.
Основные блоки аналогового осциллографа
Для работы осциллографа важен блок синхронизации. Он обеспечивает появление картинки в момент поступления потенциала на вход. За счет этого на экране мы видим сигнал за некоторый промежуток времени. Есть разные типы синхронизации. Они выбираются переключателем. Чаще всего выбирают синхронизацию от самого исследуемого сигнала. Есть еще от сети и внешнего источника.
Режимы работы осциллографа
Осциллографом исследуют различные типы сигналов. Они могут быть постоянными (напряжение в сети), периодическими (шумы, помехи, звуки и т.д.). Периодические могут возникать случайно или с определенным интервалом. В зависимости от того, как часто или редко возникает сигнал, выбирают тот или иной режим работы. Чаще всего в осциллографе есть два режима: автоматический (автоколебательный) и ждущий. Еще может быть однократный.
Выбор режима работы осциллографа
Если мы не знаем, как часто возникают импульсы, выбирают обычно автоматический режим. В нем даже при отсутствии потенциала на входе или при его недостаточном уровне экран светится. Отображается «нулевой» сигнал — прямая линия, которая должна идти по горизонтальной оси на экране (выставляется по линии регуляторами со стрелочками). При появлении потенциала на входе, он отображается на экране. Картинка при этом периодически обновляется и мы видим развертку сигнала по времени.
Так выглядит экран осциллографа в автоколебательном (авторежиме) при отсутствии сигнала
Ждущий режим хорош для редко появляющихся сигналах. Пока на входе ничего нет, экран не светится. При появлении каких-либо изменений он загорается, запускается генератор развертки и сигнал отображается на экране. Запуск можно настроить как по восходящему фронту импульса/синусоиды, так и по нисходящему. Можно настроить запуск не на исследуемый сигнал, а на то событие, которое ему предшествует (если такое есть).
Одиночный режим настраивает осциллограф на принятие одного сигнала. Когда на вход приходит потенциал нужного уровня, сигнал отображается на экране. После этого прибор переходит в неактивное состояние. И, даже если на входе будет следующий потенциал (или пять, или сто пять) он его не зарегистрирует. Для приема другого импульса нужно заново «взвести» прибор.
Делитель (аттенюатор)
Исследуемый сигнал может иметь напряжение от десятых долей до сотен вольт. Есть осциллографы со встроенным регулятором чувствительности — аттенюатором. Выглядит он как переключатель с градуировкой. Она задает «вес» одного деления на экране и определяет, во сколько раз понижается входной сигнал. Если ожидается малый уровень, мы просто выставляем на 1 или на 0,1. В таком случае одно деление на экране по вертикали будет 1 В и 0,1 В соответственно. И «понижать» сигнал будут в 1 раз (то есть, передадут как есть) или усилят в 10 раз перед подачей на вход (это если стоит 0,1).
Не все осциллографы имеют встроенный делитель (аттенюатор). В комплекте с таким прибором идут внешние делители на 1:10 или 1:100. Это прямоугольные или цилиндрические насадки с разъемами с обоих сторон. Они устанавливаются во входной разъем и через них подается напряжение на вход, но уже пониженное в соответствующее количество раз.
Примерно так выглядит делитель. Он устанавливается во входное гнездо, а к нему уже подключается измерительный шнур
Ставить делитель необязательно. Необходимость определяется по ожидаемому уровню сигнала. В характеристиках указывается максимальное входное напряжение, которое может подаваться на прибор без делителя и с делителем. По уровню ожидаемого сигнала и ставим насадку.
Если уровень неизвестен, сначала выставляют самый большой делитель (или самое большое деление на аттенюаторе). Это предохранит прибор от перегорания если потенциал будет высоким. По результатам первого замера выбирается оптимальный режим.
Особенности цифровых моделей
Цифровой осциллограф работает иначе — аналоговый сигнал преобразуется в цифровую форму. В таком виде он записывается в ЗУ и передается на монитор, где из цифрового формата переводится снова в аналоговую форму. Отображение на экране начинается только в тот момент, когда уровень на входе превысит определенное значение (задается настройками).
Периодичность смены картинки зависит от выбранного режима работы: автоматический, одиночный и обычный. Обычный — это аналог ждущего.
Упрощенная блок-схема цифрового осциллографа
Чем лучше цифровые модели? Во-первых, такое преобразование делает изображение более стабильным. Во-вторых, проще увеличивать и уменьшать масштаб. В-третьих, есть возможность записи. Ну, и габариты. Самый небольшой аналоговый осциллограф — С1-94 — имеет размеры 100*190*300 мм и вес 3,5 кг. А цифровые при размерах 100*50-60*13-20 мм имеют вес порядка 150-300 граммов. И это вместе с аккумуляторами.
Как работать с осциллографом
Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения.
Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.
Подключение осциллографа
В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.
Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.
Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.
Измерительные шнуры для осциллографа
Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).
После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.
Проверка осциллографа перед работой
Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.
Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен
Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.
Как измерить осциллографом напряжение: переменное, меандра, постоянное
Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление. Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно.
Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.
Измерение напряжения осциллографом
Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.
Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.
Как осциллографом определить частоту
Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.
Как определить частоту сигнала по осциллографу
Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц
Полоса пропускания осциллографа: что это и на что влияет
При выборе осциллографа смотрят на следующие параметры:
- Полоса пропускания.
- Максимальное входное напряжение.
- Режимы развертки.
- Источники синхронизации.
Обо всех параметрах, кроме полосы пропускания, уже рассказали. Полоса пропускания — это чуть ли не важнейший показатель. Она определяет максимальную частоту сигнала, который будет отображаться без искажений. Например, при полосе пропускания 20 Гц — 20 МГц, все что имеет более высокую частоту будет подавляться.
Там, где полоса пропускания заканчивается, частоты жестко подавляются
Как же выбирать частоту пропускания? Зависит от того, какие сигналы вы собираетесь изучать и насколько «глубоко» вам надо их исследовать. Для аналоговых сигналов все просто — верхний предел должен быть больше чем максимальная частота. С меандрами все сложнее. На самом деле они состоят их суммы нечетных гармоник сигнала. Чем больше гармоник, тем больше форма похожа на квадрат, а не на сглаженное что-то. Но гармоники высокого порядка имеют очень высокую частоту. Если надо исследовать фронты, их отклонение, то верхний предел полосы пропускания — это десятки гигагерц. А такие приборы очень дорогие. Для обычной синусоиды достаточно 10-20 МГц, что значительно дешевле.
Как получить правильную осциллограмму / Хабр
Наверно, все умеют пользоваться осциллографом. Это очень легко – цепляешь «крокодил» к земле, остриё щупа – в необходимую точку измерения, регулируешь масштаб по вертикальной и горизонтальной осям и получаешь временную развёртку напряжения в этой точке. Да, так можно делать, но только если учитывать ряд факторов, о которых пойдёт речь в этой статье. А если не учитывать, то есть вероятность, что полученное на экране осциллографа изображение – бесполезная картинка. И чем меньше его стоимость, тем это более вероятно.Сразу скажу, что в статье не рассматривается интерфейс управления и возможности типового электронного осциллографа – это относительно несложно и можно найти, например, здесь. Я пишу только о том, что не так просто найти, но легко потерять, особенно на русском языке. При прочтении потребуется знание основных положений теории сигнальных линий, почитать, например, можно в одной из моих предыдущих публикаций.
Я думаю, распространённый сценарий использования осциллографа в цикле разработки печатной платы следующий: если плата не заработала (КЗ, микросхема перегревается, микроконтроллер не прошивается, команды управления не проходят и т.п.), начинаем искать проблему, взяв щуп осциллографа в руки, а если заработала – то и хорошо (рис. 1).
При этом, если разработчик изделия это не радиолюбитель, который все указанные функции выполняет сам, то количество итераций даже до условного «успеха», который заключается в функционировании изделия может возрасти. Поэтому в случае разделения функций, как в случае разработки в рамках организации, разработчику желательно если не самому собирать и отлаживать первые образцы изделий, то, по крайней мере, присутствовать на производстве с целью анализа технологичности разработки.
По моему опыту работы, для первых образцов изделий гораздо более эффективной является поблочная сборка, начиная с подсистемы питания, с контролем электрических параметров подсистем (рис. 2).
При таком подходе сужается область поиска неисправности, так как она может возникать только во вновь собранном блоке или при взаимодействии этого блока с уже проверенными. Контроль электрических параметров гарантирует то, что изделие не просто корректно функционирует, а что все или основные электрические сигналы соответствуют ожидаемому поведению. В таком случае «успех» уже более основательный, и можно переходить к полному циклу испытаний при требуемых внешних воздействиях.
Вернёмся к использованию осциллографов. При описании их места в разработке печатных плат был неявно сформулирован важный принцип измерений (и измерений с помощью осциллографа в частности), о котором часто в своих лекциях говорит Эрик Богатин.
До момента измерения необходимо иметь представление о его ожидаемом результате. В случае совпадения ожиданий и реальности можно говорить о правильной модели процесса, в случае значительного несовпадения – либо о необходимости перепроверки ожидаемых параметров (получаемых с помощью прямых аналитических расчётов, результатов моделирования или на основании опыта), либо о некорректном измерении, либо о некорректном функционировании изделия.
В контексте темы публикации стоит обратить внимание на вариант некорректного измерения. При измерениях с помощью осциллографа как нигде ещё применим «эффект наблюдателя» из квантовой физики, когда наличие наблюдателя влияет на наблюдаемый процесс. На экране осциллографе можно такое пронаблюдать, что к реальности не будет иметь никакого отношения. Разбираемся, как это не допустить.
Начнём с формулировки идеального конечного результата: пронаблюдать на экране осциллографа временную развёртку напряжения в определённой точке сигнальной линии в заданный момент времени без внесения искажений. Пускай имеется идеальный быстродействующий осциллограф с бесконечной полосой пропускания, обеспечивающий аналого-цифровое преобразование с требуемым уровнем разрешения. Тогда для решения задачи потребуется передача сигнала от точки на печатной плате до коаксиального входа осциллографа, удовлетворяющая следующим условиям:
- Обеспечивается стабильный механический контакт с нулевым контактным сопротивлением в точках контакта. Их две, обе равнозначные: одна обеспечивает путь для прямого тока, другая – для возвратного.
- Сформированная сигнальная линия не должна нагружать измеряемую сигнальную цепь, то есть должна иметь бесконечный импеданс.
- Сформированная сигнальная линия не должна вносить искажений в измеряемый сигнал, то есть должна иметь плоскую передаточную функцию в бесконечной полосе частот и линейную фазовую характеристику.
- Сформированная сигнальная линия не должна вносить собственных помех в измеряемый сигнал, а также должна быть идеально защищена от внешних помех.
Конечно, в общем случаев эти условия не реализуемы, однако формулировка идеального конечного результата полезна при анализе задачи. Она, в частности, даёт понимание того, что реальная измерительная система имеет ограничения, сужающие область достоверных измерений.
На рис. 3 изображена эквивалентная схема измерительной цепи с использованием наиболее распространённого типа щупа «1X/10X», который в большинстве случаев входит с стандартный комплект осциллографа.
Сопротивление щупа в положении «10X» по постоянному току составляет около 9 МОм – это последовательно включённый резистор, который образует с входным сопротивлением осциллографа 1 МОм делитель напряжения 1:10. Отсюда и название щупа «10X», который в этом режиме уменьшает измеряемый сигнал в 10 раз (а наводки и привнесённые системой шумы шумы — нет). В положении переключателя «1X» этот резистор закорачивается и сопротивление щупа – это сопротивление коаксиального кабеля щупа. Рекомендую измерить это сопротивление – от кончика щупа до центрального контакта BNC-разъёма – и убедиться, что оно не «нулевое», как у обычного 50-омного коаксиального кабеля, а составляет несколько сотен Ом. Если разрезать кабель (рис. 4), то можно увидеть тонкий нихромовый проводник, окружённый вспененным изолирующим материалом с низкой диэлектрической проницаемостью εr ~ 1. Это линия с потерями, т.е. кабель спроектирован таким образом, чтобы ослабить высокочастотные отражения, возникающие в связи с несогласованностью измерительной сигнальной линии.
Подстроечный конденсатор CEQ1 предназначен для компенсации в режиме «10X» полюса фильтра нижних частот (рис. 5) с частотой среза порядка всего 1,5 кГц! Теперь должно быть понятно, почему эта компенсация необходима. Подстроечный конденсатор иногда располагается не в рукояти щупа, а на дальнем конце, у соединительного разъёма – тогда CEQ1 фиксированного номинала ~15 пФ, а подстройка осуществляется конденсатором CEQ2. Индуктивность LP – это индуктивность петли возвратного тока.
С учётом сказанного выше можно получить рабочую модель измерительной цепи осциллографа для положений переключателя «10X» и «1X». Численные значения параметров должны браться из документации на соответствующие щупы и осциллографы. При этом, скорее всего, параметры различных производителей не должны значительно отличаться для заданной полосы пропускания. В представленных на рис. 6 и 7 моделях LTSpice использовались данные на осциллограф TDS2024B и щуп P2200.
Важно понимать, что эти модели являются упрощёнными и не учитывают всех паразитных параметров, поэтому точных значений полосы пропускания они не дают. Однако они дают качественное представление о влиянии тех или иных параметров при измерении. Например, первые результаты, на которые стоит обратить внимание это то, что:
1. Полоса пропускания щупа в режиме «1X» более чем на порядок меньше, чем в режиме «10X» и составляет порядка 6…8 МГц. Это соответствует минимальной измеримой длительности фронта сигнала tR = 0,35 / BWPROBE ~ 45…55 нс. Преимуществом режима «1X» является увеличенное на 20 дБ отношение сигнал/шум, так как при том же уровне помех измерительной системы сигнал на входе осциллографа больше в 10 раз.
2. Увеличение индуктивности петли возвратного тока снижает полосу пропускания. Именно поэтому при измерении высокочастотных сигналов для обеспечения возвратного тока рекомендуется использовать не «крокодил» с индуктивностью ~200 нГн, а специальную насадку на щуп, на порядок снижающую значение индуктивности (рис. 8).
3. Влияние подстроечного конденсатора в режиме «10X» на передаточную функцию нарастает, начиная с частот 200…300 Гц, до максимума на частотах в 2…3 кГц. Именно поэтому в качестве калибровочного сигнала на осциллографах обычно используется сигнал с тактовой частотой 1 кГц, фронты которого искажаются при подстройке (рис. 9). Полезная привычка – выполнять подстройку как при смене щупа или канала осциллографа, так и периодически перед проведением измерений.
Помимо электрических характеристик щупа и входной цепи осциллографа в модель на рис. 3 как параметры входят следующие величины: напряжение источника сигнала – его спектр, выходное сопротивление источника RS, импеданс сигнальной линии Z0, импеданс нагрузки ZLOAD – именно импеданс, с учётом емкостной составляющей. Эти и другие параметры представлены в таблице 1, именно они определяют достоверность результатов измерения. Основной критерий заключается в том, чтобы исследуемая часть спектральной полосы сигнала входила в полосу пропускания системы «щуп + осциллограф», при этом амплитуда сигнала не превышала допустимых значений (это особенно важно в случае, когда входное сопротивление осциллографа составляет 50 Ом). Остальное: захват сигнала и измерение его параметров – дело техники.
Последний момент, на котором хочется остановиться – это полоса пропускания системы «щуп + осциллограф». Тут стоит избегать заблуждения, заключающегося в том, что если взять осциллограф и щуп с полосой пропускания 150 МГц, то полоса пропускания измерительной системы будет 150 МГц (это так только при наличии программной компенсации). Кроме того, тот факт, что на щупе «написано» 150 МГц, не всегда означает, что это реальные 150 МГц. Поэтому рекомендую с помощью генератора синусоидального сигнала экспериментально исследовать полосу пропускания. Частота, на которой амплитуда сигнала уменьшиться до 0,707 от значения на низких частотах, это и будет нужное значение. При этом стоит обратить внимание на то, есть ли локальные максимумы в передаточной функции. Я это проделал с помощью генератора Г4-107 для нескольких измерительных систем, при этом использовалось соединение с помощью «пружинки» (рис. 10). Перед каждым измерением выполнялась компенсация, при этом всегда приходилось делать подстройку, хоть и небольшую. Также проводились измерения без щупа с помощью короткого 50-омного коаксиального BNC-кабеля. Результаты представлены в таблице 2. Удивил щуп PP510 с заявленной полосой в 100 МГц.
В общем, если подводить итог, то хочется сказать, что следует внимательно относиться к измерениям с помощью осциллографа, и в качестве опоры использовать корреляцию между ожидаемыми и полученными результатами. Что касается области более высоких частот, то для измерения сигналов, полоса пропускания которых превышает 500 МГц, пассивные щупы типа «1X/10X» не применимы. Для этого используют прямое коаксиальное соединение при 50-омном входе осциллографа или активные щупы, ещё больше минимизируют индуктивность соединения (в т. ч. за счёт использование паяных соединений, размещения на плате миниатюрных коаксиальных разъёмов и т.п.). Тема очень широкая – есть изолированные осциллографы, изолированные щупы, дифференциальные и специализированные щупы, но всё это уже отдельный разговор, выходящий за рамки данной статьи.
P.S. Этот материал прежде нигде не публиковался, жду обратной связи. После этого статья, возможно, в чуть более подробном виде, вместе с материалом по высоковольтной изоляции войдёт в качестве приложения в полную версию книги в обновлённом релизе. Точных измерений, народ!
Осциллограф | Описание, функции, предназначение
Осциллограф – это прибор, который показывает изменение напряжение во времени на каком-либо участке электрической цепи.Ось X на экране осциллографа – это время, ось Y – напряжение.
В этой статье мы рассмотрим три типа осциллографов, а также принципы их работы.
Аналоговый осциллограф
Его еще также называют электронно-лучевой осциллограф, так как он состоит из электронно-лучевой трубки. По сути электронно-лучевая трубка представляет из себя маленький кинескоп, на котором мы можем наблюдать какое-либо изменение электрического сигнала.
Любой осциллограф имеет экран. Он может быть встроенный, либо это может быть монитор вашего настольного компьютера или дисплей ноутбука. В нашем случае на фото мы видим, что наш осциллограф имеет круглый экранчик. Сигнал, который вырисовывается на таком экране называется осциллограммой.
Для измерения электрических сигналов нам потребуются специальный щуп для осциллографа. Такой щуп представляет из себя кабель из двух проводов, один из которых является сигнальным, а другой нулевым. Нулевой провод также часто называют “землей”.
Более современные щупы уже выглядят вот так.
А вот и сам разъем щупа
Этот конец щупа соединяется с осциллографом и фиксируется небольшим поворотом по часовой стрелке.
Что делать, если вы не помните, какой провод из щупа является сигнальным, а какой нулевым? Это определяется очень просто. Так как человек находится всегда в электромагнитном поле, он является своего рода принимающей антенной и может наводить помехи. Касаясь сигнального щупа осциллографа, на экране мы увидим, что сигнал очень сильно исказился.
При касании нулевого провода, сигнал на осциллографе остался бы таким, какой был. То есть чистый ноль.
Как измерить постоянное напряжение аналоговым осциллографом
Для того, чтобы измерить постоянное напряжение, мы должны переключить осциллограф в режим DC, что означает “постоянный ток”. В разных моделях это делается по разному, но этот переключатель обязательно должен быть в каждом осциллографе.
Давайте рассмотрим на реальном примере, как можно измерить постоянное напряжение. Для этого нам потребуется источник постоянного тока. В данном случае я возьму лабораторный блок питания. Выставляю на нем значение напряжения в 1 Вольт.
Теперь необходимо выбрать масштаб измерений. Если мы хотим, чтобы одна сторона квадратика была равна 1 Вольту, то ставим коэффициент масштабирования 1:1. В данном случае я выставляю переключатель вертикальный развертки на единичку.
Далее сигнальный провод осциллографа цепляем на “плюс” питания, а нулевой – на “минус” питания. Далее наблюдаем вот такую картину.
Как вы могли заметить, осциллограммой постоянного тока является прямая линия, параллельная горизонтальной оси (оси Х). По вертикальной оси (оси Y) мы видим, что сигнал поднялся ровно на одну клеточку. Мы выставили коэффициент масштабирования по Y, что 1 клеточка – это 1 Вольт. Следовательно в нашем случае сигнал поднялся ровно на 1 клеточку, что говорит нам о том, что это и есть осциллограмма постоянного тока в 1 Вольт.
Я также могу изменить коэффициент. Например, ставлю на 2. Это означает, что 1 квадратик будет уже равен 2 Вольтам.
Смотрим, что произойдет с сигналом с напряжением в 1 Вольт
Здесь мы видим, что его значение просело в 2 раза, так как мы взяли коэффициент 1:2, что означает 1 квадратик равен 2 Вольтам. Благодаря масштабированию вертикальный развертки, мы можем измерять сигналы напряжением хоть в 1000 вольт!
Что случится, если мы соединим сигнальный провод осциллографа с “минусом” питания, а нулевой с “плюсом” питания? В этом случае осциллограмма “пробьет пол” и просто покажет минусовые значения. Ничего страшного в этом нет. Здесь мы видим значение “-2” Вольта.
Как измерить переменное напряжение аналоговым осциллографом
Для измерения переменного напряжения нам потребуется переключить осциллограф в режим измерения AC – “переменный ток”. Если вы хотите просто наблюдать форму сигнала, то вам необязательно знать, какой провод осциллографа куда тыкать. Давайте измеряем переменное напряжение с понижающего трансформатора, который включен в сеть 220 Вольт.
Снимаем напряжение со вторичной обмотки трансформатора и видим вот такую осциллограмму.
По идее здесь должен быть чистый синус. То ли трансформатор вносит искажения в сигнал, то ли на электростанции что-то не так. Непонятно. Ну да ладно, главное то, что мы сняли осциллограмму переменного напряжения со вторичной обмотки трансформатора.
В этом случае мы можем без проблем определить период сигнала и его частоту. В этом нам поможет переключатель горизонтальной развертки по оси времени.
Мы видим, что его значение стоит на 5. Это означает, что один квадратик по оси “Х” , то есть по оси времени, будет равен 5 миллисекунд или 0,005 секунд.
Период – это время, через которое сигнал повторяется. Обозначается буквой Т. В нашем случае период равен 4 квадратикам.
Так как один квадратик в нашем случае равен 0,005 секунд, то получается, что T=0,005 x 4 = 0,02 секунды. Отсюда можно узнать частоту сигнала.
где
V – это частота, Гц
T – период сигнала, с
Для данного случая
V=1/T=1/0,02=50 Гц. Трансформатор меняет только амплитуду сигнала, но не изменяет его частоту. Поэтому, частота в нашей сети 50 Герц, что и подтвердил осциллограф.
Цифровой осциллограф
Цифровой осциллограф – это осциллограф, построенный на основе цифровой схемотехники. Его главное отличие от аналогового в том, что внутри него идет цифровая обработка сигналов. Цифровой осциллограф может записывать, останавливать, автоматически подгонять и измерять исследуемый сигнал. И это только часть функций!
Как подготовить цифровой осциллограф к работе
Включаем осциллограф и цепляем щуп на любой из каналов. Я соединил щуп с первым каналом (Ch2)
На щупе есть делитель. Ставим его ползунок на 10Х. В осциллографе по умолчанию также должен стоять делитель на 10Х. Если это не так, ищем в его настройках и ставим в характеристиках канала “10Х”.
Каждый нормальный цифровой осциллограф имеет встроенный генератор прямоугольных импульсов с частотой 1000 Герц (1кГц) и амплитудой напряжения в 5 Вольт. Чаще всего этот генератор находится в нижнем правом углу. В нашем случае он называется Probe Comp. Цепляемся за него щупом.
Все должно выглядеть приблизительно вот так:
На дисплее в это время происходит какой-то
В этом осциллографе есть волшебная кнопка, от которой я без ума. Это кнопка автоматического позиционирования сигнала Autoscale. Нажал на эту кнопку
Согласился с условиями автоматического позиционирования сигнала
и готово!
Но что такое? У нас должен быть ровный прямоугольный периодический сигнал! Вся проблема в том, что щуп осциллографа вносит искажения в сам сигнал, поэтому, его желательно корректировать каждый раз перед работой.
В современных щупах есть маленький винтик, заточенный под тонкую отвертку. С помощью этого винтика мы будем корректировать щуп.
Крутим и смотрим, что у нас получается на дисплее.
Ого, слишком сильно крутанул винт.
Крутим чуточку в обратную сторону и выравниваем горизонтально вершины сигнала.
Вот! Совсем другое дело! На дисплее у нас ровные прямоугольные сигналы, следовательно на этом этапе цифровой осциллограф полностью готов к работе.
Как измерить постоянное напряжение цифровым осциллографом
Итак, первым делом выбираем, какое напряжение собираемся измерять. Это делается с помощью кнопочки Coupling (нажимаем клавишу Н1). DC – direct current, что с английского означает “постоянный ток”.
Справа экрана сплывают окошки, и мы выбираем DC (нажимаем клавишу F1)
Все, после этого наш осциллограф полностью готов к измерению постоянного тока.
Откуда будем брать постоянный ток? У меня для этого есть блок питания. Выставим на нем для примера 5 Вольт.
Соединяем щупы блока питания и осциллографа. Сигнальный щуп осциллографа желательно соединять с красным плюсовым крокодилом щупа блока питания, а черный щуп (земля) соединить с минусовым черным крокодилом.
Смотрим на дисплей осциллографа
Что мы тут видим? А видим мы тут осциллограмму постоянного напряжения. Постоянное напряжение – это такое напряжение, которое не изменяется во времени.
На что стоит обратить внимание? Разумеется, на цену деления. Один квадратик по вертикали у нас равен 2 Вольта. Если считать от центра пересечения жирных штриховых линий, то осциллограмма находится на высоте 2,5 стороны квадратика. Значит, напряжение будет 2,5х2=5 Вольт. Так как мне лень считать, я вывожу эти показания осциллографа прямо на экране (нижняя левая зеленая рамка).
Как измерить переменное напряжение цифровым осциллографом
Для опытов я возьму ЛАТР (Лабораторный автотрансформатор). Как вы помните, ЛАТР понижает или повышает переменное сетевое напряжение.
Выставляем напряжение на ЛАТРе 100 Вольт.
На осциллографе переключаем на АС, что означает alternating current – переменный ток.
Цепляемся к выходным разъемам ЛАТРа и наблюдаем такую картину.
С помощью кнопки “Measure” я вывел некоторые интересующие нас параметры:
Vk – среднеквадратичное значение напряжения. В данном случае он нам показывает напряжение, которое мы подавали с ЛАТРа – это 100 Вольт.
F – частота. В данном случае это частота сети 50 Герц. ЛАТР не меняет частоту сети.
T – период. T=1/F. Как мы с вами видим частота напряжения в сети 50 Герц. Период равен 20 миллисекунд. Если единицу разделить на 20 миллисекунд, то мы как раз получим частоту сигнала.
Как вывести все параметры сигнала
Мы будем рассматривать все наши измеряемые параметры на конкретном примере. Для этого будем использовать генератор частоты с заранее выставленной частотой в 1 Мегагерц (ну или 1000 КГц) с прямоугольной формой сигнала:
Сигнал с генератора частоты на экране осциллографа выглядит вот так.
А где же правильный прямоугольный сигнал? Вот тебе и раз… Ничего с этим не поделаешь. Это есть, было и будет у всех прямоугольных сигналов. Это возникает вследствие несовершенства цепей и радиоэлементов. Особенно хорошо такая осциллограмма прорисовывается на высоких частотах, как в нашем примере.
Ладно, давайте выведем все параметры сигнала, которые может вывести наш осциллограф. Для этого нажимаем кнопочку “Measure” , что с англ. означает “измерять”
Далее нажимаем кнопочку “Add” ( с англ. – добавлять), с помощью вспомогательной клавиши h2
И потом нажимаем кнопку “Show All” (с англ. – показать всё) с помощью вспомогательной клавиши F3
В результате всех этих операций у нас выскочит табличка с измеряемыми параметрами сигнала:
Описание характеристик сигналов
Как вы знаете, осциллограф нам показывает изменение напряжения сигнала во времени. Поэтому, параметры сигналов в основном делятся на два типа:
– Амплитудные
– Временные
Давайте рассмотрим основные из них. Начнем слева-направо.
Period – с англ. период. Период сигнала – это время, за которое сигнал повторяется. В нашем случае период обозначается буквой “Т”.
Чтобы самостоятельно посчитать период, нам надо знать значение одной клетки по горизонтали. Внизу осциллограммы можно найти подсказку. Я ее пометил в желтый прямоугольник
Следовательно, одна клеточка по горизонтали равна 500 наносекунд. А так как у нас период длится ровно две клеточки, значит 500 х 2 = 1000 наносекунда или 1 микросекунда.
Сходятся ли наши расчетные показания с показаниями автоматических измерений? Смотрим и проверяем.
Стопроцентное попадание! Кстати, чтобы не было дальнейших вопросов, привожу небольшую табличку.
“Пико” – буквой “p”
“Нано” – буквой “n”
“Микро” обозначается буквой “u”, как и в маркировке современных конденсаторов.
“Милли” – буквой “m”.
Freq. Полное название frequency – с англ. частота. Обозначается буквой “F”. Частоту очень легко можно вычислить по формуле, зная период Т.
F=1/T
В нашем случае получаем 1/1х10-6=106=1 Мегагерц (MHz). Смотрим на наши автоматические измерения:
Ну разве не чудо? 😉
Следующий показатель Mean. В нашем случае обозначается просто буковкой “V”. Он означает среднюю величину сигнала и используется для измерения постоянного напряжения. В данный момент этот параметр не представляет интереса, потому как измеряется переменный ток и в значении этого сигнала показывается какая-то вата. Постоянный ток меряет нормально, можно вывести этот параметр на дисплей, что мы и делали в прошлой статье:
Еще один интересный параметр: PK-PK. Называется он Peak-to-Peak и показывает напряжение от пика до пика. Обозначается как Vp. Что это за напряжение от пика до пика, показано на осциллограмме ниже:
Так как мы видим, что значение нашего квадратика равно 1 Вольту (внизу слева)
То можно высчитать и напряжение от пика до пика. Оно будет где-то эдак 5 Вольт. Сверяемся с автоматическим измерением
Почти в тютельку!
Остальные параметры сигнала не столь важны для начинающих электронщиков.
Плюсы и минусы цифрового осциллографа
Начнем с плюсов
- Запись, остановка, автоматические измерения и другие фишки – это еще не весь список, что умеет делать цифровой осциллограф
- Габариты цифрового осциллографа намного меньше, чем аналогового
- Потребление энергии меньше, чем у аналогового осциллографа
- Жидкокристаллический дисплей, в отличие от кинескопного дисплея аналогового осциллографа
Минусы
- Дороговизна
- Дискретная прорисовка сигнала. Хотя дорогие модели ничуть не уступают аналоговым по прорисовке сигнала.
Где купить цифровой осциллограф
Естественно, на Алиэкспрессе, так как в наших интернет-магазинах их цена бывает завышена в два, а то и в три раза. Также очень хорошие отзывы об осциллографе Hantek, характеристики которого даже лучше, чем у моего OWON:
Посмотреть его можете на Алиэкпрессе по этой ссылке.
USB осциллограф
USB-осциллограф представляет из себя прибор, который не имеет собственного экрана.
У нас на обзоре USB осциллограф INTRUSTAR.
В придачу с ним шли 2 щупа, шнур USB, расходники, диск с ПО, а также отвертка для регулировки щупов
С одной стороны осциллографа мы видим два разъема для подключения щупов. Первый разъем Ch2, что означает первый канал, а второй разъем Ch3, то есть второй канал. Следовательно, осциллограф двухканальный. Справа видим два штыря. Эти штыри – генератор тестового сигнала для калибровки щупов осциллографа. Один из них земля, а другой – сигнальный. Калибруем точно также, как и простой цифровой осциллограф. Как это делать, я писал выше в статье.
В рабочем состоянии USB осциллограф выглядит вот так.
После установки программного обеспечения на компьютер или ноутбук, открываем программу и запускаем осциллограф. Здесь я уже сразу подцепил тестовый сигнал, чтобы подготовить осциллограф к работе.
Также можно вывести значение сигналов, которые осциллограф сразу бы показывал на экране монитора.
Плюсы и минусы USB осциллографа
Плюсы:
- Умеренная цена и функционал. Стоит в разы дешевле, чем крутые цифровые осциллографы
- Настройка и установка ПО занимает около 10-15 минут
- Удобный интерфейс
- Малогабаритный размер
- Может производить операции как с постоянным, так и с переменным током
- Два канала, то есть можно измерять сразу два сигнала и выводить их на дисплей
Минусы:
- Малая частота дискретизации
- Обязательно нужен ПК
- Малая полоса пропускания
- Глубина памяти тоже никакая
Более подробно про характеристики цифровых осциллографов вы можете прочитать, скачав учебное пособие по цифровым осциллографам.
Похожие статьи по теме “осциллограф”
Фигуры Лиссажу
Электрический сигнал
Как измерить значение индуктора или конденсатора с помощью осциллографа — метод резонансной частоты
Резисторы, индукторы и конденсаторы являются наиболее часто используемыми пассивными компонентами почти во всех электронных схемах. Из этих трех номиналы резисторов и конденсаторов обычно указываются сверху либо в виде цветового кода резистора, либо в виде числовой маркировки. Также сопротивление и емкость можно измерить с помощью обычного мультиметра. Но большинство индукторов, особенно с ферритовым и воздушным сердечником, почему-то не имеют какой-либо маркировки.Это становится довольно раздражающим, когда вам нужно выбрать правильное значение индуктивности для вашей схемы или вы восстановили его со старой электронной печатной платы и захотели узнать его стоимость.
Прямым решением этой проблемы является использование измерителя LCR, который может измерять значение катушки индуктивности, конденсатора или резистора и отображать его напрямую. Но не у всех есть измеритель LCR под рукой, поэтому в этой статье мы узнаем , как использовать осциллограф для измерения значения индуктивности или конденсатора , используя простую схему и простые вычисления.Конечно, если вам нужен более быстрый и надежный способ сделать это, вы также можете создать свой собственный LC-метр, который использует ту же технику вместе с дополнительным MCU для считывания отображаемого значения.
Необходимые материалы
- Осциллограф
- Генератор сигналов или простой ШИМ-сигнал от Arduino или другого MCU
- Диод
- Известный конденсатор (0,1 мкФ, 0,01 мкФ, 1 мкФ)
- Резистор (560 Ом)
- Калькулятор
Чтобы измерить значение неизвестного индуктора или конденсатора, нам нужно построить простую схему, называемую цепью резервуара.Эту схему также можно назвать схемой LC, резонансной схемой или настроенной схемой . Цепь резервуара — это цепь, в которой индуктор и конденсатор будут подключены параллельно друг другу, и когда цепь запитана, напряжение и ток на ней будут резонировать на частоте, называемой резонансной частотой. Прежде чем двигаться дальше, давайте разберемся, как это происходит.
Как работает контур резервуара?
Как уже говорилось ранее, типичная баковая цепь просто состоит из параллельно соединенных индуктивности и конденсатора.Конденсатор — это устройство, состоящее всего из двух параллельных пластин, которое способно накапливать энергию в электрическом поле, а индуктор — это катушка, намотанная на магнитный материал, которая также способна накапливать энергию в магнитном поле.
Когда схема запитана, конденсатор заряжается, а затем, когда питание отключается, конденсатор отдает свою энергию в катушку индуктивности. К тому времени, когда конденсатор истощает свою энергию в катушке индуктивности, катушка индуктивности заряжается и будет использовать свою энергию, чтобы протолкнуть ток обратно в конденсатор с противоположной полярностью, чтобы конденсатор снова зарядился.Помните, что индукторы и конденсаторы меняют полярность при зарядке и разрядке. Таким образом, напряжение и ток будут колебаться взад и вперед, создавая резонанс, как показано на изображении GIF выше.
Но это не может произойти вечно, потому что каждый раз, когда конденсатор или индуктор заряжается и разряжается, некоторая энергия (напряжение) теряется из-за сопротивления провода или в виде магнитной энергии, и постепенно величина резонансной частоты будет исчезать, как показано на ниже формы волны.
Как только мы получим этот сигнал в нашем прицеле, мы можем измерить частоту этого сигнала, которая представляет собой не что иное, как резонансную частоту , затем мы можем использовать приведенные ниже формулы для вычисления значения индуктора или конденсатора.
FR = 1 / / 2π √LC
В приведенных выше формулах F R — это резонансная частота, и затем, если мы знаем значение конденсатора, мы можем вычислить значение индуктора, и аналогично мы знаем значение индуктора, мы можем вычислить значение конденсатора.
Установка для измерения индуктивности и емкости
Довольно теории, теперь давайте построим схему на макете. Здесь у меня есть индуктор, значение которого я должен узнать, используя известное значение индуктивности. Схема, которую я использую здесь, показана ниже
.
Конденсатор C1 и индуктор L1 образуют цепь резервуара, диод D1 используется для предотвращения попадания тока обратно в источник сигнала ШИМ, а резистор 560 Ом используется для ограничения тока через цепь.Здесь я использовал свой Arduino для генерации сигнала ШИМ с переменной частотой, вы можете использовать генератор функций, если он у вас есть, или просто использовать любой сигнал ШИМ. Прицел подключается через контур резервуара. Моя аппаратная установка выглядела как ниже , когда цепь была завершена. Вы также можете увидеть мой неизвестный индуктор с горячим сердечником здесь
Теперь включите схему, используя сигнал ШИМ, и проверьте наличие резонансного сигнала на осциллографе.Вы можете попробовать изменить значение конденсатора, если вы не получаете четкого сигнала резонансной частоты, конденсатор обычно 0,1 мкФ должен работать для большинства катушек индуктивности , но вы также можете попробовать с более низкими значениями, такими как 0,01 мкФ. Как только вы получите резонансную частоту, она должна выглядеть примерно так.
Как измерить частоту резонанса с помощью осциллографа?
Для некоторых людей кривая будет выглядеть так, для других вам, возможно, придется немного подправить.Убедитесь, что зонд осциллографа установлен на 10x, так как нам нужен развязывающий конденсатор. Также установите временное деление на 20 мкс или меньше, а затем уменьшите величину до менее 1 В. Теперь попробуйте увеличить частоту сигнала ШИМ, если у вас нет генератора сигналов, попробуйте уменьшить значение конденсатора, пока не заметите резонансную частоту. Как только вы получите резонансную частоту, включите осциллограф в одну последовательность. режим, чтобы получить четкую форму волны, подобную показанной выше.
После получения сигнала мы должны измерить частоту этого сигнала .Как вы можете видеть, величина сигнала уменьшается с увеличением времени, поэтому мы можем выбрать любой полный цикл сигнала. У некоторых осциллографов может быть режим измерения, чтобы делать то же самое, но здесь я покажу вам, как использовать курсор. Поместите первую строку курсора в начало синусоидальной волны, а второй курсор — в конец синусоидальной волны, как показано ниже, чтобы измерить период частоты. В моем случае период времени был выделен на рисунке ниже . Моя область видимости также отображает частоту, но для целей обучения просто учитывайте период времени, вы также можете использовать линии графика и значение деления времени, чтобы найти период времени, если ваша область не отображает его.
Мы измерили только период времени сигнала, чтобы узнать частоту , мы можем просто использовать формулы
F = 1 / T
Таким образом, в нашем случае значение периода времени составляет 29,5 мкс, что составляет 29,5 × 10 -6 . Таким образом, значение частоты будет
.F = 1 / (29,5 × 10 -6 ) = 33,8 кГц
Теперь у нас есть резонансная частота 33.8 × 10 3 Гц и емкость конденсатора 0,1 мкФ, что составляет 0,1 × 10 -6 Ф, подставляя все это в формулы, получаем
FR = 1 / 2π √LC 33,8 × 10 3 = 1 / 2π √L (0,1 x 10 -6 )
Решая для L, получаем
L = (1 / (2π x 33,8 x 10 3 ) 2 / 0,1 × 10 -6 = 2,219 × 10 -4 = 221 × 10 -6 L ~ = 220 мкГн
Таким образом, значение неизвестной индуктивности рассчитано как 220 мкГн, аналогично вы также можете рассчитать значение емкости конденсатора, используя известную индуктивность. Я также пробовал это с несколькими другими известными значениями индуктивности, и, похоже, они работают нормально. Вы также можете найти полную работу в видео, прикрепленном ниже .
Надеюсь, вы поняли статью и узнали что-то новое. Если у вас возникли проблемы с тем, чтобы заставить это работать на вас, оставьте свои вопросы в разделе комментариев или воспользуйтесь форумом для получения дополнительной технической помощи.
,Выполнение измерений с помощью осциллографа
Цифровой запоминающий осциллограф — это электронное устройство, используемое для просмотра электрических сигналов, которое состоит из экрана дисплея, входов и нескольких элементов управления. Для работы с осциллографом вы сначала подключаете электрический сигнал, который хотите просмотреть, к одному из входов осциллографа, которых обычно два, обозначенных A и B. Затем вы включаете осциллограф, но сигнал не будет виден до тех пор, пока вы настраиваете две настройки: вольт / деление и время / деление (или развертку).
Используется для измерения вертикальной шкалы, вольт / деление определяет количество вольт для каждого вертикального деления. Время / деление контролирует горизонтальный масштаб. Время, в течение которого отображается каждое горизонтальное деление, соразмерно изменяется при настройке времени / деления. Отрегулируйте эти две настройки до тех пор, пока сигнал не будет четко отображаться на экране осциллографа.
Амплитуда переменного тока
Для измерения амплитуды переменного тока (AC) вы начинаете с подачи сигнала переменного тока на один из входов осциллографа перед его оптимизацией.Сигнал переменного тока будет колебаться и напоминать синусоидальную волну. Вы будете измерять амплитуду сигнала, подсчитывая количество вертикальных делений между самой высокой и самой низкой точками сигнала (то есть его пиком и минимумом). Вы можете получить амплитуду в вольтах, умножив количество делений по вертикали на ваши настройки вольт / деление.
Частота переменного тока
Если вы хотите измерить частоту переменного тока, вам следует подключить сигнал переменного тока к одному из входов цифрового осциллографа и оптимизировать сигнал.Подсчитайте количество горизонтальных делений от одной верхней точки до следующей (т. Е. От пика до пика) вашего колебательного сигнала. Затем вы умножите количество горизонтальных делений на время / деление, чтобы найти период сигнала. Вы можете рассчитать частоту сигнала с помощью следующего уравнения: частота = 1 / период.
Напряжение сигнала постоянного тока
Чтобы измерить напряжение сигнала постоянного тока (DC), вы сначала включаете осциллограф, не подключая входной сигнал. (Обратите внимание, что сигнал постоянного тока на экране осциллографа будет ровным.) Поместите линию осциллографа над нулевым уровнем напряжения с настройкой вертикального положения. Затем подключите тракт сигнала постоянного тока к одному из входов осциллографа. После подключения сигнала вы заметите сдвиг линии осциллографа по вертикальной оси. Вы подсчитаете количество делений по вертикали, на которое смещается линия осциллографа, и умножьте деления по вертикали на вольт / деление, чтобы найти напряжение сигнала постоянного тока.
Узнайте больше и приобретите осциллографы с цифровой памятью у специалистов по схемам здесь.
,Как пользоваться осциллографом
Введение
Вы когда-нибудь обнаруживали, что при поиске неисправностей в цепи вам требуется больше информации, чем может предоставить простой мультиметр? Если вам нужно получить такую информацию, как частота, шум, амплитуда или любые другие характеристики, которые могут измениться со временем, вам понадобится осциллограф!
О-образные диафрагмы— важный инструмент в лаборатории любого инженера-электрика. Они позволяют видеть электрические сигналы , поскольку они меняются с течением времени, что может иметь решающее значение для диагностики того, почему ваша схема таймера 555 не мигает правильно или почему ваш генератор шума не достигает максимального уровня раздражения.
HAMlab — 160-6 10 Вт
Осталось всего 3! WRL-15001HAMlab — это полнофункциональный SDR-трансивер с диапазоном 160-10 м и выходной мощностью 10 Вт, построенный на платформе STEMlab…
рассматривается в этом учебном пособии
Целью данного руководства является ознакомление с концепциями, терминологией и системами управления осциллографов.Он разбит на следующие разделы:
- Основы O-Scopes — Введение в осциллографы, что они измеряют и почему мы их используем.
- Oscilloscope Lexicon — Глоссарий, охватывающий некоторые из наиболее распространенных характеристик осциллографов.
- Анатомия осциллографа — Обзор наиболее важных систем осциллографа — экрана, элементов управления по горизонтали и вертикали, триггеров и пробников.
- Использование осциллографа — Советы и рекомендации для тех, кто впервые использует осциллограф.
Мы будем использовать Gratten GA1102CAL — удобный цифровой осциллограф среднего уровня — в качестве основы для обсуждения области применения. Другие o-scopes могут выглядеть иначе, но все они должны иметь схожий набор механизмов управления и интерфейса.
Рекомендуемая литература
Прежде чем продолжить изучение этого руководства, вы должны быть знакомы с приведенными ниже концепциями. Ознакомьтесь с руководством, если хотите узнать больше!
Видео
Основы O-Scopes
Основное назначение осциллографа — графическое изображение электрического сигнала, изменяющегося во времени .Большинство осциллографов создают двумерный график с временем по оси x и напряжением по оси y .
Пример дисплея осциллографа. Сигнал (в данном случае желтая синусоида) отображается на горизонтальной оси времени и вертикальной оси напряжения.
Элементы управления, расположенные на экране осциллографа, позволяют регулировать масштаб графика как по вертикали, так и по горизонтали, что позволяет увеличивать и уменьшать масштаб сигнала.Также есть элементы управления для установки триггера на прицеле, который помогает сфокусировать и стабилизировать изображение.
Что могут измерить прицелы?
В дополнение к этим фундаментальным функциям многие осциллографы имеют инструменты измерения, которые помогают быстро определять частоту, амплитуду и другие характеристики формы сигнала. Как правило, осциллограф может измерять характеристики как по времени, так и по напряжению:
- Временные характеристики :
- Частота и период — Частота определяется как количество повторов сигнала в секунду.И период является обратной величиной (количество секунд, которое занимает каждый повторяющийся сигнал). Максимальная частота, которую может измерить осциллограф, варьируется, но часто она находится в диапазоне 100 МГц (1E6 Гц).
- Рабочий цикл — Процент периода, в течение которого волна является либо положительной, либо отрицательной (есть как положительные, так и отрицательные рабочие циклы). Рабочий цикл — это коэффициент, который показывает, как долго сигнал «включен» по сравнению с тем, как долго он «выключен» в каждом периоде.
- Время нарастания и спада — Сигналы не могут мгновенно переходить от 0 В до 5 В, они должны плавно возрастать.Продолжительность волны, идущей от нижней точки к верхней точке, называется временем нарастания, а время спада измеряет обратное. Эти характеристики важны при рассмотрении того, насколько быстро цепь может реагировать на сигналы.
- Характеристики напряжения :
- Амплитуда — Амплитуда — это мера величины сигнала. Существует множество измерений амплитуды, включая размах амплитуды, которая измеряет абсолютную разницу между точкой высокого и низкого напряжения сигнала.Пиковая амплитуда, с другой стороны, измеряет только то, насколько высокий или низкий сигнал превышает 0 В.
- Максимальное и минимальное напряжение — осциллограф может точно сказать вам, насколько высоким и низким становится напряжение вашего сигнала.
- Среднее и среднее напряжение — Осциллографы могут вычислить среднее или среднее значение вашего сигнала, а также могут сказать вам среднее значение минимального и максимального напряжения вашего сигнала.
Когда использовать O-Scope
o-scope полезен в различных ситуациях поиска и устранения неисправностей, в том числе:
- Определение частоты и амплитуды сигнала, которые могут иметь решающее значение при отладке входа, выхода или внутренних систем схемы.По этому вы можете сказать, неисправен ли какой-либо компонент в вашей цепи.
- Определение уровня шума в вашей цепи.
- Определение формы волны — синуса, квадрата, треугольника, пилообразной формы, сложной формы и т. Д.
- Количественная оценка разности фаз между двумя разными сигналами.
Осциллограф Lexicon
Научиться пользоваться осциллографом — значит познакомиться со всей лексикой терминов.На этой странице мы познакомим вас с некоторыми важными модными словечками o-scope, с которыми вам следует ознакомиться, прежде чем включать его.
Основные характеристики осциллографаНекоторые прицелы лучше других. Эти характеристики помогают определить, насколько хорошо вы можете ожидать от прицела:
- Полоса пропускания — Осциллографы чаще всего используются для измерения сигналов определенной частоты. Однако ни один прицел не идеален: у всех есть пределы того, насколько быстро они могут видеть изменение сигнала.Полоса пропускания осциллографа определяет диапазон частот, он может надежно измерять.
- Сравнение цифровых и аналоговых — Как и большинство всего электронного, осциллографы могут быть аналоговыми или цифровыми. Аналоговые осциллографы используют электронный луч для непосредственного отображения входного напряжения на дисплей. Цифровые осциллографы включают микроконтроллеры, которые дискретизируют входной сигнал с помощью аналого-цифрового преобразователя и отображают это показание на дисплей. Как правило, аналоговые осциллографы старше, имеют меньшую полосу пропускания и меньше функций, но они могут иметь более быстрый отклик (и выглядеть намного круче).
- Количество каналов — Многие осциллографы могут считывать более одного сигнала одновременно, отображая их все на экране одновременно. Каждый сигнал, считываемый осциллографом, подается в отдельный канал. Очень распространены осциллографы от двух до четырех каналов.
- Частота дискретизации — Эта характеристика уникальна для цифровых осциллографов, она определяет, сколько раз в секунду считывается сигнал. Для осциллографов с более чем одним каналом это значение может уменьшиться, если используется несколько каналов.
- Время нарастания — Указанное время нарастания осциллографа определяет самый быстрый нарастающий импульс, который он может измерить. Время нарастания осциллографа очень тесно связано с полосой пропускания. Его можно рассчитать как
Время нарастания
=0,35
/Пропускная способность
. - Максимальное входное напряжение — Каждая электроника имеет свои пределы, когда дело касается высокого напряжения. Все осциллографы должны быть рассчитаны на максимальное входное напряжение. Если ваш сигнал превышает это напряжение, есть большая вероятность, что прицел будет поврежден.
- Разрешение — Разрешение осциллографа показывает, насколько точно он может измерять входное напряжение. Это значение может измениться при настройке вертикального масштаба.
- Вертикальная чувствительность — Это значение представляет собой минимальное и максимальное значения вертикальной шкалы напряжения. Это значение указано в вольтах на деление.
- Time Base — Временная база обычно указывает диапазон чувствительности на горизонтальной оси времени. Это значение указывается в секундах на каждый div.
- Входное сопротивление — Когда частота сигнала становится очень высокой, даже небольшой импеданс (сопротивление, емкость или индуктивность), добавленный к цепи, может повлиять на сигнал. Каждый осциллограф добавляет к считываемой цепи определенный импеданс, который называется входным сопротивлением. Входные импедансы обычно представлены в виде большого резистивного сопротивления (> 1 МОм), подключенного параллельно (||), с малой емкостью (в диапазоне пФ). Влияние входного импеданса более очевидно при измерении очень высокочастотных сигналов, и пробник, который вы используете, может помочь его компенсировать.
Используя GA1102CAL в качестве примера, вот характеристики, которые можно ожидать от прицела среднего класса:
Признак | Значение |
---|---|
Полоса пропускания | 100 МГц |
Частота дискретизации | 1 Гвыб / с (1E9 выборок в секунду) |
Время нарастания | |
Количество каналов | 2 |
Максимальное входное напряжение | 400 В |
Разрешение | 8 бит |
Вертикальная чувствительность | 2 мВ / дел — 5 В / дел |
Развертка времени | 2 нс / дел — 50 с / дел |
Входное сопротивление | 1 МОм ± 3% || 16 пФ ± 3 пФ |
Понимая эти характеристики, вы сможете выбрать осциллограф, который лучше всего соответствует вашим потребностям.Но вам все равно нужно знать, как им пользоваться … на следующей странице!
Анатомия O-Scope
Хотя не существует абсолютно одинаковых осциллографов, все они должны иметь несколько общих черт, которые заставляют их работать одинаково. На этой странице мы обсудим несколько наиболее распространенных систем осциллографа: дисплей, горизонтальную, вертикальную, триггер и входы.
Дисплей
Осциллограф бесполезен, если он не может отображать информацию, которую вы пытаетесь проверить, что делает дисплей одним из наиболее важных разделов осциллографа.
Каждый дисплей осциллографа должен быть пересечен горизонтальными и вертикальными линиями, называемыми делениями . Масштаб этих делений изменен с помощью горизонтальной и вертикальной систем. Вертикальная система измеряется в «вольтах на деление», а горизонтальная — в «секундах на деление». Как правило, осциллографы имеют 8-10 делений по вертикали (напряжение) и 10-14 делений по горизонтали (секунд).
Старые прицелы (особенно аналоговые) обычно имеют простой монохромный дисплей, хотя интенсивность волны может варьироваться.Более современные осциллографы оснащены многоцветными ЖК-экранами, которые отлично помогают отображать более одной формы сигнала за раз.
Многие дисплеи осциллографа расположены рядом с набором из пяти кнопок — сбоку или под дисплеем. Эти кнопки могут использоваться для навигации по меню и управления настройками осциллографа.
Вертикальная система
Вертикальная секция осциллографа контролирует шкалу напряжения на дисплее. В этом разделе традиционно есть две ручки, которые позволяют вам индивидуально управлять вертикальным положением и вольт / дел.
Более критическая ручка вольт на деление позволяет установить вертикальный масштаб на экране. Вращение ручки по часовой стрелке уменьшает масштаб, а против часовой стрелки — увеличивает. Меньший масштаб — меньшее количество вольт на деление экрана — означает, что вы в большей степени «увеличиваете масштаб» формы волны.
Дисплей GA1102, например, имеет 8 делений по вертикали, а ручка вольт / дел может выбрать шкалу от 2 мВ / дел до 5 В / дел. Таким образом, при полном увеличении до 2 мВ / дел на дисплее может отображаться осциллограмма 16 мВ сверху вниз.Полностью уменьшенный, осциллограф может отображать сигнал в диапазоне более 40 В. (Зонд, как мы обсудим ниже, может еще больше увеличить этот диапазон.)
Положение Ручка управляет вертикальным смещением формы сигнала на экране. Поверните ручку по часовой стрелке, и волна будет двигаться вниз, против часовой стрелки — вверх по дисплею. Вы можете использовать ручку положения, чтобы сместить часть сигнала за пределы экрана.
Используя одновременно ручки положения и вольт / деления, вы можете увеличить только крошечную часть сигнала, которая вам важнее всего.Если у вас есть прямоугольный сигнал 5 В, но вы заботитесь только о том, насколько он звенит по краям, вы можете увеличить нарастающий фронт, используя обе ручки.
Горизонтальная система
Горизонтальная часть осциллографа контролирует шкалу времени на экране. Как и в вертикальной системе, горизонтальный элемент управления дает вам две ручки: положение и секунды / дел.
Ручка секунды на деление (с / дел) вращается для увеличения или уменьшения горизонтального масштаба.Если вы вращаете ручку s / div по часовой стрелке, количество секунд, которое представляет каждое деление, уменьшится — вы «увеличите масштаб» шкалы времени. Поверните против часовой стрелки, чтобы увеличить шкалу времени и отобразить на экране большее количество времени.
Если снова использовать GA1102 в качестве примера, дисплей имеет 14 горизонтальных делений и может отображать от 2 нс до 50 с на деление. Таким образом, при полном увеличении по горизонтали осциллограф может отображать 28 нс формы волны, а при увеличении — может отображать сигнал, изменяющийся в течение 700 секунд.
Положение Ручка позволяет перемещать форму сигнала вправо или влево от дисплея, регулируя горизонтальное смещение .
Используя горизонтальную систему, вы можете настроить , сколько периодов осциллограммы вы хотите видеть. Вы можете уменьшить масштаб и показать несколько пиков и впадин сигнала:
Или вы можете увеличить масштаб и использовать ручку положения, чтобы показать только крошечную часть волны:
Система запуска
Раздел триггера посвящен стабилизации и фокусировке осциллографа.Триггер сообщает осциллографу, какие части сигнала «запускать» и начинать измерение. Если ваша форма волны периодическая , триггером можно управлять, чтобы дисплей оставался статичным, и устойчивым. Плохо сработавшая волна будет производить такие широкие волны, как это:
Секция триггера осциллографа обычно состоит из ручки уровня и набора кнопок для выбора источника и типа триггера. Ручка уровня может быть повернута для установки триггера на определенную точку напряжения.
Ряд кнопок и экранных меню составляют остальную часть триггерной системы. Их основное назначение — выбор источника и режима запуска. Существует множество типов триггеров , которые определяют способ активации триггера:
- Спусковой механизм edge — это самый простой вид спускового крючка. Он заставит осциллограф начать измерения, когда напряжение сигнала перейдет на определенный уровень. Триггер по фронту может быть настроен на захват нарастающего или спадающего фронта (или обоих).
- Триггер , импульс сообщает осциллографу, что нужно ввести заданный «импульс» напряжения. Вы можете указать длительность и направление импульса. Например, это может быть крошечный скачок 0 В -> 5 В -> 0 В, или это может быть секундный провал с 5 В на 0 В, а затем обратно на 5 В.
- Триггер по наклону может быть настроен на запуск осциллографа по положительному или отрицательному наклону в течение определенного периода времени.
- Существуют более сложные триггеры для фокусировки на стандартизованных формах сигналов, передающих видеоданные, например NTSC или PAL .Эти волны используют уникальный шаблон синхронизации в начале каждого кадра.
Обычно вы также можете выбрать режим запуска , который, по сути, сообщает осциллографу, насколько сильно вы относитесь к триггеру. В автоматическом режиме запуска осциллограф может попытаться нарисовать вашу форму волны, даже если он не запускается. Нормальный режим будет рисовать вашу волну, только если видит указанный триггер. И single mode ищет указанный вами триггер, когда он его видит, он рисует вашу волну, а затем останавливается.
Зонды
Осциллограф хорош, только если вы действительно можете подключить его к сигналу, а для этого вам нужны пробники. Пробники — это устройства с одним входом, которые направляют сигнал от вашей схемы к осциллографу. У них есть острый наконечник , который исследует точку на вашей цепи. Наконечник также может быть оснащен крючками, пинцетом или зажимами, чтобы упростить фиксацию на цепи. Каждый пробник также включает в себя зажим заземления , который следует надежно прикрепить к общей точке заземления на тестируемой цепи.
Хотя пробники могут показаться простыми устройствами, которые просто подключаются к вашей цепи и передают сигнал в осциллограф, на самом деле многое нужно сделать в конструкции и выборе пробника.
Оптимально, зонд должен быть невидимым — он не должен влиять на ваш тестируемый сигнал. К сожалению, все длинные провода обладают собственной индуктивностью, емкостью и сопротивлением, поэтому, несмотря ни на что, они будут влиять на показания осциллографа (особенно на высоких частотах).
Существует множество типов пробников, наиболее распространенным из которых является пассивный пробник , входящий в состав большинства прицелов.Большинство «штатных» пассивных пробников — это аттенуированных . Ослабляющие пробники имеют большое сопротивление, намеренно встроенное и шунтируемое небольшим конденсатором, что помогает свести к минимуму влияние длинного кабеля на нагрузку вашей цепи. Этот ослабленный пробник, включенный последовательно с входным сопротивлением осциллографа , будет создавать делитель напряжения между вашим сигналом и входом осциллографа.
Большинство пробников имеют резистор 9 МОм для ослабления, который в сочетании со стандартным входным сопротивлением 1 МОм на осциллографе создает делитель напряжения 1/10.Эти зонды обычно называют 10X аттенуированные зонды . Многие пробники включают переключатель для выбора между 10X и 1X (без затухания).
Аттенуированные пробники отлично подходят для повышения точности на высоких частотах, но они также уменьшат амплитуду вашего сигнала. Если вы пытаетесь измерить сигнал очень низкого напряжения, вам, возможно, придется использовать пробник 1X. Вам также может потребоваться выбрать настройку на вашем осциллографе, чтобы сообщить ему, что вы используете ослабленный зонд, хотя многие осциллографы могут это обнаружить автоматически.
Помимо пассивного аттенуированного пробника, существует множество других пробников. Активные пробники — это пробники с питанием (для них требуется отдельный источник питания), которые могут усилить ваш сигнал или даже предварительно обработать его, прежде чем он попадет в ваш осциллограф. Хотя большинство пробников предназначены для измерения напряжения, существуют пробники для измерения переменного или постоянного тока. Токовые пробники уникальны тем, что они часто зажимают провод, фактически не контактируя с цепью.
Использование осциллографа
Бесконечное разнообразие сигналов означает, что вы никогда не сможете использовать один и тот же осциллограф дважды. Но есть несколько шагов, на выполнение которых вы можете рассчитывать практически каждый раз, когда тестируете схему. На этой странице мы покажем пример сигнала и шаги, необходимые для его измерения.
Выбор и настройка датчика
Во-первых, вам нужно выбрать зонд. Для большинства сигналов простой пассивный пробник , входящий в комплект поставки осциллографа, будет работать идеально.
Затем, прежде чем подключать его к осциллографу, установите ослабление на пробнике. 10X — наиболее распространенный коэффициент затухания — обычно является наиболее всесторонним выбором. Однако, если вы пытаетесь измерить сигнал очень низкого напряжения, вам может потребоваться использовать 1X.
Подсоедините зонд и включите осциллограф
Подключите пробник к первому каналу осциллографа и включите его. Наберитесь терпения, некоторые прицелы загружаются так же долго, как и старый компьютер.
При загрузке осциллографа вы должны увидеть деления, масштаб и зашумленную ровную линию формы волны.
На экране также должны отображаться ранее установленные значения для времени и вольт на деление. Игнорируя пока эти шкалы, внесите эти настройки, чтобы поместить ваш прицел в стандартную установку :
- Включить канал 1 и выключить канал 2.
- Установить канал 1 на Соединение по постоянному току .
- Установите источник запуска на канал 1 — без внешнего источника или запуска по альтернативному каналу.
- Установите тип запуска на нарастающий фронт и режим запуска на автоматический (в отличие от одиночного).
- Убедитесь, что затухание пробника на вашем прицеле соответствует настройке на вашем пробнике (например, 1X, 10X).
Для получения помощи по настройке этих параметров обратитесь к руководству пользователя осциллографа (например, вот руководство GA1102CAL).
Проверка датчика
Давайте подключим этот канал к значимому сигналу. Большинство осциллографов будут иметь встроенный частотный генератор , который излучает надежную волну заданной частоты — на GA1102CAL в правом нижнем углу передней панели имеется прямоугольный выходной сигнал частотой 1 кГц.Выход генератора частоты имеет два отдельных проводника — один для сигнала и один для заземления. Подключите заземляющий зажим пробника к земле, а наконечник пробника к выходу сигнала.
Как только вы подключите обе части зонда, вы должны увидеть, как сигнал начинает танцевать вокруг вашего экрана. Попробуйте поиграть с помощью системных регуляторов горизонтального и вертикального , чтобы перемещать форму волны по экрану. Поворот регуляторов шкалы по часовой стрелке «увеличивает» осциллограмму, а против часовой стрелки — уменьшает.Вы также можете использовать ручку позиционирования для дальнейшего определения вашего сигнала.
Если ваша волна все еще нестабильна, попробуйте повернуть ручку положения триггера . Убедитесь, что триггер не выше самого высокого пика сигнала . По умолчанию тип триггера должен быть установлен по фронту, что обычно является хорошим выбором для таких прямоугольных волн.
Попробуйте поиграть с этими ручками, чтобы отобразить на экране один период вашей волны.
Или попробуйте уменьшить масштаб временной шкалы, чтобы отобразить десятки квадратов.
Компенсация ослабленного пробника
Если ваш датчик настроен на 10X, и у вас нет идеально прямоугольной формы волны, как показано выше, вам может потребоваться компенсировать ваш датчик . Большинство пробников имеют утопленную головку винта, которую можно повернуть, чтобы отрегулировать шунтирующую емкость пробника.
Попробуйте использовать небольшую отвертку, чтобы повернуть триммер, и посмотрите, что происходит с осциллограммой.
Отрегулируйте подстроечный колпачок на рукоятке зонда так, чтобы получился прямоугольный сигнал с прямым краем и .Компенсация необходима только в том случае, если ваш зонд ослаблен (например, 10X), и в этом случае это критично (особенно если вы не знаете, кто использовал ваш прицел последним!).
Наконечники для измерения, срабатывания и масштабирования
После того, как вы скомпенсировали зонд, пришло время измерить реальный сигнал! Иди найди источник сигнала (генератор частоты ?, Террор-Мин?) И возвращайся.
Первый ключ к зондированию сигнала — это найти прочную и надежную точку заземления . Прикрепите зажим заземления к известному заземлению, иногда вам, возможно, придется использовать небольшой провод для промежуточного звена между зажимом заземления и точкой заземления вашей схемы.Затем подключите наконечник пробника к тестируемому сигналу. Наконечники пробников существуют в различных форм-факторах — подпружиненный зажим, острие, крючки и т. Д. — постарайтесь найти тот, который не требует от вас постоянного удерживания его на месте.
⚡ Внимание! Будьте осторожны при установке заземляющего зажима при проверке неизолированной цепи (например, без батарейного питания или при использовании изолированного источника питания). При проверке цепи, которая заземлена на сетевую землю, обязательно подключите заземляющий зажим к стороне цепи , подключенной к сетевой земле .Это почти всегда отрицательная сторона цепи / земля, но иногда это может быть и другая точка. Если точка, к которой подключен заземляющий зажим, имеет разность потенциалов, вы создадите прямое короткое замыкание и можете повредить вашу схему, осциллограф и, возможно, вас самих! Для дополнительной безопасности при проверке цепей, подключенных к сети, подключите его к источнику питания через изолирующий трансформатор.Как только ваш сигнал появится на экране, вы можете начать с настройки горизонтальной и вертикальной шкал, по крайней мере, так, чтобы приблизиться к вашему сигналу.Если вы исследуете прямоугольную волну 5 В на 1 кГц, вам, вероятно, понадобится значение вольт / деление где-то около 0,5-1 В и установите секунды / деление примерно на 100 мкс (14 делений покажут около полутора периодов).
Если часть вашей волны поднимается или опускается на экране, вы можете отрегулировать вертикальное положение , чтобы переместить его вверх или вниз. Если ваш сигнал является чисто постоянным, вы можете настроить уровень 0 В в нижней части дисплея.
После того, как весы настроены, возможно, для вашей формы волны потребуется запуск. Запуск по фронту — когда осциллограф пытается начать сканирование, когда видит повышение (или падение) напряжения выше заданного значения, — это самый простой в использовании тип. Используя триггер по фронту, попробуйте установить уровень триггера на точку на вашей форме сигнала, которая видит только нарастающий фронт один раз за период .
Теперь просто масштабируйте , позиционируйте, запускайте и повторяйте , пока не получите именно то, что вам нужно.
Дважды отмерь, один раз отрежь
При наличии, запуске и масштабировании сигнала пора измерять переходные процессы, периоды и другие свойства формы сигнала.У некоторых осциллографов больше инструментов измерения, чем у других, но все они, по крайней мере, будут иметь деления, по которым вы сможете хотя бы оценить амплитуду и частоту.
Многие осциллографы поддерживают множество инструментов автоматического измерения, они могут даже постоянно отображать самую важную информацию, например частоту. Чтобы получить максимальную отдачу от своей области, вам нужно изучить все функции измерения , которые он поддерживает. Большинство осциллографов автоматически рассчитают частоту, амплитуду, рабочий цикл, среднее напряжение и ряд других волновых характеристик.
Используя инструменты измерения осциллографа, найдите V PP , V Max , частоту, период и рабочий цикл.
Третий измерительный инструмент, который предоставляют многие прицелы, — это курсора . Курсоры — это подвижные маркеры на экране, которые можно размещать на оси времени или напряжения. Курсоры обычно идут парами, поэтому вы можете измерить разницу между одним и другим.
Измерение звона прямоугольной волны курсорами.
После того, как вы измерили искомую величину, вы можете приступить к корректировке вашей схемы и еще раз измерить! Некоторые осциллографы также поддерживают с сохранением , с печатью или с сохранением формы волны, поэтому вы можете вспомнить ее и вспомнить те старые добрые времена, когда вы определяли этот сигнал.
Чтобы узнать больше о возможностях вашего прицела, обратитесь к его руководству пользователя!
.
Как измерить ток с помощью осциллографа
Измерение тока — простая задача — все, что вам нужно сделать, это подключить мультиметр к цепи, которую вы хотите измерить, и измеритель даст вам точное значение для использования. Иногда вы не можете «разомкнуть» цепь, чтобы подключить мультиметр последовательно к тому, что вы хотите измерить. Это тоже решается довольно просто — вам просто нужно измерить напряжение на известном сопротивлении в цепи — тогда ток будет просто напряжением, деленным на сопротивление (из закона Ома).
Все становится немного сложнее, когда вы хотите измерить изменяющиеся сигналы . Это зависит от частоты обновления (количества выборок в секунду) мультиметра, и средний человек может уловить лишь определенное количество изменений на дисплее в секунду. Измерение переменного тока становится немного проще, если ваш мультиметр имеет измерение среднеквадратичного напряжения (среднеквадратичное напряжение — это напряжение сигнала переменного тока, который будет передавать такое же количество энергии, что и источник постоянного тока с таким напряжением).Это строго ограничено периодическими сигналами (прямоугольные волны и т.п. строго исключены, если среднеквадратичное значение не является «истинным», даже в этом случае нет никаких гарантий точности измерения). Большинство мультиметров также имеют фильтр нижних частот, что предотвращает измерение переменного тока выше нескольких сотен герц.
Как использовать осциллограф для измерения тока
Осциллограф заполняет промежуток между человеческим восприятием и устойчивыми значениями мультиметра — он отображает своего рода «график» напряжение-время сигнала, который позволяет лучше визуализировать изменяющиеся сигналы по сравнению с набором изменяющихся чисел на экране. мультиметр.
При наличии подходящего оборудования также возможно измерение сигналов с частотами до нескольких гигагерц. Однако осциллограф — это устройство для измерения напряжения с высоким импедансом — он не может измерять токи как таковые. Использование осциллографа для измерения токов требует преобразования тока в напряжение , и это можно сделать несколькими способами.
1. Использование шунтирующего резистора
Это, пожалуй, самый простой способ измерения тока, и он будет подробно рассмотрен здесь.
Преобразователь тока в напряжение здесь скромный резистор.
Базовые знания говорят нам, что напряжение на резисторе пропорционально току, протекающему через него. Это можно суммировать с помощью закона Ома :
.В = ИК
Где V — напряжение на резисторе, I — ток через резистор, а R — сопротивление резистора, все в соответствующих единицах.
Уловка здесь состоит в том, чтобы использовать сопротивление резистора, которое не влияет на всю измеряемую цепь, поскольку падение напряжения на шунтирующем резисторе приводит к падению меньшего напряжения на цепи, в которую он помещен.Общее практическое правило — использовать резистор, который намного меньше, чем сопротивление / импеданс измеряемой цепи (в десять раз меньше в хорошей отправной точке), чтобы предотвратить влияние шунта на ток в измеряемой цепи. ,
Например, трансформатор и полевой МОП-транзистор в преобразователе постоянного тока в постоянный ток могут иметь полное (постоянное) сопротивление в десятки миллиом, размещение большого (скажем) резистора 1 Ом приведет к падению большей части напряжения на шунте (помните, что для резисторов, включенных последовательно, отношение падения напряжения на резисторах является отношением их сопротивлений) и, следовательно, большая потеря мощности.Резистор просто преобразует ток в напряжение для измерения, поэтому мощность не выполняет никакой полезной работы. В то же время небольшой резистор (1 мОм) будет понижать только небольшое (но измеримое) напряжение на нем, а остальная часть напряжения будет выполнять полезную работу.
Теперь, выбрав номинал резистора, вы можете подключить заземление пробника к заземлению цепи, а наконечник пробника к шунтирующему сопротивлению, как показано на рисунке ниже.
Здесь вы можете использовать несколько хитрых приемов.
Предположим, что ваш шунт имеет сопротивление 100 мОм, тогда ток 1 А приведет к падению напряжения на 100 мВ, что дает нам «чувствительность» 100 мВ на ампер. Это не должно вызвать проблем, если вы будете осторожны, но часто 100 мВ принимают буквально — другими словами, путают со 100 мА.
Эту проблему можно решить, установив для параметра входа значение 100X — пробник уже имеет 10-кратное ослабление, поэтому добавление еще 10X к сигналу возвращает его обратно к 1 В на ампер, то есть вход «умножается» на 10.Большинство осциллографов имеют возможность выбора входного затухания. Однако могут быть прицелы, поддерживающие только 1X и 10X.
Еще одна полезная небольшая функция — это возможность установить вертикальные единицы, отображаемые на экране — среди прочего, V можно изменить на A, W и U.
Ситуация усложняется, когда нельзя разместить низкую сторону шунта. Заземление осциллографа напрямую связано с землей, поэтому, если ваш источник питания также заземлен, подключение зажима заземления пробника к любой случайной точке в цепи приведет к замыканию этой точки на землю.
Этого можно избежать, выполнив так называемое дифференциальное измерение .
Большинство осциллографов имеют математические функции, которые можно использовать для выполнения математических операций с отображаемыми формами сигналов. Учтите, что это никоим образом не меняет фактический сигнал!
Здесь мы будем использовать функцию вычитания, которая отображает разность двух выбранных сигналов.
Поскольку напряжение — это просто разность потенциалов между двумя точками, мы можем подключить по одному щупу к каждой точке и подключить зажимы заземления к заземлению цепи, как показано на рисунке.
Отображая разницу между двумя сигналами, мы можем определить ток.
Тот же трюк с «затуханием», который использовался выше, применим и здесь, просто не забудьте изменить оба канала.
Недостатки использования шунтирующего резистора:
У использования шунтирующего резистора есть несколько недостатков. Первый — это допуск , который может составлять всего 5%. Это то, что приходится учитывать с некоторыми трудностями.
Второй — это температурный коэффициент . Сопротивление резисторов увеличивается с увеличением температуры, что приводит к большему падению напряжения для данного тока. Это особенно плохо для сильноточных шунтирующих резисторов.
2. Использование токового пробника
Готовые токовые пробники (так называемые «токовые клещи»; они зажимают провода, не прерывая цепи) доступны на рынке, но вы не увидите, чтобы многие любители их использовали из-за их непомерно высокой стоимости.
Эти датчики используют один из двух методов .
Первый метод — это использование катушки, намотанной на полукруглый ферритовый сердечник. Ток в проводе, вокруг которого был зажат зонд, создает магнитное поле в феррите. Это, в свою очередь, вызывает напряжение в катушке. Напряжение пропорционально скорости изменения тока. Интегратор «интегрирует» форму волны и выдает выходной сигнал, пропорциональный току. Шкала выходного сигнала обычно составляет от 1 мВ до 1 В на ампер.
Второй метод использует датчик Холла, расположенный между двумя ферритовыми полукругами. Датчик Холла выдает напряжение, пропорциональное току.
3. Быстрый и грязный метод
Этот метод не требует дополнительных компонентов, кроме прицела и зонда.
Этот метод очень похож на токовый пробник. Оберните заземляющий провод датчика вокруг провода, по которому измеряется ток, а затем подсоедините зажим заземления к наконечнику датчика.
Произведенное напряжение снова пропорционально скорости изменения тока, и вам необходимо выполнить некоторые математические вычисления для формы сигнала (а именно интегрирование; у большинства осциллографов это есть в меню «math»), чтобы интерпретировать его как ток.
С точки зрения электричества, закороченный пробник в основном образует проволочную петлю, которая действует как трансформатор тока, как показано на рисунке.
Заключение
Существует несколько методов измерения изменяющихся форм колебаний тока с помощью осциллографа.Самый простой — использовать токовый шунт и измерить напряжение на нем.
,