Как определить конденсатор пусковой или рабочий – Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяется В цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

vchemraznica.ru

отличия от рабочего и подключение электродвигателей

Асинхронный трехфазный двигатель можно подключить без особого ущерба к обычной однофазной электрической сети через конденсаторы. С их помощью обеспечивается запуск и достижение нужных режимов функционирования при такой системе питания. Различают рабочий и пусковой конденсаторы.

Отличия между ними

Они заключаются в их предназначении, ёмкости, способе присоединения, а также в условиях работы. Первое различие заключается в том, что рабочий (первый)

конденсатор служит для сдвига фаз. В результате между обмотками появляется вращающееся магнитное поле, необходимое для приведения в движение мотора, находящегося без механической нагрузки. Такой электродвигатель стоит, например, в точильном станке.

Пусковой (второй) обеспечивает повышение стартового момента мотора, находящегося под механической нагрузкой, благодаря чему он более легко выходит на нужный режим. Ресурсов одного рабочего может не хватить, из-за чего ротор двигателя просто не начнёт вращаться. Применение оправдано вместе со станками, подъёмными механизмами, насосами и подобными тяжёлыми приспособлениями. А также можно использовать с более мощным трехфазным мотором, если рабочего не хватает для его надёжного запуска.

Ёмкость обоих конденсаторов также будет отличаться. Она прямо пропорциональна мощности электродвигателя и обратно — напряжению сети. В зависимости от схемы соединения обмоток вводится поправочный коэффициент. Ёмкость пускового может быть в два раза больше, чем у рабочего.

Способы присоединения

Первый конденсатор в самом распространённом случае подключается в разрыв одной из обмоток асинхронного электродвигателя, которая также часто называется «вспомогательной». Другая присоединяется напрямую к электрической сети, а третья остаётся незадействованной. Тип этой схемы носит название «звезда». Есть также подключение в «треугольник». Оно различается и по способу соединения, и по сложности.

Второй ёмкостный элемент, в отличие от рабочего, присоединяется параллельно последнему через кнопку или центробежный выключатель. В первом случае управление осуществляется человеком, а во втором — самим приводом. Оба этих коммутатора кратковременно замыкают эту цепь на момент запуска электрического мотора, а после того, как он выйдет на рабочий режим — размыкают.

Условия работы

Они различаются для каждого из конденсаторов. Поскольку первый из них постоянно присоединён к обмотке мотора, эта цепь образует собой элементарный колебательный контур. Из-за этого в определённые моменты на её выводах образуется напряжение, превышающее входящее в два с половиной — три раза. Это обстоятельство стоит учитывать при подборе, необходимо ориентироваться на детали, рассчитанные на 500—600 вольт.

Пусковые конденсаторы для электродвигателей — 220 В работают в других, менее жёстких условиях, в отличие от рабочих. Прикладываемое к этому ёмкостному элементу напряжение превышает основное примерно в 1,15 раза. Он присоединяется к цепям время от времени, что также положительно сказывается на условиях его работы, и значительно продлевает срок службы.

Наиболее часто применяются отечественные бумажные или маслонаполненные конденсаторы марок МБГО или МБГЧ. Их преимущество — это стойкость к высоким напряжениям переменного тока. Но есть и недостаток — большой размер. В качестве альтернативного решения допускается использование оксидных конденсаторов. Они подключаются не напрямую, а через диоды, по определённым схемам.

Обычные электролитические конденсаторы, применяемые в различных приборах, и рассчитанные на немалые рабочие напряжения, подойдут для асинхронных двигателей только в роли пусковых. Связано это с тем, что через них проходит большая реактивная мощность ввиду малого сопротивления обмоток. Подключение ёмкостных элементов с нарушениями или отклонениями от схемы приведёт к повреждению или закипанию электролита, способному причинить вред мотору и персоналу.

Таким образом, можно вывести из этого несколько советов, как отличить пусковой конденсатор от рабочего:

  • Первый из них играет вспомогательную роль. Он подключается параллельно рабочему на время запуска мотора — в течение нескольких секунд, чтобы облегчить старт.
  • Второй из них присоединён постоянно, обеспечивая необходимый сдвиг фаз, в результате которого трехфазный двигатель может работать от однофазной сети.

Если перепутать конденсаторы, то возникнут серьёзные проблемы. Ёмкость рабочего также не должна быть слишком большой, иначе мотор будет греться, а рост мощности и крутящего момента от этого повысится незначительно.

220v.guru

Проверка и замена пускового конденсатора

 

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

 

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

 

Основные параметры конденсаторов

 

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

 

Проверка пускового и рабочего конденсаторов

 

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

 

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

 

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

 

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

 

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

   

 

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

 

Замена и подбор пускового/рабочего конденсатора

 

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ12+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

 

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

 

masterxoloda.ru

Как отличить рабочий конденсатор от пускового

Двигатели, которые называют однофазными, имеют на статоре, как правило, две обмотки. Одна из них называется главной или рабочей, другая — вспомогательной или пусковой. Необходимость иметь две пространственно сдвинутые обмотки, пи-таемые сдвинутыми на 90 электрических градусов токами для получения пускового момента. Сдвиг токов во времени обеспечивают включением во вспомогательную фазу фазосдвигающего элемента — резистора или электрического конденсатора. В двигателях с пусковым резистором часто пусковая фаза выполняется с повышенным сопротивлением магнитное поле эллиптическое; в двигателях с пусковым электрическим конденсатором поле ближе к круговому.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: КАК ПРОВЕРИТЬ КОНДЕНСАТОР МУЛЬТИМЕТРОМ

Варианты Применения


Узнать цену, наличие на складе. Приблизительный расчет для данного типа соединения производится по следующей формуле:. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется. Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением.

Речь далее пойдет только об асинхронниках. Следствием его реальной двухфазности является геометрическое размещение обмоток под углом 90 градусов одна к другой даже если двигатель многополюсный. Посему, для создания кругового поля необходимо, чтобы токи в этих обмотках также были сдвинуты на 90 град.

Точно то же самое мы можем получить, формируя напряжения, сдвинутые на 90 град. Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. В конденсато р ном двигателе, естественно, это достигается за счет включения конденсатора, как на Рис.

Выбирается он, так, чтобы вектор потокосцепления описывал кривую, как можно более близкую к окружности. Существуют схемы, использующие два конденсатора: пусковой и рабочий. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. При пуске конденсаторного асинхронного двигателя оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске.

Применяется в электроприводах малой мощности; при мощностях свыше 1 квт используется редко вследствие значительной стоимости и размеров конденсаторов. Напряжение, В Необходимая емкость, мкФ. Силовые электронные компоненты Преобразователи частоты vlt Устройство плавного пуска Промышленная Автоматика. Косинусные конденсаторы Силовые Конденсаторы Пленочные Конденсаторы Конденсаторы для электродвигателей.

Мощные резисторные сборки. Приводы danfoss FC Функции и подключение Системы вентиляции. Силовые электронные компоненты Конденсаторы Конденсаторы для электродвигателей.

Рабочее напряжение конденсаторов должно быть в 1,5 раза выше напряжения сети. Разработка сайта — компания Дельта Софт. Конденсаторы MKP MOTKO производства Electronicon Kondensatoren для асинхронных электродвигателей предназначены для длительной работы в цепях переменного тока в отличие от чисто пусковых конденсаторов, которые рассчитаны на кратковременную работу , поскольку изготовлены на полипропиленовой пленке.

Позволяет получить магниное поле, необходимое для повышения пускового момента электродвигателя.


Конденсаторы

Узнать цену, наличие на складе. Приблизительный расчет для данного типа соединения производится по следующей формуле:. В случае если пуск двигателя происходит без нагрузки, пусковая емкость не требуется. Для получения пускового момента, близкого к номинальному, достаточно иметь пусковую емкость, определяемую соотношением. Речь далее пойдет только об асинхронниках. Следствием его реальной двухфазности является геометрическое размещение обмоток под углом 90 градусов одна к другой даже если двигатель многополюсный.

Перед изучением дальнейшего материала, напомним, что рабочие конденсаторы, в отличие от пусковых, должны находиться под постоянным.

Электрический конденсатор. Пусковой и рабочий . Основные параметры конденсаторов

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети В. Ёмкость конденсатора -характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой нано, микро и т. Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры. Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:. Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

Пусковой конденсатор принцип работы

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения например, трехфазный двигатель к однофазной сети? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию сверлильному или наждачному станку и пр. В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать. Конденсатор состоит из двух пластин, расположенных друг напротив друга.

Хорошо, если можно подключить двигатель к необходимому типу напряжения. А, если такой возможности нет?

Конденсаторы пусковые CBB65

При подключении асинхронного трехфазного электродвигателя на В в однофазную сеть на В необходимо рассчитать емкость фазосдвигающего конденсатора, точнее двух конденсаторов — рабочего и пускового конденсатора. Онлайн калькулятор для расчета емкости конденсатора для трехфазного двигателя в конце статьи. На картинке внизу статьи вы увидите обе эти схемы подключения. Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Конденсатор используется неполярный, на напряжение не менее В.

Как работает конденсаторный электродвигатель и для чего он нужен

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку? Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность.

Пусковые, электролитические, электролит вскипает, конденсатор взрывается, «пусковой должен выдержать напряжение необходимое.

Конденсатор для электродвигателя: советы по подбору и правила подключения пускового конденсатора

В современном оборудовании используется несколько разные виды электродвигателей. Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по своим параметрам. Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети. Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

ВИДЕО ПО ТЕМЕ: Пусковые и рабочие конденсаторы электромоторов. Различия, подключение, расчет.

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит? Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные. В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением.

Наибольшая нагрузка на электродвигатель действует на момент его старта.

Конденсатор пусковой и рабочий отличия

Скупой платит дважды, решив купить конденсаторы сомнительного происхождения, поскольку впоследствии можно лишиться не только их, но и потерять дорогое оборудование, работу которого эти рабочие конденсаторы обеспечивают. Большое разнообразие видов конденсаторов, представленных на рынке электротехнической продукции, приводит к определенным трудностям при выборе того или иного изделия. Причем значение надежности являются даже более важными, чем цена. Для решения промышленных задач и бытовых целей наибольшее распространение получили асинхронные электродвигатели переменного тока. Это объясняется их небольшой ценой, неплохими тяговыми характеристиками и легкостью подключения к цепи электропитания. Конденсаторы обеспечивают фазовое смещение тока обмоток, необходимое для создания вращательного момента ротора двигателя.

У меня мотор 3квт,оборотов. Какой емкости надо пусковой конденсатор и рабочий для нормальной работы двигателя. Двигатель хочу использовать на пиле- циркулярке для распилки дров разного диаметра. Спасибо, с уважением Олег Викторович.


all-audio.pro

Определение емкостей фазосдвигающих конденсаторов. Рабочий и пусковой конденсаторы

Самый простой способ включения трехфазного электродвигателя в однофазную сеть, это с помощью одного фазосдвигающего конденсатора. В качестве такого конденсатора нужно использовать только неполярные конденсаторы, а не полевые (электролитические).

Фазосдвигающий конденсатор.

При подключении трехфазного электродвигателя к трехфазной сети пуск обеспечивается за счет переменного магнитного поля. А при подключении двигателя к однофазной сети достаточный сдвиг магнитного поля не создается, поэтому нужно использовать фазосдвигающий конденсатор.

Емкость фазосдвигающего конденсатора нужно рассчитать так:

  • для соединения «треугольником»: Сф=4800•I/U;
  • для соединения «звездой»: Сф=2800•I/U.

Об этих типах соединения можно подробнее ознакомиться тут: 

В этих формулах: Сф – емкость фазосдвигающего конденсатора, мкФ; I– номинальный ток, А; U– напряжение сети, В.

Номинальный ток, тоже можно высчитать, так: I=P/(1,73•U•n•cosф).

В этой формуле такие сокращения: P – мощность электродвигателя, обязательно в кВт; cosф – коэффициент мощности; n – КПД двигателя.

Коэффициент мощности или смещения тока к напряжению, а также КПД электродвигателя указывается в паспорте или в табличке (шильдике) на двигателе. Значения эти двух показателей часто бывают одинаковыми и чаще всего равны 0,8-0,9.

Грубо можно определить емкость фазосдвигающего конденсатора так: Сф=70•P. Получается так, что на каждые 100 Вт нужно по 7мкФ емкости конденсатора, но это не точно.

В конечном итоге правильность определения емкости конденсатора покажет работа электродвигателя. Если двигатель не будет запускаться, значит, емкости мало. В случае, когда двигатель при работе сильно нагревается, значит, емкости много.

Рабочий конденсатор.

Найденной по предложенным формулам емкости фазосдвигающего конденсатора достаточно только для пуска трехфазного электродвигателя, не нагруженного. То есть, когда на валу двигателя нет никаких механических передач.

Рассчитанный конденсатор будет обеспечивать работу электродвигателя и когда он выйдет на рабочие обороты, поэтому такой конденсатор еще называется рабочим.

Пусковой конденсатор.

Ранее было сказано, что ненагруженный электродвигатель, то есть небольшой вентилятор, шлифовальный станок можно запустить от одного фазосдвигающего конденсатора. А вот, запустить сверлильный станок, циркулярную пилу, водяной насос уже не получиться запустить от одного конденсатора.

Чтобы запустить нагруженный электродвигатель нужно к имеющемуся фазосдвигающему конденсатору кратковременно добавить емкости. А конкретно, нужно уже к подсоединенному рабочему конденсатору подключить параллельно еще один фазосдвигающий конденсатор. Но только на короткое время на 2 – 3 секунды. Потому что когда электродвигатель наберет высокие обороты, через обмотку, к торой подключены два фазосдвигающих конденсатора, будет протекать завышенный ток. Большой ток нагреет обмотку электродвигателя, и разрушит ее изоляцию.

Подключенный дополнительно и параллельно конденсатор к уже имеющемуся фазосдвигающему (рабочему) конденсатору называется пусковым.

Для слабонагруженных электродвигателей вентиляторов, циркулярных пил, сверлильных станков емкость пускового конденсатора выбирается равной емкости рабочего конденсатора.

Для нагруженных двигателей водяных насосов, циркулярных пил нужно выбирать емкость пускового конденсатора в два раза больше, чем у рабочего.

Очень удобно, для точного подбора нужных емкостей фазосдвигающих конденсаторов (рабочего и пускового) собрать батарею параллельно соединенных конденсаторов. Конденсаторы соединенные вместе нужно взять небольшими емкостями 2, 4, 10, 15 мкФ.

При выборе по напряжению любого конденсатора нужно пользоваться универсальным правилом. Напряжение, на которое конденсатор рассчитан должно быть в 1,5 раз выше того напряжения, куда он будет подключен.

volt-index.ru

Как отличить рабочий конденсатор от пускового — микроконденсаторы маркировка

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Сеть переменного тока может служить источником питания в случае с использованием рассматриваемого типа конденсатора. Практически все используемые варианты исполнения неполярные, они имеют сравнительно больше для оксидных конденсаторов рабочее напряжение.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмотка и конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение однофазного электродвигателя.

Стоит отметить, что рабочий конденсатор присутствует в цепи практически постоянно. Поэтому стоит помнить о том, что они должны быть подключены параллельно.

Выбор пускового конденсатора для электродвигателя

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Кроме этого, стоит учитывать, что на рынке можно встретить модели от иностранных и отечественных производителей. Как правило, зарубежные имеют большую стоимость, но и надежнее. Российские варианты исполнения также часто используются при создании сети подключения электродвигателя.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF. Здесь на помощь приходят габариты конденсатора и здравый смысл.

Пример обозначения

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Пример обозначения напряжения

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Маркировка SMD

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

>Видео

Конденсаторы.

Электрические конденсаторы служат для накопления электроэнергии. Простейший конденсатор состоит из двух металлических пластин — обкладок и диэлектрика находящегося между ними. Если к конденсатору подключить источник питания, то на обкладках возникнут разноименные заряды и появится электрическое поле притягивающее их на встречу, друг к другу. Эти заряды остаются после отключения источника питания, энергия сохраняется в электрическом поле между обкладками.

Емкость конденсатора зависит от площади обкладок, расстояния между ними, а также величины электрической проницаемости диэлектрика, расположенного между ними — свойства присущего любому диэлектрику. Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

C= e0*S/d

e0 — это величина электрической проницаемости диэлектрика, расположенного между обкладками.
S — площадь одной из обкладок(в метрах).
d — расстояние между обкладками(в метрах).
C — величина емкости в фарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика — М. Фарадея.
1 Фарада — это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:
1 Микрофарада — одна миллионная часть фарады.10-6
1 нанофарада — одна миллиардная часть фарады. 10-9
1 пикофарада -10 -12 фарады.

На электрической схеме конденсаторы обозначаются в виде двух стилизованных обкладок.

Таким образом обозначаются подстроечные конденсаторы и конденсаторы переменной емкости.

Конструкция этих приборов позволяет им плавно изменять емкость, путем механического изменения расстояния между обкладками.
Отличие их между собой в том, что переменные конденсаторы предназначены для многократного изменения емкости в ходе работы устройств а подстроечные — для однократной настройки, в ходе первоначальной наладки.

Конденсаторы применяются для сглаживания пульсаций, как средство межкаскадной связи в усилителях переменных сигналов, фильтрации помех, настройки колебательных контуров, в качестве аварийных источников питания и. т. д. Электрические характеристики конденсаторов зависят от их конструкции и свойств применяемых материалов.

Выбирая конденсаторы для разработки конкретного устройства необходимо учитывать следующие параметры:
а) Требуемое значение емкости конденсатора (мкФ, нФ, пФ).
б) Рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров).
в) Требуемую точность (возможный разброс значений емкости конденсатора).
г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),
д) стабильность конденсатора,
е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1.
Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки.

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 100 нФ до 68000 мкФ 1 мкФ до 16 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 10 и ±20 ±10 и ±50 ±20
Рабочее напряжение конденсаторов, В 50 — 250 6,3 — 400 250 — 600
Стабильность конденсатора Достаточная Плохая Достаточная
Диапазон изменения температуры окружающей среды, оС От -85 до +85 От -40 до +85 От -25 до +85

В керамических конденсаторах диэлектриком является высококачественная керамика: ультрафарфор,тиконд,ультрастеатит и др. Обкладкой служит слой серебра, нанесенный на поверхность. Керамические конденсаторы применяются в разделительных цепях усилителей высокой частоты.

В электролитических полярных конденсаторах диэлектриком служит слой оксида, нанесенный на металлическую фольгу. Другая обкладка образуется из пропитанной электролитом бумажной ленты.

В твердотельных оксидных конденсаторах жидкий диэлектрик заменен специальным токопроводящим полимером. Это позволяет увеличить срок службы(и надежность). Недостатками твердотельных оксидных конденсаторов являются более высокая цена и ограничения по напряжению(до 35 в).

Оксидные электролитические и твердотельные конденсаторы отличаются большой емкостью, при относительно малых размерах. Эта их особенность определяется тем, что толщина оксида — диэлектрика очень мала.

При включении оксидных конденсаторов в цепь, необходимо соблюдать полярность. В случае нарушения полярности, электролитические конденсаторы взрываются, твердотельные — просто выходят из строя. Что бы полностью избежать возможности взрыва(у электролитических конденсаторов), некоторые модели снабжаются предохранительными клапанами(отсутствуют у твердотельных). Область применения оксидных (электролитических и твердотельных) конденсаторов — разделительные цепи усилителей звуковой частоты, сглаживающие фильтры источников питания постоянного тока.

Конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

kuhnileona.ru

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.
Для запуска и работы асинхронных двигателей в однофазной цепи переменного тока можно купить конденсатор:

Пусковые.
Рабочие.
Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.
Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.
При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

Треугольник.
Звезда.
Для каждого из этих способов соединения свой расчет.
В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

vystroim.com

0 comments on “Как определить конденсатор пусковой или рабочий – Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *