Как из постоянного тока сделать переменный? Какой ток опаснее
Использование в повседневной жизни различных электрических приборов и устройств, работающих благодаря электроэнергии, обязывает нас иметь минимальные познания в области электротехники. Это знания, которые сохраняют нам жизнь. Ответы на вопросы о том, как из постоянного тока сделать переменный, какое напряжение должно быть в квартире и какой ток опасен, современный человек должен знать, чтобы избежать поражения и гибели от него.
Способы получения электричества
Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.
Существует несколько способов получения электричества:
- из тепловой энергии;
- из энергии воды;
- из атомной (ядерной) энергии;
- из ветровой энергии;
- из солнечной энергии и др.
Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.
Электричество из энергии ветра
Электрический ток — это направленное движение заряженных частиц. Самый простой способ его получения — энергия природных сил.
В данном примере от энергии ветра. Природный феномен дующего с различной силой ветра люди научились использовать давно. Укрощает ветер простой ветряк, оборудованный приводом и соединённый с генератором. Генератор и вырабатывает электрическую энергию.
Излишки тока при постоянном использовании ветряка можно накапливать в аккумуляторных батареях. Выработанный постоянный экологически чистый ток в быту и производстве не применяется.
Полученный и преобразованный в переменный ток, он идет для бытового использования. Накопленные излишки электричества хранятся в аккумуляторных батареях. При отсутствии ветра запасы электричества, хранящиеся в аккумуляторах, преобразуются и поступают на нужды человека.
Электроэнергия из воды
К большому сожалению, этот вид природной энергии, дающий возможность получать электричество, не везде имеется. Рассмотрим способ получения электричества там, где воды много.
Простейшая ГЭС, сделанная из дерева по принципу мельницы, размер которой порядка 1,5 метров, способна обеспечить электричеством, используемым и на отопление, частное подсобное хозяйство. Такую бесплотинную ГЭС сделал русский изобретатель, уроженец Алтая — Николай Ленев. Он создал ГЭС, перенести которую могут два взрослых мужчины. Все дальнейшие действия аналогичны получению электричества от ветряка.
Вырабатывают электричество и крупные электростанции и гидростанции. Для промышленного получения электричества применяют огромные котлы, дающие пар. Температура пара достигает 800 градусов, а давление в трубопроводе поднимается до 200 атмосфер. Этот перегретый пар с высокой температурой и огромным давлением поступает на турбину, которая начинает вращаться и вырабатывать ток.
То же самое происходит и на гидроэлектростанциях. Только здесь вращение происходит за счёт больших скорости и объема воды, падающей с огромной высоты.
Обозначение тока и применение его в быту
Постоянный ток обозначается DC. На английском языке пишется как Direct Current. Он в процессе работы со временем не меняет своих свойств и направления. Частота постоянного тока равна нулю. Обозначают его на чертежах и оборудовании прямой короткой горизонтальной черточкой или двумя параллельными черточками, одна из которых пунктирная.
Используется постоянный ток в привычных нам аккумуляторах и батарейках, используемых в огромном числе различного типа устройств, таких как:
- счетные машинки;
- детские игрушки;
- слуховые аппараты;
- прочие механизмы.
Все ежедневно пользуются мобильным телефоном. Зарядка его происходит через блок питания, компактный преобразователь DC/AC, включаемый в бытовую розетку.
Электрические приборы потребляют переменный однофазный ток. Электроприборы заработают только с подключением трансформатора и выпрямителя тока. Многие производители устанавливают преобразователь DC/AC непосредственно в сам агрегат. Это намного упрощает эксплуатацию электрооборудования.
Как из постоянного тока сделать переменный?
Выше говорилось, что все аккумуляторы, батарейки для фонариков, пультов телевизоров имеют постоянный ток. Чтобы преобразовать ток, существует современное устройство под названием инвертор, он с легкостью из постоянного тока сделает переменный. Рассмотрим, как это применимо в повседневности.
Бывает, что во время нахождения в автомашине человеку необходимо срочно распечатать на ксероксе документ. Ксерокс имеется, машина работает и, включив в прикуриватель переходник на инвертор, он может подключить к нему ксерокс и распечатать документы. Схема преобразователя достаточно сложна, особенно для людей, которые имеют отдаленное понятие о работе электричества. Поэтому в целях безопасности лучше не пытаться самостоятельно соорудить инвертор.
Переменный ток и его свойства
Протекая, переменный ток в течение одной секунды меняет направление и величину 50 раз. Изменение движения тока — это его частота. Обозначается частота в герцах.
У нас частота тока 50 герц. Во многих странах, например США, частота равна 60 герц. Также бывает трёхфазный и однофазный переменный ток.
Для бытовых нужд приходит электричество, равное 220 вольтам. Это действующее значение переменного тока. Но амплитуда тока максимального значения будет больше на корень из двух. Что в итоге даст 311 вольт. То есть фактическое напряжение бытовой сети составляет 311 вольт. Для изменения постоянного тока на переменный применяются трансформаторы, в которых используются различные схемы преобразователей.
Передача тока по высоковольтным линиям
Все электрические наружные сети несут по своим проводам переменный ток различного напряжения. Оно может колебаться от 330000 вольт до 380 вольт. Передача осуществляется только переменным током. Данный способ транспортировки — самый простой и дешёвый. Как из переменного тока сделать постоянный, давно известно. Поставив трансформатор в нужном месте, получим необходимое напряжение и силу тока.
Схемы преобразователей
Самая простая схема решения вопроса о том, как из постоянного тока сделать переменный 220 В, не существует. Это может сделать диодный мост. Схема преобразователя DC/AC имеет в своём составе четыре мощных диода. Мост, собранный из них, создает движение тока в одном направлении. Мостик срезает верхние границы переменных синусоид. Диоды собираются последовательно.
Вторая схема преобразователя переменного тока — это параллельное подключение на выход с моста, собранного из диодов, конденсатора или фильтра, который сгладит и исправит провалы между пиками синусоид.
Отлично преобразует постоянный ток в переменный инвертор. Схема его сложна. Используемые детали не из дешевого порядка. Потому и цена на инвертор немаленькая.
Какой электрический ток опаснее – постоянный или переменный?
В повседневной жизни мы постоянно сталкиваемся на работе и в быту с электроприборами, подключенными в розетки. Ток, бегущий от электрического щита до розетки, однофазный переменный. Происходят случаи поражения электрическим током. Меры безопасности и знания о поражении током необходимы.
В чем принципиальная разница между попаданием под напряжение переменным током и постоянным? Имеется статистика, что переменный DC однофазный ток в пять раз опаснее постоянного AC тока. Поражение током, вне зависимости от его типа, само по себе отрицательный факт.
Последствия от поражения током
Небрежность в обращении с электроприборами может, мягко говоря, негативно сказаться на здоровье человека. Поэтому не стоит экспериментировать с электричеством, если на то нет специальных навыков.
Действие тока на человека зависит от нескольких факторов:
- сопротивления тела самого потерпевшего;
- напряжения, под которое попал человек.
- от силы тока на момент контакта человека с электричеством.
С учетом всего перечисленного можно сказать, что действие переменного тока намного опаснее, чем постоянного. Имеются данные экспериментов, подтверждающие факт, что для получения равного результата при поражении сила постоянного тока должна быть в четыре — пять раз выше, чем переменного.
Сама природа переменного тока отрицательно сказывается на работе сердца. При поражении током происходит непроизвольное сокращение сердечных желудочков. Это может привести к его остановке. Особенно опасно соприкосновение с оголенными жилами людям, имеющим сердечный стимулятор.
У постоянного тока частота отсутствует. Но высокие напряжение и сила тока могут привести также к летальному исходу. Выйти из под контакта с постоянным электрическим током проще, чем из-под контакта с переменным.
Этот небольшой обзор природы электрического тока, его преобразования должен быть полезен людям, далеким от электричества. Минимальные познания в области происхождения и работы электроэнергии помогут понять суть работы обычных бытовых приборов, которые так необходимы для комфортной и спокойной жизни.
fb.ru
Преобразователи постоянного напряжения в переменное
В. Д. Панченко, г.Киев
Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть. Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).
На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4. Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.
Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8. От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго – через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока (“супербета”), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.
В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.
Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:
Т(ч) = (0,7WU)/P, где W – емкость аккумулятора, Ач; U – номинальное напряжение аккумулятора, В; Р – мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9. Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы
составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.
Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.
В таблице: S – площадь сечения магнитопровода; W1, W2 – количество витков первичной и вторичной обмоток; D1, D2 – диаметры проводов первичной и вторичной обмоток.
Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.
Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее. Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора. При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность – 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.
Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках. Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит. Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот
конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ. При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.
Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает “пищать”. Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.
После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В. Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.
nauchebe.net
Как сделать из переменного тока постоянный 🚩 переменный ток в постоянный 🚩 Естественные науки
Электрический ток представляет собой направленный поток электронов от одного полюса источника тока к другому. Если это направление постоянно и не меняется во времени, говорят о постоянном токе. Один вывод источника тока при этом считается плюсовым, второй – минусовым. Принято считать, что ток течет от плюса к минусу.
Классическим примером источника постоянного тока является обычная пальчиковая батарейка. Такие батарейки широко применяются в качестве источника питания в малогабаритной электронной аппаратуре – например, в пультах дистанционного управления, в фотоаппаратах, радиоприемниках и т.д. и т.п.
Переменный ток, в свою очередь, характеризуется тем, что периодически меняет свое направление. Например, в России принят стандарт, согласно которому напряжение в электрической сети равно 220 В, а частота тока составляет 50 Гц. Именно второй параметр и характеризует, с какой частотой изменяется направление электрического тока. Если частота тока равна 50 Гц, то он меняет свое направление 50 раз в секунду.
Значит ли это, что в обычной электрической розетке, имеющей два контакта, периодически меняются плюс с минусом? То есть сначала на одном контакте плюс, на другом минус, потом наоборот и т.д. и т.п.? На самом деле все обстоит немного иначе. Электрические розетки в электросети имеют два вывода: фазовый и заземляющий. Обычно их называют «фазой» и «землей». Заземляющий вывод безопасен, напряжения на нем нет. На фазовом же выводе с частотой 50 Гц в секунду меняются плюс и минус. Если коснуться «земли», ничего не произойдет. Фазового же провода лучше не касаться, так как он всегда находится под напряжением 220 В.
Одни приборы питаются от постоянного тока, другие от переменного. Зачем вообще потребовалось такое разделение? На самом деле большинство электронных приборов используют именно постоянное напряжение, даже если включаются в сеть переменного тока. В этом случае переменный ток преобразуется в постоянный в выпрямителе, в простейшем случае состоящем из диода, срезающего одну полуволну, и конденсатора для сглаживания пульсаций.
Переменный же ток используется только потому, что его очень удобно передавать на большие расстояния, потери в этом случае сводятся к минимуму. Кроме того, он легко поддается трансформации – то есть изменению напряжения. Постоянный ток трансформировать нельзя. Чем выше напряжение, тем ниже потери при передаче переменного тока, поэтому на магистральных линиях напряжение достигает нескольких десятков, а то и сотен тысяч вольт. Для подачи в населенные пункты высокое напряжение снижается на подстанциях, в результате в дома поступает уже достаточно низкое напряжение 220 В.
В разных странах приняты неодинаковые стандарты питающего напряжения. Так, если в европейских странах это 220 В, то в США – 110 В. Интересен и тот факт, что знаменитый изобретатель Томас Эдисон не смог в свое время оценить все преимущества переменного тока и отстаивал необходимость использования в электрических сетях именно постоянного тока. Лишь позже он был вынужден признать, что ошибся.
www.kakprosto.ru
Преобразование переменного тока в постоянный
Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.
Постоянный ток и его источники
У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:
Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T), а обратная ему величина – частотой (f). Буквенное обозначение переменного тока – АС, сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3).
Графики напряжений трехфазного переменного токаНапряжение между фазами называется линейным, а между фазой и нулем – фазным, оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения. Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Характеристики трехфазного токаДостоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Преобразование переменного тока в постоянный и наоборот
Процесс получения из переменного тока постоянного называется выпрямлением, а устройства – выпрямителями. Основная деталь выпрямителя – полупроводниковый диод, проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.
Затем пульсации устраняют при помощи фильтров, простейшим из них является конденсатор. Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.
Схема простейшего выпрямителяГрафики работы выпрямителяДля преобразования в переменный ток используются инверторы. Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.
Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.
Оцените качество статьи:
electric-tolk.ru
Как получить постоянное напряжение из переменного
Осциллограмма постоянного напряжения
Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.
Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.
Зависимость пульсаций от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Смотрим осциллограмму:
Как вы видите, пульсации все равно остались.
Ну что же, возьмем конденсатор емкостью побольше.
Получаем 0,226 микрофарад.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Как подобрать радиоэлементы для выпрямителя
Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.
где
UД – действующее напряжение, В
Umax – максимальное напряжение, В
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запомнилось:
Читаем в обязательном порядке продолжение этой статьи.
www.ruselectronic.com
Преобразование переменного тока в постоянный ток (схема)
Потребители работающие на постоянном токе не могут быть подключены из розетки без выпрямляющего устройства , без него вы просто спалите электрический аппарат постоянного тока , в лучше случаи предохранитель в нём при наличии.
Выпрямить переменный ток можно с помощью одного диода, но это не желательно. Давайте посмотрим на график где будет видно какой ток получится после прохождение тока через диод.
прохождение тока через диод
напряжение прохождения тока через диод
После выпрямления если так можно сказать видя на графике что на выходе не совсем переменный ток , на графике видно что диод просто срезал отрицательную половину. По этому лучше всего выпрямлять переменный ток с помощью диодного моста.
Схема соединения диодного моста
схема диодного моста
При соединении диодов смотрите на схему , да бы не попутать выводы ниже на картинке фотография диода и его обозначения.
обозначение диодного моста
Как видно из картинки производители помечают на корпусе диода вывод который называется «Катод» метки бывают в виде полоски либо точки.
График на выходе после диодного моста
График на выходе после диодного моста
После диодного моста на выходе получилось постоянное пульсирующее напряжение с частотой 100 Гц , что превышает частоту нашей сети в два раза.
Что бы сгладить постоянное пульсирующее напряжение на выходе с диодного моста добавляют конденсатор либо сглаживающий фильтр , подключается он параллельно нагрузке.
Схема подключения и график с подключение конденсатора
Схема подключения и график с подключение конденсатора
На графике синем цветом показан как изменяется пульсация (изменение напряжения) после того когда мы подключили фильтр в виде конденсатора.
Похожие статьи:
elektrox.ru
Преобразовать постоянный ток в переменный схема. Преобразователи постоянного напряжения в переменное.
Преобразователь переменного тока в постоянный может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог. Предложенный преобразователь содержит трехфазный трансформатор (1) с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую — по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей (2…13). Числа витков фазных обмоток, составляющих обратные звезды (или звезды), и числа витков фазных обмоток, составляющих звезды (или обратные звезды), находятся в соотношении. Каждый из шести вентилей (3, 5, 7, 9, 11, 13) соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей (3, 7, 11, 9, 13, 5) подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей (2, 6, 10) и (8, 12, 4) образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды, соответственно, с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно (14) и (15), к которым присоединена нагрузка (16). Предложенный преобразователь переменного тока в постоянный обеспечивает технический результат — более высокое качество преобразования. 4 ил.
Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог.
Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий 12 вентилей, образующих две мостовые схемы и трансформатор, вторичная обмотка которого, поделенная в каждой фазе на три секции, соединена в двухсторонний встречно-встречный неравносторонний зигзаг — трехлучевую звезду (А.с. SU №1282291, МПК Н02М 7/162. Мостовой преобразователь электроэнергии / A.M.Репин. Бюл. №1, 1987).
Данный преобразователь имеет невысокие энергетические показатели, что обусловлено параметрической несимметрией цепей протекания тока нагрузки при формировании смежных пульсаций. Наличие частей обмоток с тремя численными значениями витков этих частей усложняет технологию равномерного размещения частей на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии результирующих напряжений вторичных обмоток, что снижает качество преобразования электроэнергии.
Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий трехфазный трансформатор с вторичной обмоткой, части которой образуют правильный замкнутый шестиугольник, к трем, чередующимся через одну, вершинам которого подключены дополнительные обмотки встречно с соответствующей им парой смежных по фазе основных частей и шестиячейковый вентильный мост (А.с. SU №1347133, МПК Н02М 7/08. Мостовой источник постоянного напряжения (его варианты) / A.M.Репин. Бюл. №39, 1987).
Данный преобразователь также подвержен снижению энергетических показателей, обусловленному параметрической несимметрией цепей тока при формирования смежных пульсаций. Кроме того, большое различие количества витков частей обмоток усложняет технологию равномерного размещения их на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии напряжений обмоток, снижающей качество преобразования параметров электроэнергии.
Наиболее близким к изобретению, принятым за прототип, является преобразователь переменного тока в постоянный (Репин A.M. Новые базовые технические решения и классификация вентильных преобразователей энергии // Вопросы радиоэлектроники. Серия ОВР, 1985. — Вып.6. — С.71, рис.10, з), обеспечивающий двенадцатипульсное выпрямление и содержащий двенадцать вентилей, соединенных в два трехфазных вентильных моста, образующих шестифазный вентильный мост из шести вентильных ячеек с двумя последовательно согласно соединенными вентилями в каждой, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, с отношением чисел витков фазных обмоток обратных друг другу звезд, равным , входы переменного тока шестифазного вентильного моста, образованные точками соединения вентилей в ячейках, соединены с фазными выводами шестифазной звезды, а выводы постоянного тока шестифазного моста, каждый из которых образован общими точками соединения одноименных электродов двух вентильных звезд (анодных звезд для одного вывода и катодных — для другого) образуют выходные выводы устройства.
Недостатком данного преобразователя является относительно невысокое качество преобразования, снижение которого обусловлено параметрической несимметрией цепей протекания тока нагрузки в смежных циклах образования пульсаций выпрямленного напряжения, приводящей к появлению неканонических гармоник в спектре выпрямленного напряжения.
Задача изобретения — создание преобразователя переменного тока в постоянный, имеющего более высокое качество преобразования.
Указанная задача достигается тем, что в преобразователе переменного тока в постоянный, содержащем двенадцать вентилей, образующих две вентильные группы, каждая из которых содержит по три вентильных ячейки из двух последовательно согласно соединенных вентилей, а одноименные свободные электроды половины вентилей первой вентильной группы и свободные электроды другого наименования, принадлежащие половине вентилей второй группы, соединены, образуя при этом анодную и катодную вентильные звезды, общие точки соединения электродов вентилей в которых образуют выходные выводы устройства, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, а отношение чисел витков фазных обмоток обратных друг другу звезд равно , причем каждый вывод фазной обмотки звезды (обратной звезды), имеющей большее число витков, присоединен к незадействованной точке соединения вентилей ячейки, принадлежащей первой вентильной группе, трансформатор преобразователя снабжен дополнительной аналогичной вторичной обмоткой, каждый вывод фазной обмотки звезды (обратной звезды) которой, имеющей большее число витков, соединен с незадействованной точкой соединения вентилей ячейки, принадлежащей второй вентильной группе, причем каждый свободный вывод фазной обмотки, принадлежащей одной шестифазной звезде, соединен со свободным электродом одного из вентилей вентильных групп, второй электрод которого соединен с противофазным данному выводу выводом фазной обмотки, принадлежащей другой шестифазной звезде.
На Фиг.1 приведена принципиальная электрическая схема предлагаемого преобразователя; на фиг.2 — векторные диаграммы напряжений, представленные в виде амплитудно-фазовых портретов напряжений фазных обмоток, и развернутые векторные диаграммы, поясняющие принцип формирования векторов результирующих напряжений; на фиг.3 — схема работы вторичных обмоток и вентилей преобразователя; на фиг.4 — временные диаграммы выпрямленного напряжения, обратных напряжений и токов вентилей.
Преобразователь (фиг.1) содержит трехфазный трансформатор 1 с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую — по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей 2…13. Числа витков фазных обмоток, составляющих обратные звезды, и числа витков фазных обмоток, составляющих звезды, находятся в соотношении . Каждый из шести вентилей 3, 5, 7, 9, 11, 13 соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей 3, 7, 11, 9, 13, 5 подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей 2, 6, 10 и 8, 12, 4 образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды соответственно с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно 14 и 15, к которым присоединена нагрузка 16.
Принцип работы преобразователя (фиг.1) иллюстрируется векторными диаграммами напряжений, представленными в виде амплитудно-фазовых портретов напряжений фазных обмоток (фиг.2, а)), составляющих две несиммет
dpanorama.ru