Как узнать фазу и ноль: Как найти фазу: простые и действенные способы

Как найти фазу и ноль в розетке и проводах

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки.

Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерах
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением
    .

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. Если коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

Как определить фазу и ноль индикатором-пробником.

Цвета фазного провода

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое.

Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.


Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т.е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

Как определить ноль и фазу? Самые быстрые способы

На чтение 5 мин Просмотров 1.1к.

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства.

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

Понадобиться могут:

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Устройство бытовых электрических сетей

Прежде чем приступать к такой ответственной операции как определение фазного провода необходимо очень хорошо понимать устройство бытовой электрической сети.

В отличие от сетей, по которым осуществляется передача электрической энергии от электростанций к трансформатору, напряжение в жилом доме или квартире составляет всего 220 вольт, но даже это напряжение может быть опасно для жизни и здоровья, а также являться причиной пожара, вследствие короткого замыкания.

Поэтому работать с электричеством можно только при условии соблюдения правил техники безопасности.

Бытовая электросеть, как правило, состоит из трёхжильного провода:

Разберём теперь более подробно каждый.

Что такое «фаза»?

«Фаза» или фазный провод это проводник, по которому в дом поступает электричество от поставщика электроэнергии. Отличается он от других жил кабеля наличием напряжения 220 в..
Но чтобы эксплуатировать электрический прибор или технику одного только фазного провода недостаточно.

Подобно тому, как и «пальчиковая» батарейка не сможет обеспечить электричеством какой — либо прибор, подключённый только одним полюсом, так и фазный провод нуждается ещё в одном проводнике имя которому — «ноль».

Что такое ноль, и как его определить?

«Ноль» — это проводник, который протянут от генератора электростанции к потребителям, и хотя в нём электрический ток практически отсутствует, это полноправный участник в отношениях по передаче электрического тока по металлическим проводам.

Определить ноль совершенно не сложно. Для этой цели можно использовать мультиметр или тестер. Если замеры проводятся с помощью мультиметра, то необходимо один из щупов подсоединить к какому-нибудь заземлённому предмету, а другой поочерёдно к проводам, когда прибор покажет напряжение 2 — 3 В. то тот провод, к которому был подсоединён щуп в данный момент и является нулевым.

В роли заземлённого проводника может выступать металлический радиатор системы отопления в период, когда в нём находится жидкость под давлением.

Что такое заземление?

В отличие от «фазы» и «ноля» заземление, если можно так сказать, является местным жителем. Заземление — это проводник, который подключён к земле непосредственно в месте нахождения дома, и служит, для того чтобы при пробое изоляции фазного провода на корпус устройства исключить поражение человека электрическим током.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения
фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

Как определить фазу, ноль и заземление

Как узнать в домашних условиях, где фаза, ноль и заземление?
В наших инструкциях есть схемы подключения электроприборов к сети в домашних условиях, для чего и нужно знать, где у Вас фазный провод, рабочий ноль и заземление.
Безопасным методом определить заземление, фазу и ноль, можно с помощью цветов электрических проводов в соответствии с принятым стандартом IEC 60446 2004 года. Где синий, бело-синий провод означает рабочий ноль, зелено-желтый провод – защитный ноль (заземление). Другие цвета обозначают фазу.

 

Определяем, какой из проводов будет фазой возможно с использованием мультиметра.

 

С помощью индикаторной отвертки можно определить фазный провод. При прикосновении концом этой отвертки проводника под напряжением к контакту, на задней ее стороне, загорится индикаторная лампа и показывает напряжение. Таким способом определяется провод с фазой.
В отвертке индикаторной встроены лампа и резистор, при замыкании цепи загорится лампочка. Недостаток этого метода заключается в вероятности срабатывания отвертки, реагируя на наводки, определяя ток в том месте, где его нет.

 

Использование контрольной лампы.
Можно использовать устройство контрольная лампа. Используется патрон, в который вкручена лампочка, а в клемму патрона нужно прикрепить провода без изоляции на концах.
Как из двух проводов определить фазу и ноль.

 

Распознать с использованием контрольной лампы провод фазный из двух проводов можно только узнать есть ли фаза или нет. Подключив один конец, идущий от контрольной лампы, к уже определенному нулю, при прикосновении со вторым концом фазного провода, лампа загорится. Ноль соответствует последнему проводу.
Как определить из трех проводов фазу и ноль.

 

Нужно поочередно соединить контакты, которые идут от контрольно лампы к жилам кабеля. Исключения определяем положение, когда лампа загорается. Один провод фаза, а другой ноль. Изменяем положение контактов. Лампа загорается — свободный провод фаза, а остальные значит ноль и земля.
 

Если при изменении положения лампа ненадолго засверкает, а при реагировании УЗО или дифференциального автомата, значит оставшийся провод ноль, а проверяемые являются фазой и заземлением.
 

При загорании лампочки в двух положениях, а линия без защиты УЗО или дифференциального автомата, тогда определить какой провод рабочий ноль, а какой является заземлением, нужно отключив в щитке электричества вводный кабель от клеммы заземления. Проверяем контрольной лампой жилы и методом исключения определяем заземление, распознаем проводник заземления.

Как определить фазу и ноль мультиметром?

Часто бывает так, что во время монтажа различного электрического оборудования в доме, будь то светильники, розетки или выключатели, либо проверка неисправностей электросети, требуется осуществить поиск какого-то провода. Речь идёт о ноле, фазе, а также заземлении. Попытаемся разобраться, что это за провода, как их различить при помощи такого прибора, как мультиметр, и какие меры предосторожности следует соблюдать, дабы человека не ударило электрическим током.

Определение терминов

Итак, для начала следует разобраться в данных терминах и понять, зачем искать тот или иной провод. Необходимо вспомнить, что все электрические сети делятся на 2 категории:

  • с переменным током;
  • с постоянным током.

Ток представляет собой движение электронов по определённому сценарию. В первом варианте электроны осуществляют перманентное передвижение в некоем определённом направлении. А в случае с переменным, особенностью будет постоянная смена направления движения.

Теперь немного скажем о фазе, нуле и заземлении. Электроэнергия поступает в электросеть от трансформаторной подстанции, главным назначением которой является преобразование большого напряжения в 380 В. А к дому электроэнергия подводится либо по воздуху, либо под землёй через вводной щит распределения. Потом напряжение идёт на щитки, расположенные в каждом подъезде. И уже в квартиры идёт по одной фазе с нулём, то есть 220 вольт и проводник защиты.

Проводник, что обеспечивает подачу электрического тока потребителю, будет иметь название фазного. Внутри трансформаторной обмотки они соединяются между собой в так называемую звезду, что имеет общую нейтраль, которая заземлена на самой подстанции. Она обычно идёт к нагрузке по отдельному кабелю. Ноль, являющийся общим проводником, предназначается для реверсивного движения тока на источник электричества. Он даёт возможность выровнять фазное напряжение – разницу между нулём и фазой.

А заземление, которое в простонародье прозвали землёй, напряжения не имеет. Главной его задачей является защита пользователя от воздействия электротока при появлении неполадок с техникой, то есть при возникновении пробоя.

Это может случиться, если повреждается проводниковая изоляция, и деформированный участок касается приборного корпуса. Но так как потребители заземляются, то при возникновении большого напряжения на корпусе заземление тянет на себя опасный потенциал.

Методы

Теперь, когда стало ясно, что представляют собой ноль, фаза и заземление, необходимо разобраться в методах, при помощи которых они могут быть определены. Наиболее распространёнными и общепринятыми будут 3 метода, с использованием которых можно проверить фазу и ноль:

  • по расцветке самих жил;
  • при помощи отвёртки-индикатора;
  • с использованием мультиметра.

Если говорить о первом методе, то он является простейшим и ненадёжным. Обычно проводники имеют цветную изоляцию оболочек. Фаза отличается серой, коричневой, чёрной либо белой оплёткой. Ноль обычно делается синим либо голубым. Заземление, как правило, имеет зелёный либо зелено-жёлтый цвет. Тут не требуется применять какие-либо приборы или технику – посмотрели на цвет и поняли, что за кабель перед вами.

Но проблема заключается в отсутствии уверенности, что при прокладывании проводки что-то не перепутали, и цветная маркировка соблюдена в рамках существующих норм.

Если говорить об отвёртке-индикаторе, то этот способ будет более надёжным для нахождения фазы и ноля. Она обычно имеет корпус, не проводящий ток, а также встроенный индикаторный резистор, являющийся обычным диодом. Чтобы осуществить проверку ноля с фазой, следует осуществить такие действия.

  • Выключить общий УЗО ввода в квартиру.
  • Осуществить зачистку чем-то острым проверяемых жил от изоляции на 1 сантиметр. Далее, производится их разведение на определённое расстояние, дабы исключить соприкосновение и дальнейшее короткое замыкание.
  • Осуществляем подачу тока, предварительно включив автомат ввода.
  • Отвёрточным жалом необходимо прикоснуться к оголённым проводникам. Если горит индикаторное окно, это будет означать, что перед нами – фазный кабель. Отсутствие света свидетельствует, что проверяемый провод является нулевым.
  • Теперь помечаем маркером необходимую жилу и опять обесточиваем общий автомат, после чего осуществляем подсоединение аппарата коммутации.

Как можно убедиться, в этом нет ничего сложного. А вот более точные и сложные проверки производятся с использованием такого прибора, как мультиметр, или, как его ещё называют, тестер. Он представляет собой комбинированный прибор для проведения различного рода электрических измерений. Мультиметр может заменить большое количество устройств для проведения электронных измерений. В частности, омметр, амперметр, вольтметр.

При помощи тестера можно осуществить определение не только земли, ноля либо фазы, но и осуществить замеры на участке цепи тока, напряжения, сопротивления, и проверить целостность электроцепи. Теперь попытаемся разобраться, как узнать при помощи тестера, где будет фаза, а где — ноль.

Описание процесса

Начнём с фазы. Требуется включить устройство, после чего выставить на нём определение напряжения переменного характера, что на корпусе устройства обычно обозначается значком V~. Также следует выбрать предел измерения выше предполагаемого сетевого напряжения. Часто говорят о 400–700 В. Щупы тогда будут подключаться так: чёрный следует установить в разъём с пометкой COM, а красный – VΩmA. Но прежде чем осуществлять это, следует проверить работоспособность мультиметра в выбранном режиме. Проще попытаться выяснить напряжение в простой розетке. Для этого вставляем щупы в розеточные отверстия. Если устройство рабочее, и таковой будет розетка, то мультиметр покажет вам значение около 220–230 В.

Теперь приступим непосредственно к поиску фазы на примере 2 кабелей, торчащих из потолка и использующихся для включения люстры. Всё будет довольно легко. Требуется сформировать условия для прохождения электричества по прибору и установить этот факт. Создаётся электрическая цепь примерно такая, как с отвёрткой-индикатором.

При выяснении напряжения переменного характера с установленной границей 500 вольт, красным щупом нужно коснуться проверяемого кабеля, а чёрный прижать пальцами или коснуться предмета, что заземлён. Им может стать каркас стены из стали, отопительный радиатор и так далее. Если на проверяемом кабеле будет фаза, тестер высветит на дисплее величину напряжения около 220 В. Она может чуть различаться из-за условий, но будет примерно такой. Если провод не фаза, то появится 0 либо прибор покажет не более пары десятков вольт.

Теперь поговорим о том, как найти ноль. Он обычно находится уже относительно фазы. Сначала ищем её и логически предполагаем, что провод, расположенный рядом, ноль либо земля. Определить, является кабель нулём либо заземлением с помощью рассматриваемого устройства относительно сложно из-за того, что данные проводники почти одинаковы и повторяют друг друга.

Бывает, что ноль и заземление связаны в электрозащите и установить их действительно крайне сложно.

Проще всего будет отключить от заземлительной шины в электрощитке кабель ввода. При осуществлении проверки напряжения между кабелями заземления и фазой нельзя будет получить 220 вольт, как при проверке фазы и нуля. Кроме того, следует сказать, что если в электрощите стоит защита дифференциального типа, то она точно сработает при проверке кабелей заземления относительно иного проводника, даже нулевого.

Если надо установить ноль в розетке, то следует красный щуп поставить в фазовую розеточную дырку, а чёрный поднести к иному контакту, после чего сделать эти же действия с третьим контактом. Обязательно следует запомнить напряжение в обоих случаях. Где оно будет меньше, там будет заземление. А там, где показатель будет чуть выше – там будет нулевой провод. В общем, как можно убедиться, ничего сложного в поиске нуля и фазы мультиметром нет.

Меры безопасности

Следует немного сказать и о некоторых правилах безопасности, которые обязательно следует прочитать, прежде чем начинать определение фазы и нуля при помощи мультиметра:

  • ни в коем случае нельзя использовать мультиметр в помещении с высокой влажностью;
  • нельзя использовать неисправные щупы для измерений;
  • при осуществлении замеров нельзя изменять пределы измерений и переставлять режим переключателя;
  • нельзя менять параметры, значение которых будет выше, чем приборная грань измерений.

Кроме того, поворотный переключатель с самого начала следует установить в максимальное положение, дабы избежать поломки прибора.

О том, как определить фазу и ноль мультиметром, смотрите в следующем видео.

Как определить фазу и ноль

При любых работах с электропроводкой, будь то установка выключателя или что-то еще, всегда возникает необходимость в определении нулевых и фазовых проводов.

Честно говоря, это достаточно легкая процедура, но лишь при условии, что вы обладаете необходимыми навыками в работе с электричеством. В статье речь пойдет о том, как решить подобные вопросы.

Вводная часть о принципах работы электроприборов

Все мы знаем, что практически для всех домашних электроприборов необходима относительно небольшое напряжение — всего 220 вольт. И для того, чтобы подвести электрику к штепселю, нужно два провода (в некоторых случаях — три). Итак, вот они:

  1. Фазный.
  2. Нулевой.
  3. Заземление (если произойдет нарушение изоляции, то оно предотвратит удар током). И для чего же, спросите вы, простому обывателю знать о том, где фаза, а где ноль?

Прежде всего, это пригодится при собственноручной замене выключателя, если его следует установить конкретно на фазный провод. Кто не знает, это позволит отремонтировать осветительный прибор, не отключая электричества во всем доме.

Но не только их, а еще и бытовые приборы, работающие с проточной водой или имеющие железные корпуса. И чтобы подключить их, нужно задействовать не только ноль и фазу, но еще и заземление.

Существует три способа того,  как определить фазу и ноль. Рассмотрим детально все их преимущества и недостатки.

Определяем фазу и ноль фазоиндикатором

В данном случае вам понадобится специальный пробник, или как его еще называют, индикатор. В целом это обычная плоская отвертка, имеющая пластиковую ручку, где и помещен визуальный датчик — неоновая или же полупроводниковая лампа.

Процедура определения фазы таким образом проста. Необходимо лишь прикоснуться концом инструмента к нужному проводу или же засунуть его в розетку. Если напряжение там будет присутствовать, то отвертка загорится слабым светом.

Стоит отметить, что это возможно при правильном применении отвертки: палец ладони, в которой находится инструмент, следует прижать к металлической части отвертки. Это замкнет цикл между землей и проводкой, но бояться при этом не стоит, поскольку металлическая часть прибора существенно снижает напряжение.

Преимущества: простота и доступность способа, отвертку можно купить в любом магазине.

Недостатки: риск поражения электрическим током, пусть преимущественно и на психологическом уровне.

Видео по определению фазы и ноля индикаторной отверткой

Определяем фазу и ноль тестером

Здесь используется более современное устройство — фазовый тестер. Он позволит владельцу качественно измерять силу переменного или же постоянного напряжения. Для настройки прибора используется специальный вращающийся переключатель.

Также есть два щупа, первый из который необходимо засунуть в розетку, а второй крепко зажать в ладони. Если мы попадем на нулевую проводку, то на дисплее отобразится незначительное напряжение или же несколько нулей. А если на фазовый — то напряжение будет существенно выше.

Преимущества: современное устройство, широкодоступное на отечественном рынке; более высокая точность измерений.

Недостатки: существенных нет.

Видео по определению фазы мультиметром

Определяем фазу и ноль по маркировке

Это, пожалуй, наиболее ненадежный способ. Суть его в следующем: на сегодняшний день все проводка современных домов обладает специальной цветовой маркировкой, смотря какое назначение определенного провода.

К примеру, к фазе подключается зачастую коричневый или черный провод, а тот, что к нулю, должен иметь голубые тона. Касательно заземляющего провода, то он выполняется в двух цветах — зеленом и желтом.

Жаль, конечно, но в нашей стране нередко халатность электриков приводит к тому, что правила игнорируются и влекут за собой самые непредсказуемые последствия. Поэтому ни в коем случае не полагайтесь на добросовестность и профессионализм рабочих, устанавливающих в вашем доме электропроводку.

Рекомендуется лучше применить один из описанных способов. Более того, еще три года назад провода маркировались совсем по-другому. К примеру, провод для заземления был тогда черного цвета.

Когда фазный провод определен, мы его отгибаем и начинаем определять нулевой. К щитку внутри квартиры они прикреплены таким образом, что исключается система заземления как таковая. И если у вас есть доступ к щитку, то следует осведомиться о цвете провода, который проходит мимо автоматов, и выявить его.

А если по причине того, что вы желаете подстраховаться, или непосредственный доступ к щитку невозможен, то в любой момент можно использовать старое доброе средство — патрон с лампочкой, к которой подключены провода. Если один из них присоединить или же просто прикоснуться им к фазному проводу, а второй провод замыкать на двух оставшихся поочередно, то вы можете также определить нужные вам категории. Если будет контакт с нулем, то лампочка загорится, а если с проводом заземления — то ничего не произойдет.

И, как бы противопоставляя этот метод более продвинутому, можно применить уже описанный нами прибор — фазометр.

В таком случае следует по очереди измерять различие напряжения (другими словами, потенциалов) между всеми проводами и уже определенными фазами. При этом категория фаза-ноль обязана существенно превышать все другие категории (земля-фаза).

Преимущества: относительная простота.

Недостатки: небезопасность.

Итак, мы вместе разобрались, как определить фазу и ноль.

[Всего:    Средний:  /5]

Как рассчитать фазовый сдвиг

Фазовый сдвиг — это небольшая разница между двумя волнами; в математике и электронике это задержка между двумя волнами с одинаковым периодом или частотой. Обычно фазовый сдвиг выражается в виде угла, который можно измерять в градусах или радианах, и угол может быть положительным или отрицательным. Например, сдвиг фазы на +90 градусов составляет одну четверть полного цикла; в этом случае вторая волна опережает первую на 90 градусов. Вы можете рассчитать фазовый сдвиг, используя частоту волн и временную задержку между ними.

Синусоидальная функция и фаза

В математике тригонометрическая синусоидальная функция создает плавный волнообразный график, который циклически переключается между максимальным и минимальным значением, повторяясь каждые 360 градусов или 2 пи радиана. При нулевом градусе функция имеет нулевое значение. При 90 градусах он достигает максимального положительного значения. При 180 градусах он снова возвращается к нулю. При 270 градусах функция принимает максимальное отрицательное значение, а при 360 она возвращается к нулю, завершая один полный цикл.Углы больше 360 просто повторяют предыдущий цикл. Синусоидальная волна со сдвигом фазы начинается и заканчивается при значении, отличном от нуля, хотя во всех остальных отношениях она напоминает «стандартную» синусоидальную волну.

Выбор порядка волн

Расчет фазового сдвига включает сравнение двух волн, и часть этого сравнения выбирает, какая волна является «первой», а какая «второй». В электронике вторая волна обычно является выходом усилителя или другого устройства, а первая волна — входом.В математике первая волна может быть исходной функцией, а вторая — последующей или вторичной функцией. Например, первая функция может быть y = sin (x), а вторая функция может быть y = cos (x). Порядок волн не влияет на абсолютное значение фазового сдвига, но он определяет, является ли сдвиг положительным или отрицательным.

Сравнение волн

При сравнении двух волн расположите их так, чтобы они читались слева направо с использованием одного и того же угла оси x или единиц времени.Например, график для обоих может начинаться с 0 секунд. Найдите пик на второй волне и найдите соответствующий пик на первой. При поиске соответствующего пика оставайтесь в пределах одного полного цикла, иначе результат разности фаз будет неверным. Обратите внимание на значения по оси X для обоих пиков, затем вычтите их, чтобы найти разницу. Например, если вторая волна достигает пика на 0,002 секунды, а первая — на 0,001 секунды, то разница составляет 0,001–0,002 = -0,001 секунды.

Расчет фазового сдвига

Для расчета фазового сдвига вам нужны частота и период волн.Например, электронный генератор может генерировать синусоидальные волны с частотой 100 Гц. Разделение частоты на 1 дает период или продолжительность каждого цикла, поэтому 1/100 дает период 0,01 секунды. Уравнение фазового сдвига: ps = 360 * td / p, где ps — фазовый сдвиг в градусах, td — разница во времени между волнами, а p — период волны. Продолжая пример, 360 * -0,001 / 0,01 дает фазовый сдвиг -36 градусов. Поскольку результатом является отрицательное число, фазовый сдвиг также отрицательный; вторая волна отстает от первой на 36 градусов.Для разности фаз в радианах используйте 2 * pi * td / p; в нашем примере это будет 6,28 * -,001 / 0,01 или -,628 радиан.

Как рассчитать фазовую постоянную

Обновлено 28 декабря 2019 г.

Автор С. Хуссейн Атер

Для математической волны фазовая постоянная сообщает вам, насколько волна смещена из равновесного или нулевого положения. Вы можете рассчитать это как изменение фазы на единицу длины для стоячей волны в любом направлении. Обычно он пишется с использованием «фи», ϕ .Вы можете использовать его, чтобы вычислить, сколько колебаний волна претерпела за свои циклы.

Чтобы вычислить фазовую постоянную волны, используйте уравнение 2π / λ для длины волны «лямбда» λ. Длина волны — это длина полного цикла волны; например, если вы поместите точку на вершине «пика» на осциллограмме и другую точку в идентичном месте на соседнем «пике» той же формы волны, расстояние между этими двумя точками будет длиной волны. Фазовая постоянная не меняется со временем и описывает смещение волны вдоль оси, по которой она движется.

Полное уравнение для гармонической волны с положениями x и y со временем t :

y — y 0 = A sin (2πt / T ± 2πx / λ + ϕ)

In где y 0 — это положение y при x = 0 и t = 0 , A — амплитуда, T — период, а «phi» ϕ — фазовая постоянная.

Для этой синусоидальной волны период T = 1 / f для частоты ( f ), то есть сколько циклов волны проходит через данную точку в секунду.Левая часть y — y 0 — это смещение волны в направлении y от начального положения, а значение в скобках 2πt / T ± 2πx / λ + ϕ — это фаза.

Фазовая постоянная и разность фаз

Хотя вы можете вычислить скорость волны, умножив ее длину волны на временную частоту, v = fλ, вы также можете рассчитать скорость как разницу между двумя фазами. Для двух разных пар x и t вы можете записать фазы ϕ 1 и ϕ 2 как 2πt 1 / T ± 2πx 1 / λ + ϕ и 2πt 2 / T ± 2πx 2 / λ + ϕ.

Вычитание одной фазы из другой и их перезапись дает 2π (t 2 — t 1 ) / T ± 2π (x 1 — x 2 ) / λ = 0, что можно записать с помощью «дельта» Δx и Δt для изменений положения и времени соответственно. Это дает 2πΔt / T ± 2πΔx / λ = 0.

Разделите обе части уравнения на и переставьте его так, чтобы получить Δx / Δt = ∓λ / T. Поскольку Δx / Δt — это скорость ( v ), вы получаете λ / T или λf для скорости волны в любом направлении (задаваемой знаком — или +).

Вывод Tbis означает, что ученые и инженеры могут использовать разность фаз между двумя волнами для определения расстояния между двумя волнами или их скорости относительно друг друга. В технологиях эхолокации и эхолокации звуковые волны через различные среды, такие как вода или воздух, позволяют ученым определять местонахождение объектов под водой.

Формула Excel для фазовой постоянной

Если у вас есть большой объем данных о волне, вы можете использовать методы расчета Microsoft Excel для определения фазовой постоянной.Назначьте каждую переменную определенному столбцу в электронной таблице Excel и используйте их для создания последнего столбца для расчета смещения. Если вам известна длина волны, вы можете рассчитать фазовую постоянную как 2π / λ _._

Поскольку фазовая постоянная может варьироваться между разными волнами, полезно использовать формулу в Excel для сравнения различий. Формула процентной разницы — один из способов сделать это.

Если фазовая постоянная изменяется по нескольким волнам, вы также можете использовать формулу Excel для вычисления процента от общего общего смещения путем суммирования фазовых констант.Затем вы можете разделить это на количество волн, которые вам нужно, чтобы получить среднюю фазовую постоянную волны. Затем вы можете использовать формулу процентной разницы Excel, разделив значение того, насколько каждая волна отличается от среднего значения, на среднее значение.

Что такое ток нулевой последовательности? Определение и объяснение

Определение: Несбалансированный ток, протекающий в цепи во время замыкания на землю, известен как ток нулевой последовательности или постоянная составляющая тока короткого замыкания.Нулевая последовательность фаз означает, что величина трех фаз имеет нулевое смещение фаз. Три векторные линии представляют ток нулевой последовательности, и он обнаруживается путем сложения вектора трехфазного тока. Уравнение ниже выражает ток нулевой последовательности,

Обмотка, соединенная треугольником

Обмотка, соединенная треугольником, показана на рисунке ниже. Ток нулевой последовательности фаз a, b и c равны по величине и синфазны друг с другом. Он циркулирует в фазных обмотках соединения треугольником, как показано на рисунке ниже.Токи нулевой последовательности возникают из-за наличия напряжения нулевой последовательности.

По KCL в узле a получаем

Аналогичным образом, применяя KCL в узлах B и C, мы получаем

Приведенное выше уравнение показывает, что в соединении треугольником отсутствует ток нулевой последовательности из-за отсутствия обратных путей этого тока.

Поскольку в линии нет обратного пути для тока нулевой последовательности, полное сопротивление цепи становится бесконечным.Этот бесконечный импеданс показан разомкнутой цепью в точке P в однофазной эквивалентной сети нулевой последовательности для схемы, соединенной треугольником, с полным сопротивлением нулевой последовательности Z 0 .

Но для тока нулевой последовательности существует замкнутый контур в схеме треугольника. На это указывает соединение импеданса нулевой последовательности Z 0 с током нулевой последовательности.

Обмотка, соединенная звездой с нейтралью, изолированной от земли

Рассмотрим обмотку, соединенную звездой, без возврата нейтрали, как показано на рисунке ниже.

В данном случае

Приведенное выше уравнение показывает, что ток нулевой последовательности равен нулю в трехфазной трехпроводной системе без нейтрали.

Звезда подключена без нейтрали

На рисунке ниже показана обмотка, соединенная звездой с заземленной нейтралью.

Здесь,

Следовательно,

Приведенное выше уравнение показывает, что для трехфазной системы с заземлением ток нулевой последовательности будет течь как от фазной обмотки, так и по линиям.

Объяснение основных измерений трехфазной мощности

Время чтения: 7 минут

Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, системы трехфазного переменного тока почти повсеместно используются для распределения электроэнергии и подачи электричества непосредственно на оборудование с более высокой мощностью.

В этой технической статье описываются основные принципы трехфазных систем и различие между различными возможными соединениями для измерения.

  • Трехфазные системы
  • Соединение звездой или звездой
  • Соединение треугольником
  • Сравнение звезды и дельты
  • Измерения мощности
  • Подключение однофазного ваттметра
  • Однофазное трехпроводное соединение
  • Трехфазное трехпроводное соединение (метод двух ваттметров)
  • Трехфазное трехпроводное соединение (метод трех ваттметров)
  • Теорема Блонделя: необходимое количество ваттметров
  • Трехфазное, четырехпроводное соединение
  • Настройка измерительного оборудования

Трехфазные системы

Трехфазное электричество состоит из трех напряжений переменного тока одинаковой частоты и одинаковой амплитуды.Каждая фаза переменного напряжения отделена от другой на 120 ° (Рисунок 1).

Рис. 1. Форма сигнала трехфазного напряжения

Эту систему можно схематически представить как осциллограммами, так и векторной диаграммой (рис. 2).

Рисунок 2. Векторы трехфазного напряжения

Зачем нужны трехфазные системы? По двум причинам:

  1. Три разнесенных вектора напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
  2. Трехфазная система может быть подключена к нагрузке таким образом, чтобы количество необходимых медных соединений (и, следовательно, потери при передаче) составляло половину от того, что они были бы в противном случае.

Рассмотрим три однофазные системы, каждая из которых выдает 100 Вт на нагрузку (рисунок 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает через 6 проводов, и, таким образом, возникают 6 единиц потерь.

Рисунок 3. Три однофазных источника питания — шесть единиц потерь

В качестве альтернативы, три источника могут быть подключены к общей обратной линии, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, нагрузка считается равной. сбалансированный. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120 ° друг от друга, сумма тока в любой момент равна нулю, и ток в обратной линии отсутствует.

Рис. 4. Трехфазное питание, сбалансированная нагрузка — 3 единицы потерь

В трехфазной системе с углом обзора 120 ° требуется только 3 провода для передачи энергии, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, а потери при передаче по проводам уменьшатся вдвое.

Соединение звездой или звездой

Трехфазная система с общим подключением обычно изображается, как показано на Рисунке 5, и называется соединением «звезда» или «звезда».

Рисунок 5. Соединение звездой или звездой — три фазы, четыре провода

Общая точка называется нейтральной точкой.Эта точка часто заземляется на источнике питания из соображений безопасности. На практике нагрузки не сбалансированы идеально, и четвертый нейтральный провод используется для передачи результирующего тока.

Нейтральный проводник может быть значительно меньше трех основных проводов, если это разрешено местными правилами и стандартами.

Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.

Соединение треугольником

Три однофазных источника питания, о которых говорилось ранее, также могут быть подключены последовательно.Сумма трех сдвинутых по фазе напряжений на 120 ° в любой момент равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

Соединение обычно рисуется, как показано на рисунке 7, и называется соединением «треугольник» по форме греческой буквы «дельта», Δ.

Рисунок 7. Соединение треугольником — трехфазное, трехпроводное

Сравнение звездой и треугольником

Конфигурация «звезда» используется для распределения питания между однофазными бытовыми приборами дома и в офисе.Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. Общая нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание.

Конфигурация звезда также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения — это напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на Рисунке 8.

Рисунок 8. Напряжение (фаза-фаза)

Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности.Различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», однако путем подключения или «ответвлений» вдоль обмоток питающих трансформаторов.

В США, например, система с треугольником 240 В может иметь обмотку с расщепленной фазой или обмотку с центральным отводом для обеспечения двух источников питания 120 В (рисунок 9).

Рис. 9. Конфигурация треугольником с обмоткой «расщепленная фаза» или «отвод от средней точки»

Из соображений безопасности центральный отвод может быть заземлен на трансформаторе. 208 В также имеется между центральным ответвлением и третьей «верхней ветвью» соединения треугольником.

Измерения мощности

Мощность в системах переменного тока измеряется с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенных ватт, а затем берет среднее значение мгновенных ватт за один цикл для отображения истинной мощности.

Ваттметр обеспечивает точные измерения истинной мощности, полной мощности, реактивной мощности вольт-ампер, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

Чтобы анализатор мощности давал хорошие результаты, вы должны уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

Подключение однофазного ваттметра

Рисунок 10. Однофазные, двухпроводные измерения и измерения постоянного тока

Требуется только один ваттметр, как показано на рисунке 10. Системное подключение к клеммам напряжения и тока ваттметра несложно. Клеммы напряжения ваттметра подключены параллельно к нагрузке, и ток проходит через клеммы тока, которые включены последовательно с нагрузкой.

Однофазное трехпроводное соединение

В этой системе, показанной на рисунке 11, напряжения вырабатываются одной обмоткой трансформатора с центральным отводом, и все напряжения синфазны. Эта система широко распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника питания 120 В, которые могут иметь разную нагрузку на каждую ногу.

Для измерения общей мощности и других величин подключите два ваттметра, как показано на Рисунке 11 ниже.

Рисунок 11. Метод однофазного трехпроводного ваттметра

Трехфазное трехпроводное соединение (метод двух ваттметров)

При наличии трех проводов требуются два ваттметра для измерения общей мощности.Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены фаза с фазой.

Рисунок 12. Трехфазное, трехпроводное, метод 2 ваттметра

Трехфазное трехпроводное соединение (метод трех ваттметров)

Хотя для измерения общей мощности в трехпроводной системе требуются только два ваттметра, как было показано ранее, иногда удобно использовать три ваттметра. В соединении, показанном на Рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводной режим).

Трехпроводное трехпроводное соединение имеет преимущества индикации мощности в каждой фазе (не возможно при подключении двух ваттметров) и фазных напряжений.

Теорема Блонделя: необходимое количество ваттметров

В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рисунке 14.

Рисунок 14. Доказательство для трехпроводной системы «звезда»

В общем, количество требуемых ваттметров равно количеству проводов минус один.

Проба для трехпроводной системы звездой

Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.

  • Показание ваттметра 1 = i1 (v1 — v3)
  • Показание ваттметра 2 = i2 (v2 — v3)
  • Сумма показаний W1 + W2 = i1v1 — i1v3 + i2v2 — i2v3 = i1v1 + i2v2 — (i1 + i2) v3
  • (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
  • 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

Трехфазное, четырехпроводное соединение

Три ваттметра необходимы для измерения общей мощности в четырехпроводной системе. Измеренные напряжения представляют собой истинные напряжения между фазой и нейтралью. Междуфазные напряжения могут быть точно рассчитаны по амплитуде и фазе межфазных напряжений с использованием векторной математики.

Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

Настройка измерительного оборудования

Для заданного количества проводов требуются N, N-1 ваттметров для измерения общих величин, таких как мощность.Вы должны убедиться, что у вас достаточно количества каналов (метод 3 ваттметра), и правильно их подключить.

Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как ватты, вольты, амперы, вольт-амперы и коэффициент мощности, напрямую с использованием соответствующих встроенных формул. Формулы выбираются в зависимости от конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения точных измерений общей мощности. Анализатор мощности с функцией векторной математики также преобразует величины между фазой и нейтралью (или звездой) в величины фаза-фаза (или дельта).

Коэффициент √3 может использоваться только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

Понимание конфигурации проводки и выполнение правильных соединений имеет решающее значение для выполнения измерений мощности. Знакомство с обычными системами электропроводки и запоминание теоремы Блонделя поможет вам установить правильные соединения и получить результаты, на которые вы можете положиться.

Список литературы

Основы измерения трехфазной мощности — Рекомендации по применению от Tektronix

Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электрической энергии) в ваттах любой данной цепи.Электромагнитные ваттметры используются для измерения полезной частоты и мощности звуковой частоты; другие типы требуются для радиочастотных измерений. Источник: Википедия

Источник: Портал электротехники

Трехфазное напряжение + расчеты

Трехфазное электричество. В этом уроке мы узнаем больше о трехфазном электричестве. Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном учебном пособии мы рассмотрели основы того, что происходит в трехфазных системах электроснабжения, и в этом учебном пособии мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем вилки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся.Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке. Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это.Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и очень полезные, поэтому я рекомендую вам их приобрести.

Теперь эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают в результате соединения одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключу осциоскоп к однофазной сети, я получу синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения? и почему мы получаем эти синусоидальные волны?

Итак, напомним. Получаем полезную электроэнергию, когда много электроны движутся по кабелю в том же направлении.Мы используем медные провода, потому что каждый из миллиардов атомов внутри медного материала имеет слабосвязанные электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться. между другими атомами меди, и они действительно движутся все время, но случайным образом направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит по медной проволоке. Магнитное поле заставляет свободные электроны двигаться в одном направлении. Если мы намотаем медную проволоку в катушку, мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов.Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад, инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг снаружи.Мы разделяем катушку на две, но держим их соединенными, а затем размещаем один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед. По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю.Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля. Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу. Эта катушка испытывает изменение магнитного поля в разное время по сравнению с к первой фазе, поэтому форма волны будет такой же, но с задержкой. Форма волны фазы 2 и не начинается, пока магнит не вращается в Вращение на 120 градусов. Если мы затем добавим третью катушку, вращающуюся на 240 градусов от сначала мы получаем третью фазу.Снова эта катушка испытает изменение магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна остальным, за исключением того, что он будет отложен и начнется при 240 градусах вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц. Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц — это производитель, который сообщает вам, к какому типу источника питания необходимо подключить оборудование.Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из Южная Америка и пара других стран используют 60 Гц в остальном мире использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц — 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не может быть постоянно 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение в розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, которое равно средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind.info/3-Phase- Excel-AU

Если окружность генератора разделить на сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько хотите, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы вычисляем мгновенное напряжение в каждом сегменте по формуле.
(мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим график, то мы получим синусоидальную волну, показывающую напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как магнитное поле становится сильнее и заставляет течь больше электронов, затем оно уменьшается, пока не достигнет нуля, где магнитное поле находится точно между север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно увеличивается по мере изменения напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325.27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем построить график, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство между любой фазой и нейтралью, тогда мы получаем среднеквадратическое напряжение 120, 220, 230 или 240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений. напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Вот как мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Вот так мы получаем больше энергии от источника питания.

В США, например, многим устройствам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому. Мы рассмотрим это в другом уроке.


Фазовый угол

— обзор

3.9.5 Унифицированный контроллер потока мощности

Унифицированный контроллер потока мощности (UPFC) является одним из самых передовых устройств FACTS и представляет собой комбинацию STATCOM и SSSC. Можно увидеть, что UPFC состоит из двух VSC, совместно использующих общий конденсатор на своей стороне постоянного тока, и единой системы управления. Два устройства связаны через канал постоянного тока, и комбинация обеспечивает двунаправленный поток реальной мощности между последовательным выходом SSSC и шунтирующим выходом STATCOM.Этот контроллер (UPFC) имеет возможность обеспечивать одновременную компенсацию действительной и реактивной последовательной линии без какого-либо внешнего источника электроэнергии. UPFC может иметь управляемую под углом последовательную подачу напряжения для управления напряжением передачи в дополнение к управлению импедансом линии и углом мощности. Таким образом, UPFC может управлять потоком реальной мощности, потоком реактивной мощности в линии и величиной напряжения на выводах UPFC, а также может использоваться независимо для компенсации реактивной мощности шунта. Контроллер может быть настроен на управление одним или несколькими из этих параметров в любой комбинации.

На рис. 3.25 представлена ​​схема UPFC, которая содержит STATCOM с SSSC. Поток активной мощности для последовательного блока (SSSC) получается из самой линии через шунтирующий блок (STATCOM). STATCOM используется для управления напряжением (или реактивной мощностью), а SSSC используется для управления реальной мощностью. UPFC — это полный контроллер FACTS для управления потоком как активной, так и реактивной мощности в линии. Активная мощность, необходимая для последовательного преобразователя, отбирается шунтирующим преобразователем от шины переменного тока () и подается на шину по звену постоянного тока.Инвертированное переменное напряжение ( В, , ser ) на выходе последовательного преобразователя добавляется к напряжению передающего конечного узла В, i на стороне линии, чтобы повысить узловое напряжение на шине j -й. Здесь можно отметить, что величина напряжения выходного напряжения | V ser | обеспечивает регулировку напряжения, а фазовый угол δ ser определяет режим управления потоком мощности. Дополнительное запоминающее устройство (т. Е.(сверхпроводящий магнит, подключенный к звену постоянного тока) через электронный интерфейс, обеспечит расширение возможностей UPFC в управлении потоком реальной мощности.

Рисунок 3.25. Схема UPFC.

Помимо обеспечения вспомогательной роли в обмене активной мощностью между последовательным преобразователем и системой переменного тока, шунтирующий преобразователь может также генерировать или поглощать реактивную мощность, чтобы обеспечить независимое регулирование напряжения в точке соединения с система переменного тока.

Эквивалентная схема UPFC, показанная на рисунке 3.26, состоит из параллельно подключенного источника напряжения и последовательно подключенного источника напряжения. Уравнение ограничения активной мощности связывает два источника напряжения. Два источника напряжения подключены к системе переменного тока через индуктивное сопротивление, представляющее трансформаторы VSC. Выражения для двух источников напряжения и уравнения ограничения будут такими:

Рисунок 3.26. Эквивалентная схема UPFC между двумя шинами i и j.

Vshr = | Vshr | cosδshr + jsinδshr

Vser = | Vser | cosδser + jsinδser

Re − VshrIshr * + VserIj * = 0

Здесь V shr и δ управляемая величина и фаза источника напряжения, представляющего шунтирующий преобразователь. Величина V ser и фазовый угол δ ser источника напряжения представляют собой последовательный преобразователь. Подобно шунтирующим и последовательным источникам напряжения, используемым для представления STATCOM и SSSC, соответственно, источники напряжения, используемые в приложении UPFC, также будут иметь контрольные пределы, т.е.е., В shr min V shr V shr max , 0 ≤ δ shr ≤ 2 π и V ser min V ser В ser max , 0 ≤ δ ser ≤ 2 π соответственно.

Фазовый угол последовательно вводимого напряжения определяет режим управления потоком мощности. Следующие условия важны для понимания работы UPFC со ссылкой на его эквивалентную схему (рисунок 3.26):

Если δ ser находится в фазе с углом напряжения узла δ i , UPFC регулирует напряжение на клеммах, и между и отсутствует поток активной мощности th и j th автобусов. Поток реактивной мощности можно контролировать, изменяя | V ser |.

Если δ ser находится в квадратуре с δ i , поток активной мощности можно контролировать между i th и j th шинами, управляя δ ser и действует как фазовращатель.Между шинами i и j не будет перетока реактивной мощности.

Если δ ser находится в квадратуре с углом линейного тока, то он также может управлять потоком активной мощности, действуя как переменный последовательный компенсатор.

Если δ ser находится в диапазоне от 0 ° до 90 °, он может управлять как потоком реальной мощности, так и потоком реактивной мощности в линии. Величина последовательно вводимого напряжения определяет величину регулируемого потока мощности.

Моделирование потока мощности UPFC [ 2 ]

На основе эквивалентной схемы, показанной на рисунке 3.26, мы имеем

Ii = Vi − Vj − VserYser + ( Vshr) Yshr = ViYser + Yshr − VjYser − VserYser − VshrYshr

и Ij = −Vi + Vj + VserYser

, т.е. = Vi00VjYser + Yshr * −Yser * −Yser * −Yshr * −Yser * Yser * Yser * 0Vi * Vj * Vser * Vshr *

(3.146) илиPi + jQiPj + jQj = Vi00VjGii − jBiiGij − jBijGij − jBijGi0 − jBi0Gji − jBjiGjj − jBjjGjj − jBjj0Vi * Vj * Vser * Vshr *

(3.147i = | P Gijcosδi − δj + Bijsin (δi − δj)} + | Vi || Vser | {Gijcosδi − δser + Bijsin (δi − δser)} + ​​| V || Vshr | {Gi0cosδi − δshr + Bi0sin (δi − δshr)}

(3.147b) Qi = — | Vi | 2Bii + | Vi || Vj | {Gijsinδi − δj − Bijcos (δi − δj)} + | V || Vser | {Gijsinδi − δser − Bijcos (δi − δser)} + | Vi || Vshr | {Gi0sinδi − δshr − Bi0cos (δi − δshr)}

(3.148a) Pj = | Vj | 2Gjj + | Vj || Vi | {Gjicosδj − δi + Bjisin (δj − δi)} + | Vj || Vser | {Gjjcosδj − δser + Bjjsin (δj − δser)}

(3.148b) Qj = — | Vj | 2Bjj + | Vj || Vi | {Gjisinδj − δi − Bjicos (δj − δi)} + | Vj || Vser | {Gjjsinδj − δser − Bjjcos (δj − δser)}

Активный мощность и реактивная мощность последовательного преобразователя (SSSC) следующие:

Sser = Pser + jQser = VserIj * = VserYji * Vi * + Yjj * Vj * + Yjj * Vser *

(3.149a) ∴Pser = | Vser | 2Gjj + | Vser || Vi | {Gjicosδser − δi + Bjisin (δser − δi)} + | Vser || Vj | {Gjjcosδser − δj + Bjjsin (δser − δj)}

(3.149b) Qser = — | Vser | 2Bjj + | Vser || Vi | {Gjisinδser − δi − Bjicos (δser − δi)} + | Vser || Vj | {Gjjsinδser − δj − Bjjcos (δser − δj)}

Активная мощность и реактивная мощность для шунтирующий контроллер (STATCOM) получается как

(3.150a) Sshr = Pshr + jQshr = VshrIshr * = — VshrYshr * Vshr * −Vi * ∴Pshr = — | Vshr | 2Gi0 + | Vshr || Vi | {Gi0cosδshr − δi + Bi0sin (δshr − δi)}

3,1

( ) Qshr = | Vshr | 2Bi0 + | Vshr || Vi | Gi0sinδshr − δi − Bi0cosδshr − δi

Поскольку мы предполагаем преобразователи без потерь, UPFC не поглощает и не вводит активную мощность по отношению к системе переменного тока, то есть активную мощность, подаваемую на шунтирующий преобразователь P shr равен активной мощности, потребляемой последовательным преобразователем, P ser . Следовательно, уравнение ограничения:

(3.151) Pshr + Pser = 0

Кроме того, если предполагается, что трансформаторы связи не содержат сопротивления, тогда активная мощность на шине i совпадает с активной мощностью на шине j . Соответственно,

Pshr + Pser = Pi + Pj

Уравнения мощности UPFC в линеаризованной форме комбинируются с уравнениями мощности сети переменного тока. Чтобы получить линеаризованную модель системы с использованием формы рассогласования мощности, предположим, что UPFC подключен к узлу i , а система энергоснабжения подключена к узлу j .UPFC требуется для управления напряжением на выводе шунтирующего преобразователя, узле , и потоков активной мощности от узла к узлу . Предполагая, что реактивная мощность вводится в узле j , уравнения линеаризованной системы выглядят следующим образом:

(3.152) ΔPiΔPjΔQiΔQjΔPjiΔQjiΔP = ∂Pi∂δi∂Pi∂δj∂Pi∂ | Vshr | ∂Pi∂ | Vj | ∂Pi∂δser ∂Pi∂ | Vser | ∂Pi∂δshr∂Pj∂δi∂Pj∂δj0∂Pj∂ | Vj | ∂Pj∂δser∂Pj∂ | Vser | 0∂Qi∂δi∂Qi∂δj∂Qi∂ | Vshr | ∂ Qi∂ | Vj | ∂Qi∂δser∂Qi∂ | Vser | ∂Qi∂δshr∂Qj∂δi∂Qj∂δj0∂Qj∂ | Vj | ∂Qj∂δser∂Qj∂ | Vser | 0∂Pji∂δi∂Pji ∂δj0∂Pji∂ | Vj | ∂Pji∂δser∂Pji∂ | Vser | 0∂Qji∂δi∂Qji∂δj0∂Qji∂ | Vj | ∂Qji∂δser∂Qji∂ | Vser | 0∂P∂δi∂P ∂δj∂P∂ | Vshr | ∂P∂ | Vj | ∂P∂δser∂P∂ | Vser | ∂P∂δshrΔδiΔδjΔ | Vshr | Δ | Vj | ΔδserΔ | Vser | Δδshr

Предполагалось, что узел j — это узел PQ, а Δ P — рассогласование мощности, заданное уравнением ограничения (3.151). Если управление напряжением на шине и отключено, третий столбец уравнения (3.152) заменяется частными производными мощности шины и рассогласования UPFC относительно величины напряжения на шине В, и . Кроме того, приращение величины напряжения шунтирующего источника Δ В shr заменяется приращением величины напряжения на шине i , Δ В i . Для решения этих уравнений потока мощности UPFC необходим обширный алгоритм.Хорошие начальные условия для всех переменных состояния UPFC также являются важным требованием для обеспечения сходимости.

Контроллеры демпфирования UPFC

Структурная схема контроллера демпфирования UPFC показана на рисунке 3.27, где u может быть V shr и δ shr , которые являются регулируемыми величиной и фазой источника напряжения, представляющего шунтирующий преобразователь.Чтобы поддерживать баланс мощности между последовательными и шунтирующими преобразователями, необходимо включить регулятор постоянного напряжения. Напряжение постоянного тока регулируется путем модуляции фазового угла напряжения шунтирующего трансформатора: δ shr . Регулятор постоянного напряжения представляет собой ПИ-регулятор. Другими блоками контроллеров являются блок усиления, блок размывания и блок контроллера опережения-запаздывания. T upfc представляет внутреннюю задержку UPFC [12].

Рисунок 3.27. Регулятор демпфирования UPFC.

Функции этих блоков уже знакомы при обсуждении других контроллеров FACTS. Линеаризованная модель в пространстве состояний контроллера демпфирования UPFC может быть получена алгебраически из представленной блок-схемы, которая может быть объединена с дифференциально-алгебраической моделью многомашинной системы для изучения проблемы устойчивости слабого сигнала.

Упражнения

3.1.

Изобразите установившуюся эквивалентную схему синхронной машины и, следовательно, получите ее установившуюся модель в системе координат dqo.

3.2.

Рассмотрим синхронную машину, обслуживающую нагрузку без насыщения и с V¯ = 1∠10 ° о.е. и I¯ = 0,5∠-20 ° о.е. Параметры машин представлены как X d = 1,2, X q = 1,0, X md = 1,1, X d ′ = 0,232 и R с = 0,0 (все в о.е.). Найдите следующие установившиеся переменные машины:

(i)

δ и δ T

(ii)

I d , I q , V d и V q

(iii)

ψ d , ψ q и E q ,

(iv)

E fd и I fd

(все в о.у., кроме угла в градусах)

3.3.

Выведите выражение основной составляющей эквивалентной восприимчивости SVC как

Bsvc = −XL − XCπ2π − α + sin2αXCXL

, где X L — эквивалентное реактивное сопротивление TCR, X C — эквивалентное реактивное сопротивление постоянного конденсатора, подключенного к цепи TCR, а α — угол включения. Получите его линеаризованную версию для применения в анализе устойчивости энергосистемы при слабых сигналах.
3.4.

TCSC подключен между узлами s и t. Поток мощности между узлами s и t определяется уравнением

Sst = Vs2gst − jbst − VsVtgst − jbstcosθst + jsinθst

Получите линеаризованные уравнения потока мощности TCSC. V s и V t — напряжения в узлах s и t. Y st = g st jb st — это пропускная способность сети между узлами, к которым подключается TCSC.

3.5.

Покажите, что эквивалентное реактивное сопротивление TCSC как функция угла зажигания ( α ) может быть выражено следующим уравнением:

XTCSC = −XC + C1 (2π − α + sin (2 (π − α ))) — C2cos2π − α (ω¯tan (ω¯ (π − α)) — tan (π − α))

, где C1 = XC + XLCπ, C2 = 4XLC2πXL и XLC = XCXLXC − XL.
3,6.

Блок-схема контроллера демпфирования UPFC приведена на рисунке 3.27. Выведите линеаризованную модель контроллера в пространстве состояний, в то время как контроллер модулирует фазовый угол δ shr шунтирующего VSC.

Расчет фазового угла, время задержки, частота, расчет фазового лага, временной сдвиг между разностью напряжений, время прихода, осциллограф ITD, измерение двух сигналов, формула, угол, текущее напряжение, фазовый сдвиг, разность времени

, фазовый угол, вычисление, время задержки, частота, вычисление фазового сдвига, временной сдвиг между разностью напряжений время прибытия осциллограф ITD измерить два сигнала формула угол ток напряжение фазовый сдвиг разница во времени — sengpielaudio Sengpiel Berlin



Вопрос: Какова формула фазы синусоидальной волны?
Нет фазы синусоиды.Синусоидальная волна не имеет фазы.
Фаза может развиваться только между двумя синусоидальными волнами.

Две синусоидальные волны взаимно сдвинуты по фазе, если моменты времени
его нулевые отрывки не совпадают.

Слово фаза имеет четкое определение для двух чистых бегущих синусоидальных волн переменного тока,
но не для музыкальных сигналов.
Все эквалайзеры сдвигают фазу вместе с частотой. Без всяких
с фиксированной точкой «смещение» (смещение) невозможно.
Особые приемы: Фильтр 90 ° с двумя универсальными фильтрами. Фазы всегда , разности фаз .

Реверс полярности (pol-rev) никогда не сдвиг фазы на оси времени t .

Синусоидальные сигналы одинаковой частоты могут иметь разность фаз.

Если есть фазовый сдвиг (разность фаз) или фазовая задержка угла фазы φ
(Греческая буква Phi) в градусах должно быть указано, между какими чистыми сигналами
(синусоидальные волны) это появляется.Таким образом, например, фазовый сдвиг может быть между двумя стерео
. канальные сигналы слева и справа, между входным и выходным сигналом, между напряжением и
ток, или между звуковым давлением p и скоростью частиц воздуха v .

Что такое на самом деле амплитуда?


Один полный цикл волны связан с «угловым» смещением на
°. 2 π радиан.

Фаза φ — угол участка сигнала, он указывается в угловых градусах и
предоставляет ссылку на опорное значение всего сигнала. Для периодических сигналов —
общий фазовый угол 360 градусов и период, равный длительности периода.
Типичный вопрос: каковы частота и фазовый угол синусоидального сигнала?
Может ли «один» сигнал действительно иметь фазу?
Две «синфазные» волны имеют фазу (угол) φ = 0 градусов.
Если частота = 0 Гц, то переменного напряжения нет — это просто постоянный ток. Тогда не будет
фазовый угол присутствует.

Какое отношение время задержки имеет к фазовому углу?

Разница во времени (длительность) звука на метр

Влияние температуры на разницу во времени Δ t
Зависимость скорости звука только от температуры воздуха

Температура
воздуха в ° C
Скорость звука
c м / с
Время на 1 м
Δ t в мс / м
+40 354.9 2,818
+35 352,0 2,840
+30 349,1 2,864
+25 346,2 2,888
+20 343,2 2,912
+15 340,3 2,937
+10 337.3 2,963
+5 334,3 2,990
± 0 331,3 3,017
−5 328,2 3,044
−10 325,2 3,073
−15 322,0 3.103
−20 318.8 3,134
−25 315,7 3,165


Звукорежиссеры обычно руководствуются практическим правилом:
Для расстояния
r = 1 м звук требует около t = 3 мс в воздухе.
Δ t = r / c и r = Δ t × c 9108 9108 9108 9108 9108 9108 9108 = 343 м / с при 20 ° C.

Для фиксированной выдержки времени Δ t = 0,5 мс получаем
следующий фазовый сдвиг φ ° (град) сигнала:
Разность фаз
φ ° (град.)
Разность фаз
φ Bogen (рад)
Частота
f
Длина волны
λ = c / f
360 ° 2 π = 6.283185307 2000 Гц 0,171 м
180 ° π = 3,141592654 1000 Гц 0,343 м
90 ° π /2 = 1,570796327 500 Гц 0,686 м
45 ° π /4 = 0,785398163 250 Гц 1.372 м
22,5 ° π /8 = 0,392699081 125 Гц 2,744 м
11,25 ° π /16 = 0,196349540 62,5 Гц 5,488 м

Преобразование: радианы в градусы и наоборот

Фазовый угол: φ ° = 360 × f × Δ t Для временной стереофонии Δ t = a × sin α / c
Частота f = φ ° / 360 × Δ t

Фазовый угол (град.) φ = временная задержка Δ t × частота f × 360
Если взять разницу во времени Δ t = длина пути a / скорость звука c , тогда получаем
Разность фаз φ ° = длина пути a × частота f × 360 / скорость звука c

Введите два значения , будет рассчитано третье значение

Дополнительная помощь: Время, частота, фаза и задержка

Автор Лорд Рэлей (Джон Уильям Струтт, 3-й лорд Рэлей, 1907 г.) была показана дуплексная теория
.Эта теория способствует пониманию процедуры «естественного
». слух »с людьми. Это очень простое осознание того, что межуральное время прибытия
различия ITD важны на частотах ниже 800 Гц как разности фаз
с направлением локализации как ушные сигналы , а на частотах выше 1600 Гц
эффективны только межзубные различия уровней ILD.
Между ушами максимальная задержка равна 0.63 мс. Разность фаз для
индивидуальные частоты могут быть рассчитаны.

Схема фазовращателя для фазовых углов от φ = 0 до 180

Векторы напряжения фазовращателя

Для R = 0 Ом составляет В ВЫХ = В IN . Выход не должен быть нагружен низким импедансом.

Вы можете сдвигать отдельные чистые частоты (синусоидальные волны),
но это невозможно с такой схемой для музыкальных программ.

Два синусоидальных напряжения со сдвигом по фазе: φ = 45 °

Условия для передачи без искажений
От Шопса — Йорг Вуттке: «Микрофонбух» — Глава 7


В то время как потребность в постоянной частотной характеристике очевидна, для «линейной» фазы скорее требуется
объяснение.
Есть инженеры, которые ожидают, что идеальная фаза будет такой же постоянной, как и амплитудная характеристика.
Это неправда. Первоначально фаза начинается с 0 °, потому что самая низкая частота заканчивается на 0 Гц, на
. ОКРУГ КОЛУМБИЯ. (Между напряжениями постоянного тока отсутствует фазовый угол).
В процессе на данной частоте фазовый угол не имеет значения, если фазовый угол равен
. только в два раза больше в случае двойной частоты и в три раза больше в случае трех экземпляров и т. д.

Предоставлено David Moulton Laboratories
(О гребенчатой ​​фильтрации, фазовом сдвиге и обращении полярности)


Электронный эквивалент потока сигнала и его отложенной итерации, рекомбинированный в
единый сигнал.В случае, который мы будем рассматривать, линия задержки имеет задержку в 1 миллисекунду,
уровни исходного и задержанного сигналов, поступающих в микшер, равны, а
сигнал представляет собой синусоидальную волну с частотой 1 кГц.


Синусоидальная волна 1500 Гц. частота (период T = 0,667 мс) и ее задержка
итерация с задержкой 1 мс. Результирующий смешанный сигнал будет сигналом без номера
. амплитуда, либо полная гашение сигнала.



Фазовый сдвиг для любой частоты с задержкой в ​​1 миллисекунду. Диагональная линия
представляет возрастающий фазовый сдвиг как функцию частоты. Обратите внимание, что мы можем
Считайте 540 тем же самым, что и 180.

Time, Phase, Frequency, Delay — Учебное пособие по теории звуковых сигналов

Изменение полярности нет Фазовый сдвиг из 180 (временная задержка)

(phi) = сдвиг фазы, сдвиг фазы, разность фаз, сдвиг фазы,
фазовая задержка, фазовый угол часто неправильно используются как: pol-rev = изменение полярности.

Полярность и фаза часто используются так, как будто они означают одно и то же. Они не.
«Кнопка реверса фазы» не меняет фазу. Это меняет полярность.

Реверс полярности — без сдвига фазы.
Изменение полярности (или Pol-Rev) — это термин, который часто путают с фазой Ø (phi)
но не включает фазового сдвига или временной задержки. Изменение полярности происходит всякий раз, когда мы
«изменить знак» значений амплитуды сигнала.В аналоговой сфере это
можно сделать с инвертирующим усилителем, трансформатором или в симметричной линии по
простое переключение соединений между контактами 2 и 3 (штекер XLR) на одном конце
кабель. В цифровой сфере это делается простой заменой всех плюсов на
минусы и наоборот в потоке данных аудиосигнала.

Два пилообразных колебаний

вверху: исходный сигнал a / b (зубчатый зуб)

средний: сигнал со сдвигом фазы 180
как T / 2 пилообразный сигнал со сдвигом во времени

внизу: сигнал b / a- с обратной (инвертированной) полярностью ,
зеркально отражено на оси времени

Ясно видно, что обратная полярность не может быть такой же, как не совпадает по фазе.

Речь идет о широко обсуждаемой теме: «Фазовый сдвиг против инвертирования сигнала» и «фаза
. сдвиг в зависимости от временного сдвига сигнала ». Термин фазовый сдвиг предположительно определен только для
одночастотные синусоидальные сигналы и угол сдвига фаз явно задан только для
синусоидальные величины.

Типичная кнопка Ø (phi) предназначена только для смены полярности
Абсолютно отсутствует фазовый сдвиг



Примечание. Время, частота и фаза тесно связаны.
Высота амплитуды не влияет на эти параметры.

Угловая частота равна ω = 2 π × f

Дано уравнение: y = 50 sin (5000 t)
Определите частоту и амплитуду.

0 comments on “Как узнать фазу и ноль: Как найти фазу: простые и действенные способы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *