Какой полупроводник называется собственным: Собственный полупроводник — это… Что такое Собственный полупроводник?

Собственный полупроводник — это… Что такое Собственный полупроводник?

Собственный полупроводник или полупроводник i-типа или нелегированный полупроводник (англ. intrinsic — собственный) — это чистый полупроводник, содержание посторонних примесей в котором не превышает 10−8 … 10−9%. Концентрация дырок в нём всегда равна концентрации свободных электронов, так как она определяется не легированием, а собственными свойствами материала, а именно термически возбуждёнными носителями, излучением и собственными дефектами. Технология позволяет получать материалы с высокой степенью очистки, среди которых можно выделить непрямозонные полупроводники: Si (при комнатной температуре количество носителей ni=pi=1,4·1010 см-3), Ge (при комнатной температуре количество носителей ni=pi=2,5·1013 см-3) и прямозонный GaAs.

Полупроводник без примесей обладает собственной электропроводностью

, которая имеет два вклада: электронный и дырочный. Если к полупроводнику не приложено напряжение, то электроны и дырки совершают тепловое движение и суммарный ток равен нулю. При приложении напряжения в полупроводнике возникает электрическое поле, которое приводит к возникновению тока, называемого дрейфовым током iдр. Полный дрейфовый ток является суммой двух вкладов из электронного и дырочного токов:

iдр= in+ ip,

где индекс n соответствует электронному вкладу, а p — дырочному. Удельное сопротивление полупроводника зависит от концентрации носителей и от их подвижности, как следует из простейшей модели Друде. В полупроводниках при повышении температуры вследствие генерации электрон-дырочных пар концентрация электронов в зоне проводимости и дырок в валентной зоне увеличивается значительно быстрее, нежели уменьшается их подвижность, поэтому с повышением температуры проводимость растет. Процесс гибели электрон-дырочных пар называется рекомбинацией. Фактически проводимость собственного полупроводника сопровождается процессами рекомбинации и генерации и если скорости их равны, то говорят что полупроводник находится в равновесном состоянии. Количество термически возбуждённых носителей зависит от ширины запрещённой зоны, поэтому количество носителей тока в собственных полупроводниках мало по сравнению с легированными полупроводниками и сопротивление их значительно выше.

Расчет равновесной концентрации свободных носителей заряда

Количество разрешённых состояний для электронов в зоне проводимости (определяемая плотностью состояний) и вероятность их заполнения (определяемая функцией Ферми — Дирака) и соответственные величины для дырок задают количество собственных электронов и дырок в полупроводнике:

,
,

где Nc, Nv — константы определяемые свойствами полупроводника, Ec и Ev — положение дна зоны проводимости и потолка валентной зоны соответственно,

EF — неизвестный уровень Ферми, k — постоянная Больцмана, T — температура. Из условия электронейтральности ni=piдля собственного полупроводника можно определить положение уровня Ферми:

.

Отсюда видно, что в собственном полупроводнике уровень Ферми находится вблизи середины запрещённой зоны. Это даёт для концентрации собственных носителей

,

где Eg — ширина запрещённой зоны и Nc(v) определяется следующим выражением

где mn mp — эффективные массы электронов и дырок в полупроводнике, h — постоянная Планка. Отсюда видно, что чем шире запрещённая зона полупроводника, тем меньше собственных носителей генерируется при данной температуре, и чем выше температура, тем больше носителей в полупроводнике.

Литература

  • Sze, Simon M. Physics of Semiconductor Devices (2nd ed.). — John Wiley and Sons (WIE), 1981. — ISBN 0-471-05661-8
  • Kittel, Ch. Introduction to Solid State Physics. — John Wiley and Sons, 2004. — ISBN 0-471-41526-X

Собственный полупроводник — Студопедия

Носители заряда в полупроводниках. (Возникновение свободных носителей заряда в полупроводниках i-, n- и p-типа)

Собственными полупроводниками или полупроводниками типа i (от английского intrinsic — собственный) называются чистые полупроводники, не содержащие примесей. Примесными полупроводникам называются полупроводники, содержащие примеси, валентность которых отличается от валентности основных атомов. Они подразделяются на электронные и дырочные.

Собственный полупроводник

Собственные полупроводники имеют кристаллическую структуру, характеризующуюся периодическим расположением атомов в узлах пространственной кристаллической решетки. В такой решетке каждый атом взаимно связан с четырьмя соседними атомами ковалентными связями , в результате которых происходит обобществление валентных электронов и образование устойчивых электронных оболочек, состоящих из восьми электронов. При температуре абсолютного нуля (T=0° K) все валентные электроны находятся в ковалентных связях, следовательно, свободные носители заряда отсутствуют, и полупроводник подобен диэлектрику. При повышении температуры или при облучении полупроводника лучистой энергией валентный электрон может выйти из ковалентной связи и стать свободным носителем электрического заряда. При этом ковалентная связь становится дефектной, в ней образуется свободное (вакантное) место, которое может занять один из валентных электронов соседней связи, в результате чего вакантное место переместится к другой паре атомов. Перемещение вакантного места внутри кристаллической решетки можно рассматривать как перемещение некоторого фиктивного (виртуального) положительного заряда, величина которого равна заряду электрона. Такой положительный заряд принято называть дыркой.


Процесс возникновения свободных электронов и дырок, обусловленный разрывом ковалентных связей, называется тепловой генерацией носителей заряда. Его характеризуют скоростью генерации G, определяющей количество пар носителей заряда, возникающих в единицу времени в единице объема. Скорость генерации тем больше, чем выше температура и чем меньше энергия, затрачиваемая на разрыв ковалентных связей. Возникшие в результате генерации электроны и дырки, находясь в состоянии хаотического теплового движения, спустя некоторое время, среднее значение которого называется временем жизни носителей заряда, встречаются друг с другом, в результате чего происходит восстановление ковалентных связей. Этот процесс называется рекомбинацией носителей заряда и характеризуется скоростью рекомбинации R, которая определяет количество пар носителей заряда, исчезающих в единицу времени в единице объема. Произведение скорости генерации на время жизни носителей заряда определяет их концентрацию, то есть количество электронов и дырок в единице объема. При неизменной температуре генерационно- рекомбинационные процессы находятся в динамическом равновесии, то есть в единицу времени рождается и исчезает одинаковое количество носителей заряда (R=G). Это условие называется законом равновесия масс.


Состояние полупроводника, когда R=G, называется равновесным; в этом состоянии в собственном полупроводнике устанавливаются равновесные концентрации электронов и дырок, обозначаемые ni и pi . Поскольку электроны и дырки генерируются парами, то выполняется условие: ni=pi . При этом полупроводник остается электрически нейтральным, т.к. суммарный отрицательный заряд электронов компенсируется суммарным положительным зарядом дырок. Это условие называется законом нейтральности заряда. При комнатной температуре в кремнии ni=pi=1,4· 1010 см-3, а в германии n

i=pi=2,5· 1013 см-3. Различие в концентрациях объясняется тем, что для разрыва ковалентных связей в кремнии требуются большие затраты энергии, чем в германии. С ростом температуры концентрации электронов и дырок возрастают по экспоненциальному закону.

4.2. Собственные полупроводники

Собственный полупроводник – это полупроводник без примесей или с концентрацией примеси настолько малой, что она не оказывает существенного влияния на удельную проводимость полупроводника.Энергетические диаграммы собственного полупроводника приведены на рис.3.1.

При абсолютном нуле температуры валентная зона полностью заполнена электронами, а зона проводимости – пуста. При повышении температуры происходит тепловая генерацияносителей заряда: часть электронов с верхних уровней валентной зоны могут быть переброшены в зону проводимости. Таким образом, в свободной зоне появляются свободные электроны, а в валентной зоне остаются вакантные места – дырки, они ведут себя во внешнем поле как частицы с положительным зарядом. Дырки являются положительными носителями заряда в полупроводниках. Во внешнем электрическом поле дырки движутся в сторону, противоположную электронам. Такого рода проводимость называется дырочной. Таким образом, у собственных полупроводников наблюдается двоякого рода проводимость: электронная и дырочная.

а)

б)

Рис. 4.1. Энергетические диаграммы собственного полупроводника: а) – при T=0; б) – при T>0

Процесс тепловой генерации возможен даже при очень низких температурах из-за значительных флуктуаций энергий тепловых колебаний атомов относительно узлов кристаллической решетки. Одновременно с генерацией носителей идет противоположный процесс, называемый рекомбинацией: возвращение электронов из зоны проводимости на вакантные места в валентной зоне, в результате чего исчезает пара носителей заряда (электрон и дырка). В собственном полупроводнике при каждой температуре устанавливается равновесие между процессами генерации и рекомбинации, при котором концентрации электронов и дырок одинаковы.

Процесс тепловой генерации пары “электрон – дырка” можно показать на плоской модели кристаллической решетки полупроводника, например кремния (рис.4.2). Он имеет решетку типа решетки алмаза, в которой каждый атом окружен четырьмя ближайшими соседями. Связь с каждым из соседних атомов осуществляется с помощью пары электронов (ковалентная связь). Разрыв связи на рис.4.2 показан стрелкой.

Обозначим собственные концентрации электронов и дырок через niи piсоответственно. (Индексом i будем помечать все величины, характеризующие собственный полупроводник; по-английски intrinsic означает собственный). С ростом температуры концентрация собственных носителей заряда растет по экспоненциальному закону

. (4.2.1)

Здесь k— постоянная Больцмана;T– температура;NcиNv– константы, имеющие смысл эффективного числа уровней в зоне проводимости и валентной зоне соответственно;Ec-дно зоны проводимости,Ev– потолок валентной зоны,EF–уровень Ферми. В собственных полупроводниках уровень Ферми располагается вблизи середины запрещенной зоны, поэтому выражение (4.1) можно записать, используя ширину запрещенной зоныE

. (4.2.2)

4.3.Примесные полупроводники

До сих пор мы рассматривали чистый полупроводниковый материал, обладающий собственной проводимостью. В собственном полупроводнике концентрации электронов и дырок одинаковы и зависят от температуры. Управлять числом носителей заряда в таком полупроводнике сложно. Поэтому для изготовления микросхем и большинства полупроводниковых приборов применяют примесные полупроводники. Их электрические характеристики в основном определяются типом и количеством легирующей примеси. Именно поэтому важное практическое значение имеют такие материалы, у которых ощутимая собственная концентрация носителей заряда появляется при возможно более высокой температуре, т.е. полупроводники с достаточно большой шириной запрещенной зоны. В рабочем диапазоне температур полупроводникового прибора поставщиками основного количества носителей заряда являются примеси.

Различают примеси замещения и примеси внедрения. Если примесные атомы находятся в узлах кристаллической решетки, замещая собой атомы основного вещества, то такую примесь называют примесью замещения. Если же примесные атомы располагаются в междуузлиях, несколько раздвигая кристаллическую решетку, то такую примесь называют примесью внедрения. В полупроводниковой технологии, как правило, используютсяпримеси замещения, создающие дискретные энергетические уровни в запрещенной зоне основного вещества. Примеси обычно вводятся в очень небольших концентрациях. Их атомы расположены в полупроводнике на таких больших расстояниях друг от друга, что не взаимодействуют между собой. Поэтому нет расщепления примесных уровней. Вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала. Примесные уровни в обычном пространстве существуют лишь вблизи самих примесных атомов. Таким образом, энергетические уровни примеси дискретны и локальны. Чтобы подчеркнуть это, на энергетических диаграммах примесные уровни часто изображают пунктирной линией.

При большой концентрации примесей в результате взаимодействия примесных атомов между собой примесные уровни одного типа расщепляются в энергетическую примесную зону. Столь высокие концентрации примесей создают только при изготовлении туннельных и обращенных диодов — в остальных полупроводниковых приборах применяют низкие концентрации примесей. В дальнейшем мы будем рассматривать низкие концентрации примесей.

Мелкие, т.е. расположенные недалеко от краев запрещенной зоны, уровни создают атомы примеси, валентность которых отличается от валентности основных атомов на единицу. Рассмотрим механизм появления дополнительных носителей заряда при легированииполупроводника (т.е. при введении в него примесей).

Полупроводник — это… Что такое Полупроводник?

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примеси

Подвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля

При этом, вообще говоря, подвижность является тензором:

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с).

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка
 — масса электрона
 — температура;
 — уровень проводимой зоны
— уровень Ферми;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка;
 — масса дырки;
 — температура;
 — уровень Ферми;
 — уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где  — удельное сопротивление,  — подвижность электронов,  — подвижность дырок,  — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)
Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где  — термодинамическое напряжение,  — концентрация электронов,  — концентрация дырок,  — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

ГруппаIIBIIIAIVAVAVIA
Период
25 B6 C7 N
313 Al14 Si15 P16 S
430 Zn31 Ga32 Ge33 As34 Se
548 Cd49 In50 Sn51 Sb52 Te
680 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где  — ширина запрещённой зоны,  — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где  — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применние получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
ПараметрыAlSbGaSbInSbAlAsGaAsInAs
Температура плавления, К1333998798187315531218
Постоянная решётки, Å6,146,096,475,665,696,06
Ширина запрещённой зоны ΔE, эВ0,520,70,182,21,320,35
Диэлектрическая проницаемость ε8,414,015,9
Подвижность, см²/(В·с):
электронов50500060 00040003400[3]
дырок15010004000400460[3]
Показатель преломления света, n3,03,74,13,23,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-65,5·10-65,7·10-65,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-х компонентные полупроводники
    • Антимонид алюминия, AlSb
    • Арсенид алюминия, AlAs
    • Нитрид алюминия, AlN
    • Фосфид алюминия, AlP
    • Нитрид бора, BN
    • Фосфид бора, BP
    • Арсенид бора, BAs
    • Антимонид галлия, GaSb
    • Арсенид галлия, GaAs
    • Нитрид галлия, GaN
    • Фосфид галлия, GaP
    • Антимонид индия, InSb
    • Арсенид индия, InAs
    • Нитрид индия, InN
    • фосфид индия, InP
  • 3-х компонентные полупроводники
    • AlxGa1-xAs
    • InGaAs, InxGa1-xAs
    • InGaP
    • AlInAs
    • AlInSb
    • GaAsN
    • GaAsP
    • AlGaN
    • AlGaP
    • InGaN
    • InAsSb
    • InGaSb
  • 4-х компонентные полупроводники
    • AlGaInP, InAlGaP, InGaAlP, AlInGaP
    • AlGaAsP
    • InGaAsP
    • AlInAsP
    • AlGaAsN
    • InGaAsN
    • InAlAsN
    • GaAsSbN
  • 5-ти компонентные полупроводники

Группа II-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники
    • CdZnTe, CZT
    • HgCdTe
    • HgZnTe
    • HgZnSe

Группа I-VII

  • 2-х компонентные полупроводники

Группа IV-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники

Группа V-VI

  • 2-х компонентные полупроводники

Группа II—V

  • 2-х компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См. также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
  2. Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.

Ссылки

Собственные полупроводники — Студопедия

Так же как и в металлах, электрический ток в полупроводниках связан с дрейфом носителей зарядов. Как уже было сказано ранее, в металлах образуется такая кристаллическая структура, в которой атомы металла находятся на строго определенном расстоянии друг от друга в среде коллективизированных электронов. Эти коллективизированные или обобществленные электроны не локализуются вблизи своих атомов, а свободно перемещаются между атомами, образуя “электронный газ”.

В полупроводниках появление носителей заряда определяется рядом факторов, важнейшими из которых является чистота материала и его температура. В зависимости от степени чистоты полупроводники разделяются на собственные и примесные. Собственный полупроводник или полупроводник типа i (от английского слова intrinsic – собственный, внутренний) — это полупроводник, не содержащий примесных атомов другой валентности, влияющих на его электропроводность. В реальных условиях в кристаллической решетке полупроводника всегда существуют примеси, однако их концентрация настолько мала, что ею можно пренебречь.

Рассмотрим каким образом атомы вещества образуют твердое тело, имеющее кристаллическую решетку. Кристаллическая решетка образуется под действием химической связи. Одним из важнейших типов химической связи является ковалентная связь, которая осуществляется парой электронов, общих для двух атомов, образующих связь.

Рис.4.2 поясняет механизм образования ковалентной связи между двумя простейшими атомами – атомами водорода, имеющими по одному валентному электрону на внешней электронной оболочке. Внешние электронные оболочки отдельных атомов при их сближении перекрывают друг друга (рис.4.2), в результате чего возрастает плотность отрицательного заряда в межъядерном пространстве. Это приводит к появлению сил притяжения, уравновешивающих силы взаимного отталкивания между ядрами. Такая химическая связь между атомами и называется ковалентной связью. Перекрытие электронных оболочек сблизившихся атомов приводит к обобществлению валентных электронов. В этом случае электрон принадлежит уже не одному атому, а нескольким атомам, образующим твердое тело.


В отличие от проводников, в которых обобществленные электроны свободно перемещаются между атомами, образуя “электронный газ”, обобществленные электроны в полупроводнике не могут свободно перемещаться, а локализуются вблизи своих атомов.


Рассмотрим в качестве примера собственного полупроводника типичный электронный полупроводник – химически чистый кремний Si. Он является элементом 4-й группы таблицы Менделеева. Следовательно, атом кремния имеет

на внешней оболочке четыре валентных электрона. Когда атомы кремния сближаются между собой, то между ними возникает ковалентная химическая связь, в результате чего образуется твердое тело.

 
 

Рис.4.2. Образование ковалентной связи в двухатомной молекуле водорода H2 .

Каждый атом кремния в кристаллической решетке связан с четырьмя ближайшими соседними атомами ковалентной связью, в которой участвуют два электрона (рис.4.3). В такой системе также происходит обобществление валентных электронов. Поскольку валентность атомов равна четырем, то вокруг каждого из атомов, кроме четырех собственных электронов, вращаются еще четыре соседних электрона. Вследствие этого вокруг каждого атома образуются прочные электронные оболочки, состоящие из восьми обобществленных валентных электронов (рис.4.3). Такая связь характеризуется очень высокой прочностью. Чтобы освободить электрон из такой связи, требуется определенная энергия. В связи с этим чистые полупроводники при 0 К и отсутствии внешних энергетических воздействий ведут себя как диэлектрики. В собственном полупроводнике при температуре абсолютного нуля валентная зона полностью заполнена электронами, а зона проводимости абсолютно свободна. Поэтому собственный полупроводник и ведет себя как идеальный диэлектрик.

 
 

Рис.4.3. Плоская модель кристаллической решетки чистого кремния.

В соответствии с положениями квантовой теории вероятность P(W) заполнения электронами энергетических уровней W определяется функцией Ферми-Дирака:

. (4.1)

Здесь W – энергия уровня, вероятность заполнения которого рассчитывается,

WF – энергия Ферми (уровень Ферми), это максимальная энергия, которую могут иметь электроны при температуре абсолютного нуля,

k – постоянная Больцмана,

Т – термодинамическая температура.

Как следует из формулы (4.1), при Т=0 К функция Ферми-Дирака обладает следующими свойствами: P(W)=1, если W WF и P(W)=0, если W>WF . Это значит, что при Т=0 К Все электроны находятся на уровне Ферми, лежащем посередине запрещенной зоны (рис.4.1).

Если кристаллической решетке сообщить некоторое дополнительное количество энергии, например, путем нагрева, света или радиоактивного облучения, то электрон может разорвать и покинуть ковалентную связь. Электрон превращается в свободный носитель n отрицательного электрического заряда (от латинского negative – отрицательный). Таким образом, появляется вероятность того, что некоторые электроны окажутся в зоне проводимости. Чем выше будет температура, тем больше вероятность перехода электронов на свободные уровни. В результате ухода электрона ковалентная связь становится дефектной – в ней не будет хватать одного электрона с отрицательным зарядом. В результате образуется “вакантное” место p (от латинского positive – положительный), которое может занять один из валентных электронов соседней связи. При этом вакантное место p перемещается к другому атому. Перемещение вакантного места p внутри кристаллической решетки принято рассматривать как перемещение некоторой квазичастицы, обладающей положительным зарядом. Такая квазичастица называется дыркой. Величина положительного заряда квазичастицы равна заряду электрона.На самом деле в этом случае движутся только электроны, но их эстафетное перескакивание с атома на атом можно формально описать как движение одной дырки, перемещающейся в направлении, обратном направлению движения электронов, т. е. в направлении поля.

На рис.4.1 показано, как изменяется функция вероятности заполнения электронами энергетических уровней при увеличении температуры Т. На рис.4.1 температура Т2 больше чем температура Т1. Как видно из рис.4.1, при нагревании полупроводника электроны начинают заполнять уровни с более высокой энергией. Средняя энергия электронов остается без изменения и при любой температуре для уровня с энергией W=WF вероятность заполнения его электронами равна 0,5. Функция вероятности для дырок аналогична функции вероятности для электронов. Различие состоит лишь в том, что для дырок энергия возрастает вниз от уровня Ферми. Это значит, что чем «глубже» находится дырка, тем больше ее энергия.

Таким образом, в собственном полупроводнике под действием внешней энергии всегда возникает (генерируется) пара носителей зарядов – электрон e и дырка p (рис4.3). Скорость генерации G определяется количеством пар носителей заряда, генерируемых в единицу времени. Возникшие в результате генерации носители заряда находятся в состоянии хаотического движения, средняя тепловая скорость которого определяется по формуле:

(4.2 )

Здесь k=1,38·10-23Дж/К=8,62·10-5эВ – постоянная Больцмана.

T – термодинамическая температура;

— эффективная масса носителя заряда.

Двигаясь хаотически, свободные электроны могут занимать вакантные места в ковалентных связях. При этом прекращает свое существование пара носителей заряда – электрон и дырка. Это явление называют рекомбинацией. Скорость рекомбинации R определяется количеством пар носителей заряда, исчезающих в единицу времени.

Каждый из подвижных носителей заряда существует (“живет”) в течение некоторого промежутка времени, среднее значение которого называют временем жизни носителей заряда и обозначают для электронов , а для дырок . В собственном полупроводнике . В равновесном состоянии генерация и рекомбинация протекают с одинаковой скоростью, поэтому в полупроводнике устанавливается собственная концентрация электронов, обозначаемая , и собственная концентрация дырок, обозначаемая . Поскольку электроны и дырки генерируются попарно, то в собственном полупроводнике выполняется условие . При комнатной температуре в кремнии =1,4·1010см-3, а в германии =2,5·1013см-3. С увеличением температуры собственные концентрации электронов и дырок растут по экспоненциальному закону. Таким образом, проводимость полупроводника всегда является возбужденной, т.е. она появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т.д.).

На рис.4.4 приведена энергетическая диаграмма собственного полупроводника, т. е. такого, у которого электроны в зону свободных энергетических уровней (зону проводимости) могут поставляться только из заполненной электронами зоны (валентной зоны). На рис.4.4 электроны обозначены черными кружками, а дырки — светлыми. При сообщении кристаллической решетке некоторого количества энергии, например, путем нагрева, электроны с верхних уровней валентной зоны могут переходить на нижние уровни свободной зоны (зоны проводимости). Свободный электрон обладает энергией, большей той, которую он имел в связанном состоянии, на величину, большую или равную энергии ширины запрещенной зоны . Скорость тепловой генерации обратно пропорциональна ширине запрещенной зоны и прямо пропорциональна температуре T. Чем шире запрещенная зона , тем меньше концентрация собственных носителей заряда.

Распределение электронов по уровням энергии, изображенное на рис.4.4, соответствует некоторой температуре Т, при которой в зону проводимости перешло несколько электронов, образовав в валентной зоне соответствующее число дырок. Стрелками с буквой G на рис.4.4 показан процесс генерации пар носителей заряда, а стрелками с буквой R – процесс рекомбинации носителей заряда, когда электрон возвращается в валентную зону на вакантное место дырки. При этом исчезают два носителя заряда: электрон n и дырка p. Буквы G и R характеризуют скорость генерации и скорость рекомбинации пар носителей заряда, т. е. количество пар носителей заряда, генерируемых и исчезающих в единицу времени.

Рис.4.4. Зонная диаграмма собственного полупроводника.

Так как при каждом акте возбуждения в собственном полупроводнике одновременно создаются два заряда противоположных знаков, то общее число носителей заряда в единице объема будет в два раза больше числа электронов в зоне проводимости, т. е.

; (4.3)

Индекс i у концентрации электронов и концентрации дырок, как и было ранее, означает, что это собственные носители зарядов.

Поскольку в полупроводнике имеются свободные электрические заряды, то под действием электрического поля с напряженностью E в полупроводнике возникает направленное движение этих зарядов, т.е. возникает электрический ток. В создании электрического тока принимают участие как электроны, так и дырки. Ток, создаваемый электронами, определяется суммарным количеством электронов, переносимых за единицу времени через площадь, перпендикулярную направлению электрического поля:

(4.4)

Здесь Qn – суммарный заряд, переносимый электронами за время t через поперечное сечение полупроводника S, перпендикулярное направлению электрического поля; e=1,602·10-19Кл – заряд электрона, ni – концентрация электронов в зоне проводимости, т.е. число электронов в единице объема; V — объем электронов, проходящий через сечение S за время t; l – длина объема V, в направлении движения электронов; — средняя скорость упорядоченного движения электронов, возникающая под действием электрического поля (дрейфовая скорость).

Плотность тока , создаваемая электронами будет равна:

(4.5)

Средняя скорость электронов пропорциональна напряженности поля:

(4.6)

Здесь — коэффициент пропорциональности, называемый подвижностью электронов, м2/(В·с).

Подставив выражение (4.6) в равенство (4.5), получим закон Ома в дифференциальной форме :

. (4.7)

Здесь — удельная электронная проводимость собственного полупроводника.

Аналогично запишем для дырочной проводимости:

. (4.8)

Здесь — удельная дырочная проводимость собственного полупроводника; — концентрация дырок в валентной зоне; — подвижность дырок.

Учитывая, что в собственном полупроводнике электрический ток обусловлен движением электронов и дырок, получим для суммарной плотности тока:

(4.9)

Удельная проводимость собственного полупроводника.

(4.10)

Удельное сопротивление собственного полупроводника будет равно:

(4.11)

Итак, в результате процессов возбуждения G и рекомбинации R при любой температуре тела устанавливается равновесная концентрация возбужденных носителей заряда:

электронов , (4.12)

дырок (4.13)

где — ширина запрещенной зоны полупроводника; и — постоянные величины для концентрации электронов в свободной зоне и дырок в валентной зоне. Коэффициент, равный двум, в скобках показателя экспоненты введен в связи с тем, что в собственном полупроводнике уровень Ферми находится в середине запрещенной зоны. Действительно, для “переброса” электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны . При появлении электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия затрачивается на образование пары носителей заряда. Чтобы определить энергию, необходимую для образования одного носителя заряда, энергия должна делиться на две равные части.

Из выражений (4.12) и (4.13) следует, что концентрация зарядов, а следовательно, и удельная проводимость полупроводника растет с ростом температуры по экспоненциальной зависимости.

При приложении к кристаллу внешнего электрического поля свободные электроны перемещаются против поля, а дырки – в направлении поля. Однако, хотя электроны и движутся против поля, создают обычный ток, совпадающий с внешним приложенным полем. Следовательно, электронный и дырочный токи текут в одном и том же направлении и поэтому складываются.

Подвижности электронов ип и дырок ир в выражении (4.9) неодинаковы. Электроны и дырки обладают различной инерционностью при движении в поле кристаллической решетки полупроводника, т. е. отличаются друг от друга эффективными массами т*п и т*р . В большинстве случаев т*п <т*р. Отсюда собственная электропроводность полупроводников имеет слабо преобладающий электронный характер.

Задача 4.1. Вычислить отношение полного тока через собственный полупроводник из германия к составляющей тока, обусловленной дырочной проводимостью. Принять собственную концентрацию носителей заряда при комнатной температуре ni=2,1·1019м-3, подвижность электронов un=0,39м2/(В·с), подвижность дырок up=0,19м2/(В·с).

Решение. Отношение полного тока к составляющей, обусловленной дырочной проводимостью в соответствии с формулами (4.9) и (4.10) будет равно:

.

С учетом того, что в собственном полупроводнике концентрации электронов ni и дырок pi будут равны, получим:

.

Таким образом, отношение полного тока к его дырочной составляющей в собственном полупроводнике из германия составляет 3,05.

материалы для подготовки к ЕГЭ по Физике

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: полупроводники, собственная и примесная проводимость полупроводников.

До сих пор, говоря о способности веществ проводить электрический ток, мы делили их на проводники и диэлектрики. Удельное сопротивление обычных проводников находится в интервале Ом·м; удельное сопротивление диэлектриков превышает эти величины в среднем на порядков: Ом·м.

Но существуют также вещества, которые по своей электропроводности занимают промежуточное положение между проводниками и диэлектриками. Это полупроводники: их удельное сопротивление при комнатной температуре может принимать значения в очень широком диапазоне Ом·м. К полупроводникам относятся кремний, германий, селен, некоторые другие химические элементы и соединения (Полупроводники чрезвычайно распространены в природе. Например, около 80% массы земной коры приходится на вещества, являющиеся полупроводниками). Наиболее широко примененяются кремний и германий .

Главная особенность полупроводников заключается в том, что их электропроводность резко увеличивается с повышением температуры. Удельное сопротивление полупроводника убывает с ростом температуры примерно так, как показано на рис. 1.

Slider

Рис. 1. Зависимость для полупроводника

Иными словами, при низкой температуре полупроводники ведут себя как диэлектрики, а при высокой — как достаточно хорошие проводники. В этом состоит отличие полупроводников от металлов: удельное сопротивление металла, как вы помните, линейно возрастает с увеличением температуры.

Между полупроводниками и металлами имеются и другие отличия. Так, освещение полупроводника вызывает уменьшение его сопротивления (а на сопротивление металла свет почти не оказывает влияния). Кроме того, электропроводность полупроводников может очень сильно меняться при введении даже ничтожного количества примесей.

Опыт показывает, что, как и в случае металлов, при протекании тока через полупроводник не происходит переноса вещества. Стало быть, электрический ток в полупроводниках обусловлен движением электронов.

Уменьшение сопротивления полупроводника при его нагревании говорит о том, что повышение температуры приводит к увеличению количества свободных зарядов в полупроводнике. В металлах ничего такого не происходит; следовательно, полупроводники обладают иным механизмом электропроводности, чем металлы. И причина этого — различная природа химической связи между атомами металлов и полупроводников.

Ковалентная связь

Металлическая связь, как вы помните, обеспечивается газом свободных электронов, который, подобно клею, удерживает положительные ионы в узлах кристаллической решётки. Полупроводники устроены иначе — их атомы скрепляет ковалентная связь. Давайте вспомним, что это такое.

Электроны, находящиеся на внешнем электронном уровне и называемые валентными, слабее связаны с атомом, чем остальные электроны, которые расположены ближе к ядру. В процессе образования ковалентной связи два атома вносят «в общее дело» по одному своему валентному электрону. Эти два электрона обобществляются, то есть теперь принадлежат уже обоим атомам, и потому называются общей электронной парой (рис. 2).

\rho = \rho (T)

Рис. 2. Ковалентная связь

Обобществлённая пара электронов как раз и удерживает атомы друг около друга (с помощью сил электрического притяжения). Ковалентная связь — это связь, существующая между атомами за счёт общих электронных пар. По этой причине ковалентная связь называется также парноэлектронной.

Кристаллическая структура кремния

Теперь мы готовы подробнее изучить внутреннее устройство полупроводников. В качестве примера рассмотрим самый распространённый в природе полупроводник — кремний. Аналогичное строение имеет и второй по важности полупроводник — германий.

Пространственная структура кремния представлена на рис. 3 (автор картинки — Ben Mills). Шариками изображены атомы кремния, а трубки, их соединяющие, — это каналы ковалентной связи между атомами.

\rho = \rho (T)

Рис. 3. Кристаллическая структура кремния

Обратите внимание, что каждый атом кремния скреплён с четырьмя соседними атомами. Почему так получается?

Дело в том, что кремний четырёхвалентен — на внешней электронной оболочке атома кремния расположены четыре валентных электрона. Каждый из этих четырёх электронов готов образовать общую электронную пару с валентным электроном другого атома. Так и происходит! В результате атом кремния окружается четырьмя пристыковавшимися к нему атомами, каждый из которых вносит по одному валентному электрону. Соответственно, вокруг каждого атома оказывается по восемь электронов (четыре своих и четыре чужих).

Более подробно мы видим это на плоской схеме кристаллической решётки кремния (рис. 4).

\rho = \rho (T)

Рис. 4. Кристаллическая решётка кремния

Ковалентные связи изображены парами линий, соединяющих атомы; на этих линиях находятся общие электронные пары. Каждый валентный электрон, расположенный на такой линии, большую часть времени проводит в пространстве между двумя соседними атомами.

Однако валентные электроны отнюдь не «привязаны намертво» к соответствующим парам атомов. Происходит перекрытие электронных оболочек всех соседних атомов, так что любой валентный электрон есть общее достояние всех атомов-соседей. От некоторого атома 1 такой электрон может перейти к соседнему с ним атому 2, затем — к соседнему с ним атому 3 и так далее. Валентные электроны могут перемещаться по всему пространству кристалла — они, как говорят, принадлежат всему кристаллу (а не какой-либо одной атомной паре).

Тем не менее, валентные электроны кремния не являются свободными (как это имеет место в металле). В полупроводнике связь валентных электронов с атомами гораздо прочнее, чем в металле; ковалентные связи кремния не разрываются при невысоких температурах. Энергии электронов оказывается недостаточно для того, чтобы под действием внешнего электрического поля начать упорядоченное движение от меньшего потенциала к большему. Поэтому при достаточно низких температурах полупроводники близки к диэлектрикам — они не проводят электрический ток.

Собственная проводимость

Если включить в электрическую цепь полупроводниковый элемент и начать его нагревать, то сила тока в цепи возрастает. Следовательно, сопротивление полупроводника уменьшается с ростом температуры. Почему это происходит?

При повышении температуры тепловые колебания атомов кремния становятся интенсивнее, и энергия валентных электронов возрастает. У некоторых электронов энергия достигает значений, достаточных для разрыва ковалентных связей. Такие электроны покидают свои атомы и становятся свободными (или электронами проводимости) — точно так же, как в металле. Во внешнем электрическом поле свободные электроны начинают упорядоченное движение, образуя электрический ток.

Чем выше температура кремния, тем больше энергия электронов, и тем большее количество ковалентных связей не выдерживает и рвётся. Число свободных электронов в кристалле кремния возрастает, что и приводит к уменьшению его сопротивления.

Разрыв ковалентных связей и появление свободных электронов показан на рис. 5. На месте разорванной ковалентной связи образуется дырка — вакантное место для электрона. Дырка имеет положительный заряд, поскольку с уходом отрицательно заряженного электрона остаётся нескомпенсированный положительный заряд ядра атома кремния.

\rho = \rho (T)

Рис. 5. Образование свободных электронов и дырок

Дырки не остаются на месте — они могут блуждать по кристаллу. Дело в том, что один из соседних валентных электронов, «путешествуя» между атомами, может перескочить на образовавшееся вакантное место, заполнив дырку; тогда дырка в этом месте исчезнет, но появится в том месте, откуда электрон пришёл.

При отсутствии внешнего электрического поля перемещение дырок носит случайный характер, ибо валентные электроны блуждают между атомами хаотически. Однако в электрическом поле начинается направленное движение дырок. Почему? Понять это несложно.

На рис. 6 изображён полупроводник, помещённый в электрическое поле . В левой части рисунка — начальное положение дырки.

\vec{E}

Рис. 6. Движение дырки в электрическом поле

Куда сместится дырка? Ясно, что наиболее вероятны перескоки «электрон > дырка» в направлении против линий поля (то есть к «плюсам», создающим поле). Один из таких перескоков показан в средней части рисунка: электрон прыгнул влево, заполнив вакансию, а дырка, соответственно, сместилась вправо. Следующий возможный скачок электрона, вызванный электрическим полем, изображён в правой части рисунка; в результате этого скачка дырка заняла новое место, расположенное ещё правее.

Мы видим, что дырка в целом перемещается по направлению линий поля — то есть туда, куда и полагается двигаться положительным зарядам. Подчеркнём ещё раз, что направленное движение дырки вдоль поля вызвано перескоками валентных электронов от атома к атому, происходящими преимущественно в направлении против поля.

Таким образом, в кристалле кремния имеется два типа носителей заряда: свободные электроны и дырки. При наложении внешнего электрического поля появляется электрический ток, вызванный их упорядоченным встречным движением: свободные электроны перемещаются противоположно вектору напряжённости поля , а дырки — в направлении вектора .

Возникновение тока за счёт движения свободных электронов называется электронной проводимостью, или проводимостью n-типа. Процесс упорядоченного перемещения дырок называется дырочной проводимостью,или проводимостью p-типа (от первых букв латинских слов negativus (отрицательный) и positivus (положительный)). Обе проводимости — электронная и дырочная — вместе называются собственной проводимостью полупроводника.

Каждый уход электрона с разорванной ковалентной связи порождает пару «свободный электрон–дырка». Поэтому концентрация свободных электронов в кристалле чистого кремния равна концентрации дырок. Соответственно, при нагревании кристалла увеличивается концентрация не только свободных электронов, но и дырок, что приводит к возрастанию собственной проводимости полупроводника за счёт увеличения как электронной, так и дырочной проводимости.

Наряду с образованием пар «свободный электрон–дырка» идёт и обратный процесс: рекомбинация свободных электронов и дырок. А именно, свободный электрон, встречаясь с дыркой, заполняет эту вакансию, восстанавливая разорванную ковалентную связь и превращаясь в валентный электрон. Таким образом, в полупроводнике устанавливается динамическое равновесие: среднее число разрывов ковалентных связей и образующихся электронно-дырочных пар в единицу времени равно среднему числу рекомбинирующих электронов и дырок. Это состояние динамического равновесия определяет равновесную концентрацию свободных электронов и дырок в полупроводнике при данных условиях.

Изменение внешних условий смещает состояние динамического равновесия в ту или иную сторону. Равновесное значение концентрации носителей заряда при этом, естественно, изменяется. Например, число свободных электронов и дырок возрастает при нагревании полупроводника или при его освещении.

При комнатной температуре концентрация свободных электронов и дырок в кремнии приблизительно равно см. Концентрация же атомов кремния — порядка см. Иными словами, на атомов кремния приходится лишь один свободный электрон! Это очень мало. В металлах, например, концентрация свободных электронов примерно равна концентрации атомов. Соответственно, собственная проводимость кремния и других полупроводников при нормальных условиях мала по сравнению с проводимостью металлов.

Примесная проводимость

Важнейшей особенностью полупроводников является то, что их удельное сопротивление может быть уменьшено на несколько порядков в результате введения даже весьма незначительного количества примесей. Помимо собственной проводимости у полупроводника возникает доминирующая примесная проводимость. Именно благодаря этому факту полупроводниковые приборы нашли столь широкое применение в науке и технике.
Предположим, например, что в расплав кремния добавлено немного пятивалентного мышьяка . После кристаллизации расплава оказывается, что атомы мышьяка занимают места в некоторых узлах сформировавшейся кристаллической решётки кремния.

На внешнем электронном уровне атома мышьяка имеется пять электронов. Четыре из них образуют ковалентные связи с ближайшими соседями — атомами кремния (рис. 7). Какова судьба пятого электрона, не занятого в этих связях?

\rm (As)

Рис. 7. Полупроводник n-типа

А пятый электрон становится свободным! Дело в том, что энергия связи этого «лишнего» электрона с атомом мышьяка, расположенным в кристалле кремния, гораздо меньше энергии связи валентных электронов с атомами кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка в результате теплового движения остаются без пятого электрона, превращаясь в положительные ионы. А кристалл кремния, соответственно, наполняется свободными электронами, которые отцепились от атомов мышьяка.

Наполнение кристалла свободными электронами для нас не новость: мы видели это и выше, когда нагревался чистый кремний (без каких-либо примесей). Но сейчас ситуация принципиально иная: появление свободного электрона, ушедшего из атома мышьяка, не сопровождается появлением подвижной дырки. Почему? Причина та же — связь валентных электронов с атомами кремния гораздо прочнее, чем с атомом мышьяка на пятой вакансии, поэтому электроны соседних атомов кремния и не стремятся эту вакансию заполнить. Вакансия, таким образом, остаётся на месте, она как бы «приморожена» к атому мышьяка и не участвует в создании тока.

Таким образом, внедрение атомов пятивалентного мышьяка в кристаллическую решётку кремния создаёт электронную проводимость, но не приводит к симметричному появлению дырочной проводимости. Главная роль в создании тока теперь принадлежит свободным электронам, которые в данном случае называются основными носителями заряда.

Механизм собственной проводимости, разумеется, продолжает работать и при наличии примеси: ковалентные связи по-прежнему рвутся за счёт теплового движения, порождая свободные электроны и дырки. Но теперь дырок оказывается гораздо меньше, чем свободных электронов, которые в большом количестве предоставлены атомами мышьяка. Поэтому дырки в данном случае будут неосновными носителями заряда.

Примеси, атомы которых отдают свободные электроны без появления равного количества подвижных дырок, называются донорными. Например, пятивалентный мышьяк — донорная примесь. При наличии в полупроводнике донорной примеси основными носителями заряда являются свободные электроны, а неосновными — дырки; иными словами, концентрация свободных электронов намного превышает концентрацию дырок. Поэтому полупроводники с донорными примесями называются электронными полупроводниками, или полупроводниками n-типа (или просто n-полупроводниками).

А насколько, интересно, концентрация свободных электронов может превышать концентрацию дырок в n-полупроводнике? Давайте проведём простой расчёт.

Предположим, что примесь составляет , то есть на тысячу атомов кремния приходится один атом мышьяка. Концентрация атомов кремния, как мы помним, порядка см.

Концентрация атомов мышьяка, соответственно, будет в тысячу раз меньше: см. Такой же окажется и концентрация свободных электронов, отданных примесью — ведь каждый атом мышьяка отдаёт по электрону. А теперь вспомним, что концентрация электронно-дырочных пар, появляющихся при разрывах ковалентных связей кремния, при комнатной температуре примерно равна см. Чувствуете разницу? Концентрация свободных электронов в данном случае больше концентрации дырок на порядков, то есть в миллиард раз! Соответственно, в миллиард раз уменьшается удельное сопротивление кремниевого полупроводника при введении столь небольшого количества примеси.

Приведённый расчёт показывает, что в полупроводниках n-типа основную роль действительно играет электронная проводимость. На фоне столь колоссального превосходства численности свободных электронов вклад движения дырок в общую проводимость пренебрежимо мал.

Можно, наоборот, создать полупроводник с преобладанием дырочной проводимости. Так получится, если в кристалл кремния внедрить трёхвалентную примесь — например, индий . Результат такого внедрения показан на рис. 8.

\rm (In)

Рис. 8. Полупроводник p-типа

Что происходит в этом случае? На внешнем электронном уровне атома индия расположены три электрона, которые формируют ковалентные связи с тремя окружающими атомами кремния. Для четвёртого соседнего атома кремния у атома индия уже не хватает электрона, и в этом месте возникает дырка.

И дырка эта не простая, а особенная — с весьма большой энергией связи. Когда в неё попадёт электрон из соседнего атома кремния, он в ней «застрянет навеки», ибо притяжение электрона к атому индия весьма велико — больше, чем к атомам кремния. Атом индия превратится в отрицательный ион, а в том месте, откуда электрон пришёл, возникнет дырка — но теперь уже обыкновенная подвижная дырка в виде разорванной ковалентной связи в кристаллической решётке кремния. Эта дырка обычным образом начнёт блуждать по кристаллу за счёт «эстафетной» передачи валентных электронов от одного атома кремния к другому.

И так, каждый примесный атом индия порождает дырку, но не приводит к симметричному появлению свободного электрона. Такие примеси, атомы которых захватывают «намертво» электроны и тем самым создают в кристалле подвижную дырку, называются акцепторными.

Трёхвалентный индий — пример акцепторной примеси.

Если в кристалл чистого кремния ввести акцепторную примесь, то число дырок, порождённых примесью, будет намного больше числа свободных электронов, возникших за счёт разрыва ковалентных связей между атомами кремния. Полупроводник с акцепторной примесью — это дырочный полупроводник, или полупроводник p-типа (или просто p-полупроводник).

Дырки играют главную роль при создании тока в p-полупроводнике; дырки — основные носители заряда. Свободные электроны — неосновные носители заряда в p-полупроводнике. Движение свободных электронов в данном случае не вносит существенного вклада: электрический ток обеспечивается в первую очередь дырочной проводимостью.

p–n-переход

Место контакта двух полупроводников с различными типами проводимости (электронной и дырочной) называется электронно-дырочным переходом, или p–n-переходом. В области p–n-перехода возникает интересное и очень важное явление — односторонняя проводимость.

На рис. 9 изображён контакт областей p- и n-типа; цветные кружочки — это дырки и свободные электроны, которые являются основными (или неосновными) носителями заряда в соответствующих областях.

\rm (In)

Рис. 9. Запирающий слой p–n-перехода

Совершая тепловое движение, носители заряда проникают через границу раздела областей.

Свободные электроны переходят из n-области в p-область и рекомбинируют там с дырками; дырки же диффундируют из p-области в n-область и рекомбинируют там с электронами.

В результате этих процессов в электронном полупроводнике около границы контакта остаётся нескомпенсированный заряд положительных ионов донорной примеси, а в дырочном полупроводнике (также вблизи границы) возникает нескомпенсированный отрицательный заряд ионов акцепторной примеси. Эти нескомпенсированные объёмные заряды образуют так называемый запирающий слой , внутреннее электрическое поле которого препятствует дальнейшей диффузии свободных электронов и дырок через границу контакта.

Подключим теперь к нашему полупроводниковому элементу источник тока, подав «плюс» источника на n-полупроводник, а «минус» — на p-полупроводник (рис. 10).

\vec{E_i}

Рис. 10. Включение в обратном направлении: тока нет

Мы видим, что внешнее электрическое поле уводит основные носители заряда дальше от границы контакта. Ширина запирающего слоя увеличивается, его электрическое поле возрастает. Сопротивление запирающего слоя велико, и основные носители не в состоянии преодолеть p–n-переход. Электрическое поле позволяет переходить границу лишь неосновным носителям, однако ввиду очень малой концентрации неосновных носителей создаваемый ими ток пренебрежимо мал.

Рассмотренная схема называется включением p–n-перехода в обратном направлении. Электрического тока основных носителей нет; имеется лишь ничтожно малый ток неосновных носителей. В данном случае p–n-переход оказывается закрытым.

Теперь поменяем полярность подключения и подадим «плюс» на p-полупроводник, а «минус»—на n-полупроводник (рис. 11). Эта схема называется включением в прямом направлении.

\vec{E_i}

Рис. 11. Включение в прямом направлении: ток идёт

В этом случае внешнее электрическое поле направлено против запирающего поля и открывает путь основным носителям через p–n-переход. Запирающий слой становится тоньше, его сопротивление уменьшается.

Происходит массовое перемещение свободных электронов из n-области в p-область, а дырки, в свою очередь, дружно устремляются из p-области в n-область.

В цепи возникает ток , вызванный движением основных носителей заряда (Теперь, правда, электрическое поле препятствует току неосновных носителей, но этот ничтожный фактор не оказывает заметного влияния на общую проводимость).

Односторонняя проводимость p–n-перехода используется в полупроводниковых диодах. Диодом называется устройство, проводящие ток в лишь одном направлении; в противоположном направлении ток через диод не проходит (диод, как говорят, закрыт). Схематическое изображение диода показано на рис. 12.

I

Рис. 12. Диод

В данном случае диод открыт в направлении слева направо: заряды как бы текут вдоль стрелки (видите её на рисунке?). В направлении справа налево заряды словно упираются в стенку — диод закрыт.

Физические основы полупроводников | Electronov.net

Предисловие

Полупроводники или полупроводниковые соединения бывают собственными (чистыми) и с примесью (легированными). В чистых полупроводниках концентрация носителей заряда – свободных электронов и дырок невелика (составляет лишь 1016 – 1018 на 1 см3 вещества; для сравнения, число Авогадро NA = 6.62*1023).

Для снижения удельного сопротивления полупроводника и придания ему определенного типа электропроводности – электронной при преобладании свободных электронов (полупроводник n типа) или дырочной при преобладании дырок (полупроводник p типа) – в чистые полупроводники вносят определенные примеси. Такой процесс называется легированием. В качестве легирующих примесей используют элементы 3 и 5 групп периодической системы элементов Д. И. Менделеева. Легирующие элементы 3 группы создают дырочную электропроводность полупроводниковых материалов и называются акцепторным примесями, элементы 5 группы – электронную электропроводность называют донорными примесями.

Электронно-дырочный p-n переход представляет собой соединение двух полупроводников с различным типом проводимости.

Явление p-n перехода является основой полупроводниковой электроники, т.к. все полупроводниковые элементы представляют собой лишь набор p-n переходов, и различаются только их количеством, порядком следования и т.д. Параметры p-n переходов определяют главную характеристику полупроводниковых элементов – ВАХ (вольт-амперная характеристика).

Также необходимо отметить, что p-n переход обладает нелинейной зависимостью между током, протекающим через него, и приложенным к нему напряжением, вследствие этого все полупроводниковые элементы принципиально нелинейные.

ВАХ p-n перехода рассмотрена в статье про диоды.

Собственные полупроводники

Для лучшего понимания следующего материала неплохо было бы вспомнить школьный курс физики и химии. Ну а чтобы не слишком напрягать свой мозг, мы сделаем это вместе.

Электроны внешней оболочки атома называются валент­ными. Взаимное притяжение атомов осуществляется за счет об­щей пары валентных электронов (ковалентной связи), вращаю­щихся по одной орбите вокруг этих атомов. Валентные электроны как наиболее удаленные от ядра имеют с ним наиболее слабую связь и поэтому под воздействием электри­ческого поля, теплоты, света и других причин могут отделяться от атома или молекулы и становиться свободными.

Процесс отрыва и удаления одного или нескольких элек­тронов от атома или молекулы называется ионизацией.

Электроны в атоме обладают только вполне определенными значениями энергии, составляющими совокупность дискретных уровней энергии атома. В твердом теле при образовании кристал­лической решетки благодаря взаимодействию атомов энергетиче­ские уровни расщепляются и образуют энергетические зоны, со­стоящие из отдельных, близко расположенных по энергии уровней, число которых соответствует числу однородных атомов в данном теле. Совокупность уровней, на каждом из которых могут находиться электроны, называют валентной (разрешенной) зо­ной.

В энергетическом спектре твердого тела можно выделить три зоны: валентную (разрешенную) — 3, запрещенную — 2 и проводимости — 1.

Зонная структураРисунок 1 — Зонная структура.

Валентная зона характеризуется тем, что все энергетиче­ские уровни валентных электронов при температуре 0К заполне­ны ими. Зона проводимости характеризуется наличием электронов, обладаю­щих энергией, которая позволяет им освобождаться от связи с атомами и передвигаться внутри твердого тела под действием внешнего воздействия (например, электрического поля), при температуре 0К эта зона не заполнена электронами.

Запрещенная зона характеризуется тем, что в ее пределах нет энергетических уровней, на которых могли бы находиться электроны.

Ширина запрещенной зоны для большинства полупровод­ников составляет 0.1 — 3 эВ, а у полупроводников, предназначен­ных для создания высокотемпературных приборов, — 6 эВ. Для германия эта величина равна 0.72 эВ, для кремния — 1.12, для арсенида галлия — 1.4, для карбида кремния— 2.3 — 3,1, для фосфида галлия — 2.2 эВ.

Если ширина запрещенной зоны ΔWз > 6 эВ, то при обычных условиях электроны практически не попадают в зону проводимо­сти, в связи с чем, такое вещество не проводит электрический ток и называется диэлектриком. У металлов и их сплавов запрещенная зона отсутствует, т.к. у них зона про­водимости и валентная зона перекрываются. Соответственно они обла­дают хорошей проводимостью и называются проводниками.

В полупроводниках при температуре, отличной от нуля, часть электронов обладает энергией, достаточной для перехода в зону проводимости. Электроны в зоне проводимости становятся свободными, их концентрация в собственном полупроводнике обозначается ni.

Уход электрона из валентной зоны приводит к разрыву ковалентной связи и образованию в этой зоне незаполненного (сво­бодного) энергетического уровня (положительного заряда), назы­ваемого дыркой, концентрация которых в собственном полупроводнике обозначается pi. Валентные электроны соседних атомов под воздействием электрического поля могут переходить на свободные уровни, создавая дырки в другом месте. При этом движение электронов можно рассматривать и как движение по­ложительных зарядов — дырок.

У абсолютно чистого и однородного полупроводника (концен­трация примесей настолько мала, что не оказывает существенного влияния на удельную проводимость полупроводника), при темпе­ратуре, отличной от 0К, образуются свободные электроны и дыр­ки. Процесс образования пар электрон — дырка называется генерацией. После своего возникновения дырка под действием тепловой энергии совершает хаотическое движение в валентной зоне так же, как электрон в зоне проводимости. При этом возмо­жен процесс захвата электронов зоны проводимости дырками ва­лентной зоны. Разорванные ковалентные связи восстанавливаются, а носители заряда — электрон и дырка — исчезают. Процесс ис­чезновения нар электрон — дырка называется рекомбинацией. Он сопровождается выделением энергии, которая идет на нагрев кри­сталлической решетки и частично излучается во внешнюю среду.

Промежуток времени с момента генерации носителя до его исчезновения (рекомбинации) называется временем жизни носи­теля τ, а расстояние, пройденное носителем заряда за время жиз­ни, диффузионной длиной L, Более строго диффузионная длина определяется как расстояние, на котором концентрация носите­лей уменьшается в е раз (е ≈ 2.7). Диффузионная длина и время жизни электронов и дырок связаны между собой соотношениями:

{{L}_{n}}=\sqrt{{{\tau }_{n}}\cdot {{D}_{n}}}\text{,}

{{L}_{p}}=\sqrt{{{\tau }_{p}}\cdot {{D}_{p}}}\text{,}

где:

Dn и Dp – коэффициенты диффузии электронов и дырок соответственно.

Процесс занятия электронами того или иного энергетиче­ского уровня носит вероятностный характер и описывается функ­цией распределения Ферми — Дирака:

F(W)=\frac{1}{{{e}^{\frac{W-{{W}_{f}}}{kT}}}+1}\text{,}

где:

W – энергия свободного электрона;

Wf – энергетический уровень Ферми, функция Ферми для которого равна 0.5 при температурах отличных от 0К;

k – постоянная Больцмана;

Т – абсолютная температура.

В чистом (собственном) полупроводнике энергетический уровень Ферми Wfi можно определить из соотношения:

{{W}_{{{f}_{i}}}}={{W}_{v}}+\frac{\Delta {{W}_{g}}}{2}={{W}_{c}}-\frac{\Delta {{W}_{g}}}{2}\text{,}

где:

Wv и Wc – потолок валентной зоны и дно зоны проводимости соответственно.

Таким образом, уровень Ферми в беспримесном полупроводнике при любой температуре расположен посередине запрещенной зоны.

В собственном полупроводнике в установившемся равновес­ном состоянии процессы генерации выравниваются процессами рекомбинации, скорость которой пропорциональна концентрации электронов и дырок:

{{\upsilon }_{gen}}={{\upsilon }_{rec}}={{n}_{i}}\cdot {{p}_{i}}={{n}_{i}}^{2}={{p}_{i}}^{2}\text{.}

Примесные полупроводники

Зонная структура примесных полупроводников 1

Зонная структура примесных полупроводниковРисунок 2 — Зонная структура примесных полупроводников.

Примесный атом, создающий в запрещенной зоне энергети­ческий уровень, занятый в невозбужденном состоянии электро­нами и отдающий в возбужденном состоянии электрон в зону проводимости, называют донором.

Примесный атом, создающий в запрещенной зоне энергети­ческий уровень свободный от электронов в невозбужденном со­стоянии и способный захватить электрон из валентной зоны при возбуждении, создавая дырки в валентной зоне, называют акцептором.

При внесении в предварительно очищенный кремний, гер­маний примеси пятивалентного элемента — донора (фосфор Р, сурьма Sb. мышьяк As) атомы примеси замещают основные ато­мы в узлах кристаллической решетки. При этом четыре из пяти валентных электронов атома при­меси образуют ковалентные связи с четырьмя соседними атомами полупроводника. Пятый электрон оказывается избыточным.

Энергия ионизации донорных атомов значительно меньше энергии ионизации собственных полупроводников. Поэтому при комнатной температуре избыточные электроны примеси возбуж­даются и переходят в зону проводимости. Атомы примесей, потерявшие избыточный электрон, превращаются в положительные ионы. Количество электронов Nд, переходящих под действием тепловой энергии в зону проводимости с донорного уровня Wд, значительно превышает количество электронов ni, переходящих в зону проводимости из валентной зоны в процессе генерации пар электрон — дырка. Поэтому можно считать, что концентрация электронов проводимости полностью определяется концентрацией донорной примеси nn Nд, а концентрация дырок составляет:

{{p}_{n}}=\frac{{{n}_{i}}^{2}}{{{n}_{n}}}\approx \frac{{{n}_{i}}^{2}}{{{N}_{d}}}\text{,}

Концентрация дырок в донорном полупроводнике значи­тельно ниже, чем в собственном полупроводнике. В связи с этим дырки pn являются неосновными носителями, а электроны nn – основными. Поэтому донорный полупроводник называется элек­тронным полупроводником или полупроводником n-типа.

При добавлении в кристалл германия или кремния примеси трехвалентного элемента — акцептора (галлий Ga. индий In, бор В) атомы примеси замещают в узлах кристаллической решетки атомы полупроводника. Для образования четырех ковалентных связей не хватает одного валентного электрона атомов примеси.

Достаточно небольшой внешней энергии, чтобы электроны из верхних уровней валентной зоны переместились на уровень примеси, образовав недостающие ковалентные связи.

При этом в валентной зоне появляются избыточные уровни (дырки), которые участвуют в создании электрического тока. За счет ионизации атомов исходного материала часть электронов из валентной зоны попадают в зону проводимости. Число дырок в акцепторном полупроводнике превышает число электронов:

{{n}_{p}}=\frac{{{p}_{i}}^{2}}{{{p}_{p}}}\approx \frac{{{p}_{i}}^{2}}{{{N}_{a}}}\text{,}

где:

Nа – концентрация донорной примеси.

Поэтому дырки pp являются основными носителями, а элек­троны np — неосновными. Полупроводники с акцепторной приме­сью носят название дырочных, или полупроводников p-типа.

Полупроводник

| Определение, типы, материалы, применения и факты

Полупроводник , любой из класса кристаллических твердых тел, промежуточных по электропроводности между проводником и изолятором. Полупроводники используются в производстве различных видов электронных устройств, включая диоды, транзисторы и интегральные схемы. Такие устройства нашли широкое применение благодаря своей компактности, надежности, энергоэффективности и невысокой стоимости. В качестве дискретных компонентов они нашли применение в силовых устройствах, оптических датчиках и излучателях света, включая твердотельные лазеры.Они обладают широким спектром возможностей управления током и напряжением и, что более важно, поддаются интеграции в сложные, но легко производимые микроэлектронные схемы. Они являются и будут в обозримом будущем ключевыми элементами для большинства электронных систем, обслуживающих приложения связи, обработки сигналов, вычислений и управления как на потребительском, так и на промышленном рынках.

Британская викторина

Тест по электронике и гаджетам

Кто производитель iPhone?

Полупроводниковые материалы

Твердотельные материалы обычно делятся на три класса: изоляторы, полупроводники и проводники.(При низких температурах некоторые проводники, полупроводники и изоляторы могут стать сверхпроводниками.) На рисунке показаны проводимости σ (и соответствующие удельные сопротивления ρ = 1 / σ), которые связаны с некоторыми важными материалами в каждом из трех классов. Изоляторы, такие как плавленый кварц и стекло, имеют очень низкую проводимость, порядка от 10 −18 до 10 −10 сименс на сантиметр; а проводники, такие как алюминий, имеют высокую проводимость, обычно от 10 4 до 10 6 сименс на сантиметр.Электропроводность полупроводников находится между этими крайними значениями и обычно чувствительна к температуре, освещению, магнитным полям и незначительным количествам примесных атомов. Например, добавление примерно 10 атомов бора (известного как легирующая примесь) на миллион атомов кремния может увеличить его электрическую проводимость в тысячу раз (частично с учетом большой вариабельности, показанной на предыдущем рисунке).

Типичный диапазон проводимости изоляторов, полупроводников и проводников. Encyclopædia Britannica, Inc.

Изучение полупроводниковых материалов началось в начале 19 века. Элементарные полупроводники состоят из отдельных видов атомов, таких как кремний (Si), германий (Ge) и олово (Sn) в столбце IV и селен (Se) и теллур (Te) в столбце VI периодической таблицы. Однако существует множество сложных полупроводников, которые состоят из двух или более элементов. Арсенид галлия (GaAs), например, представляет собой бинарное соединение III-V, которое представляет собой комбинацию галлия (Ga) из столбца III и мышьяка (As) из столбца V.Тройные соединения могут быть образованы элементами из трех разных колонок — например, теллуридом ртути и индия (HgIn 2 Te 4 ), соединением II-III-VI. Они также могут быть образованы элементами из двух столбцов, такими как арсенид алюминия-галлия (Al x Ga 1 — x As), который представляет собой тройное соединение III-V, где как Al, так и Ga происходят из столбец III и нижний индекс x относятся к составу двух элементов от 100 процентов Al ( x = 1) до 100 процентов Ga ( x = 0).Чистый кремний является наиболее важным материалом для приложений интегральных схем, а бинарные и тройные соединения III-V являются наиболее важными для излучения света.

таблица Менделеева Современная версия периодической таблицы элементов. Encyclopdia Britannica, Inc.

До изобретения биполярного транзистора в 1947 году полупроводники использовались только как двухполюсные устройства, такие как выпрямители и фотодиоды. В начале 1950-х годов германий был основным полупроводниковым материалом.Однако он оказался непригодным для многих применений, поскольку устройства, изготовленные из этого материала, демонстрируют высокие токи утечки только при умеренно повышенных температурах. С начала 1960-х годов кремний стал наиболее широко используемым полупроводником, фактически вытеснив германий в качестве материала для изготовления устройств. Это обусловлено двумя основными причинами: (1) кремниевые устройства демонстрируют гораздо более низкие токи утечки и (2) диоксид кремния (SiO 2 ), который является высококачественным изолятором, легко включается в состав кремниевого на базе устройства.Таким образом, кремниевые технологии стали очень продвинутыми и повсеместными: кремниевые устройства составляют более 95 процентов всей проданной во всем мире полупроводниковой продукции.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Многие из составных полупроводников обладают некоторыми определенными электрическими и оптическими свойствами, которые превосходят их аналоги из кремния. Эти полупроводники, особенно арсенид галлия, используются в основном для оптоэлектроники и некоторых радиочастотных (RF) приложений.

Электронные свойства

Описанные здесь полупроводниковые материалы представляют собой монокристаллы; т.е. атомы расположены в трехмерном периодическом порядке. В части А рисунка показано упрощенное двумерное представление собственного (чистого) кристалла кремния, содержащего незначительные примеси. Каждый атом кремния в кристалле окружен четырьмя ближайшими соседями. Каждый атом имеет четыре электрона на своей внешней орбите и делит эти электроны со своими четырьмя соседями.Каждая общая электронная пара представляет собой ковалентную связь. Сила притяжения между электронами и обоими ядрами удерживает два атома вместе. Для изолированных атомов (например, в газе, а не в кристалле) электроны могут иметь только дискретные уровни энергии. Однако, когда большое количество атомов объединяется, чтобы сформировать кристалл, взаимодействие между атомами заставляет дискретные уровни энергии распространяться на энергетические зоны. Когда отсутствует тепловая вибрация (то есть при низкой температуре), электроны в изоляторе или полупроводниковом кристалле полностью заполняют ряд энергетических зон, оставляя остальные энергетические зоны пустыми.Полоса с самым высоким заполнением называется валентной полосой. Следующая зона — это зона проводимости, которая отделена от валентной зоны запрещенной зоной (в кристаллических изоляторах зазоры гораздо больше, чем в полупроводниках). Эта запрещенная зона, также называемая запрещенной зоной, представляет собой область, обозначающую энергии, которыми электроны в кристалле не могут обладать. Большинство важных полупроводников имеют ширину запрещенной зоны от 0,25 до 2,5 электрон-вольт (эВ). Ширина запрещенной зоны кремния, например, составляет 1,12 эВ, а ширина запрещенной зоны арсенида галлия — 1.42 эВ. Напротив, ширина запрещенной зоны алмаза, хорошего кристаллического изолятора, составляет 5,5 эВ.

полупроводниковые связи Три изображения связи полупроводника. Encyclopdia Britannica, Inc.

При низких температурах электроны в полупроводнике связаны в своих соответствующих зонах в кристалле; следовательно, они недоступны для электропроводности. При более высоких температурах тепловая вибрация может разорвать некоторые ковалентные связи с образованием свободных электронов, которые могут участвовать в проводимости тока.Когда электрон удаляется от ковалентной связи, с этой связью связана электронная вакансия. Эта вакансия может быть заполнена соседним электроном, что приводит к смещению положения вакансии с одного узла кристалла на другой. Эту вакансию можно рассматривать как фиктивную частицу, называемую «дыркой», которая несет положительный заряд и движется в направлении, противоположном направлению электрона. Когда к полупроводнику прикладывается электрическое поле, как свободные электроны (теперь находящиеся в зоне проводимости), так и дырки (оставшиеся в валентной зоне) перемещаются через кристалл, создавая электрический ток.Электропроводность материала зависит от количества свободных электронов и дырок (носителей заряда) в единице объема и от скорости, с которой эти носители движутся под действием электрического поля. В собственном полупроводнике существует равное количество свободных электронов и дырок. Однако электроны и дырки обладают разной подвижностью; то есть они движутся с разными скоростями в электрическом поле. Например, для собственного кремния при комнатной температуре подвижность электронов составляет 1500 квадратных сантиметров на вольт-секунду (см 2 / В · с) —i.е., электрон будет двигаться со скоростью 1500 сантиметров в секунду под действием электрического поля один вольт на сантиметр, в то время как подвижность дырок составляет 500 см 2 / В · с. Подвижности электронов и дырок в конкретном полупроводнике обычно уменьшаются с повышением температуры.

электронная дырка: движение Движение электронной дырки в кристаллической решетке. Encyclopdia Britannica, Inc.

Электрическая проводимость в собственных полупроводниках довольно низкая при комнатной температуре.Чтобы добиться более высокой проводимости, можно намеренно ввести примеси (обычно до концентрации одной части на миллион атомов хозяина). Это называется легированием, процесс, который увеличивает проводимость, несмотря на некоторую потерю подвижности. Например, если атом кремния заменен атомом с пятью внешними электронами, таким как мышьяк ( см. , часть B рисунка), четыре электрона образуют ковалентные связи с четырьмя соседними атомами кремния. Пятый электрон становится электроном проводимости, который передается в зону проводимости.Кремний становится полупроводником типа n из-за добавления электрона. Атом мышьяка является донором. Точно так же часть C рисунка показывает, что, если атом с тремя внешними электронами, такими как бор, заменяется атомом кремния, дополнительный электрон принимается для образования четырех ковалентных связей вокруг атома бора, и положительно заряженная дырка образует создан в валентной зоне. Это создает полупроводник типа p , в котором бор является акцептором.

,

Simple English Wikipedia, бесплатная энциклопедия

Электронные компоненты на основе полупроводников

Полупроводник — это материал, который в некоторых случаях будет проводить электричество, но не в других. [1] Хорошие электрические проводники, такие как медь или серебро, легко пропускают электричество через них. [2] Материалы, которые блокируют прохождение электричества, например резина или пластик, называются изоляторами. [2] Изоляторы часто используются для защиты людей от поражения электрическим током.Как следует из названия, полупроводник не проводит так хорошо, как проводник. [3] Кремний — наиболее используемый полупроводник, но также используется арсенид галлия.

Добавляя различные атомы в кристаллическую решетку (сетку) полупроводника, он изменяет его проводимость, создавая полупроводники n-типа и p-типа. Кремний — самый важный коммерческий полупроводник, хотя используются многие другие. Их можно превратить в транзисторы, представляющие собой небольшие усилители. Транзисторы используются в компьютерах, мобильных телефонах, цифровых аудиоплеерах и многих других электронных устройствах.

Подобно другим твердым телам, электроны в полупроводниках могут иметь энергии только в определенных диапазонах (т.е. диапазонах уровней энергии) между энергией основного состояния, соответствующего электронам, прочно связанным с атомными ядрами материала, и энергией свободных электронов. , которая представляет собой энергию, необходимую электрону, чтобы полностью покинуть материал.

Полупроводники изучались в лабораториях еще в 1830-х годах. [4] В 1833 году Майкл Фарадей экспериментировал с сульфидом серебра. [5] Он обнаружил, что при нагревании материал лучше проводит электричество. Это было противоположно тому, как действовала медь. Когда медь нагревается, она проводит меньше электричества. Ряд других ранних экспериментаторов открыли другие свойства полупроводников. В 1947 году в Bell Labs в Нью-Джерси был изобретен транзистор. [6] Это привело к разработке интегральных схем, которые используются сегодня почти во всех электронных устройствах.

Легирование — это процесс добавления небольшой примеси в чистый полупроводник для изменения его электрических свойств. [7] Легированные и умеренно легированные полупроводники называются внешними . Полупроводник, легированный до такой степени, что он больше похож на проводник, чем на полупроводник, называется вырожденным . Большинство полупроводников сделано из кристаллов кремния. [8] Чистый кремний практически не используется, но легированный кремний является основой большинства полупроводников. Силиконовая долина была названа в честь большого количества начинающих полупроводниковых компаний, которые располагались там. [9]

Сегодня полупроводники используются повсеместно.Полупроводники можно найти почти в каждом электронном устройстве. Настольные компьютеры, Интернет, планшеты, смартфоны — все это было бы невозможно без полупроводников. Полупроводники можно превратить в очень точные переключатели с небольшим напряжением. Напряжение, в котором полупроводник не нуждается, можно отправить на другие электрические компоненты устройства. Полупроводники также могут быть очень маленькими, и многие из них могут уместиться в довольно маленькой схеме. Поскольку они могут быть такими маленькими, современные электрические устройства могут быть тонкими и легкими без ущерба для вычислительной мощности.Некоторыми из доминирующих компаний в полупроводниковом бизнесе являются Intel Corporation, Samsung Electronics, TSMC, Qualcomm и Micron Technology. [10]

,Определение

в кембриджском словаре английского языка

ПОЛУПРОВОДНИК | Определение в кембриджском словаре английского языка Тезаурус: синонимы и родственные слова ,

интегральная схема | Типы, использование и функции

Интегральная схема (IC) , также называемая микроэлектронной схемой , микрочипом или микросхемой , сборка электронных компонентов, изготовленная как единый блок, в котором миниатюрные активные устройства (например, транзисторы и диоды) и пассивные устройства (например, конденсаторы и резисторы) и их межсоединения построены на тонкой подложке из полупроводникового материала (обычно кремния).Таким образом, полученная схема представляет собой небольшую монолитную «микросхему», размер которой может составлять всего несколько квадратных сантиметров или всего несколько квадратных миллиметров. Отдельные компоненты схемы обычно имеют микроскопические размеры.

интегральная схема Типичная интегральная схема, изображенная на ногте. Чарльз Фалько / Фотоисследователи

Британская викторина

Тест по электронике и гаджетам

Кто изобрел гибкую фотопленку?

Интегральные схемы появились в результате изобретения транзистора в 1947 году Уильямом Б.Шокли и его команда из Bell Laboratories американской телефонной и телеграфной компании. Команда Шокли (включая Джона Бардина и Уолтера Х. Браттейна) обнаружила, что при определенных обстоятельствах электроны могут образовывать барьер на поверхности определенных кристаллов, и они научились управлять потоком электричества через кристалл, манипулируя этим барьером. Управление потоком электронов через кристалл позволило команде создать устройство, которое могло бы выполнять определенные электрические операции, такие как усиление сигнала, которые ранее выполнялись с помощью электронных ламп.Они назвали это устройство транзистором, от комбинации слов transfer и resistor . Изучение методов создания электронных устройств с использованием твердых материалов стало известно как твердотельная электроника. Твердотельные устройства оказались намного прочнее, с ними проще работать, они более надежны, намного меньше и дешевле электронных ламп. Используя те же принципы и материалы, инженеры вскоре научились создавать другие электрические компоненты, такие как резисторы и конденсаторы.Теперь, когда электрические устройства можно было сделать такими маленькими, самой большой частью цепи была неудобная проводка между устройствами.

транзистор Первый транзистор, изобретенный американскими физиками Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли. © Windell Oskay, www.evilmadscientist.com (CC BY 2.0)

В 1958 году Джек Килби из Texas Instruments, Inc. и Роберт Нойс из Fairchild Semiconductor Corporation независимо друг от друга придумали способ дальнейшего уменьшения размера схемы.Они прокладывали очень тонкие дорожки из металла (обычно алюминия или меди) непосредственно на том же куске материала, что и их устройства. Эти маленькие дорожки действовали как провода. С помощью этого метода вся схема может быть «интегрирована» на едином куске твердого материала и, таким образом, создана интегральная схема (ИС). ИС могут содержать сотни тысяч отдельных транзисторов на едином куске материала размером с горошину. Работать с таким количеством электронных ламп было бы нереально неудобно и дорого. Изобретение интегральной схемы сделало возможными технологии информационного века.Микросхемы сейчас широко используются во всех сферах жизни, от автомобилей до тостеров и аттракционов.

Базовые типы ИС

Аналоговые или линейные схемы обычно используют всего несколько компонентов и, таким образом, являются одними из самых простых типов ИС. Как правило, аналоговые схемы подключаются к устройствам, которые собирают сигналы из окружающей среды или отправляют сигналы обратно в окружающую среду. Например, микрофон преобразует колеблющиеся звуки голоса в электрический сигнал переменного напряжения.Затем аналоговая схема модифицирует сигнал некоторым полезным способом — например, усиливает его или фильтрует нежелательный шум. Такой сигнал затем может быть возвращен в громкоговоритель, который будет воспроизводить тона, первоначально уловленные микрофоном. Другое типичное использование аналоговой схемы — управление каким-либо устройством в ответ на постоянные изменения в окружающей среде. Например, датчик температуры посылает изменяющийся сигнал на термостат, который можно запрограммировать на включение и выключение кондиционера, обогревателя или духовки, как только сигнал достигнет определенного значения.

Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Цифровая схема, с другой стороны, предназначена для приема только напряжений определенных заданных значений. Схема, использующая только два состояния, называется двоичной схемой. При проектировании схемы с двоичными величинами «включено» и «выключено», представляющими 1 и 0 (то есть истина и ложь), используется логика булевой алгебры. (Арифметика также выполняется в двоичной системе счисления с использованием булевой алгебры.) Эти базовые элементы объединены в конструкции ИС для цифровых компьютеров и связанных устройств для выполнения желаемых функций.

логическая схема Различные комбинации логических схем. Encyclopdia Britannica, Inc. ,

0 comments on “Какой полупроводник называется собственным: Собственный полупроводник — это… Что такое Собственный полупроводник?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *