Коаксиальная распределительная сеть / Хабр
Пройдясь по теоретическим основам, перейдём к описанию аппаратной части сетей кабельного телевидения. Начну рассказ от телеприёмника абонента и, более подробно, чем в первой части расскажу о всех составляющих сети.
Гнездо телевизора соединяется с делителем внутри квартиры, либо (если телевизор всего один) — со стояком в щитке на лестнице. Как известно, каждое лишнее соединение — потенциальная неисправность, поэтому при поиске проблем стоит уделять пристальное внимание каждому стыку.
Внутри квартиры и до щитка прокладывается, как правило, хорошо всем знакомый коаксиальный кабель типа RG-6, который оконцовывается нехитрыми разъёмами, имеющими обычно контакт только с оплёткой, а центральная жила входит в разъём устройства или переходника «как есть».
Для прокладки магистралей используется кабель RG-11, имеющий меньшее затухание на длину и большую прочность. Существует так же самонесущий вариант такого кабеля со стальным тросом в оплётке для прокладки «воздушек».
Этот кабель толще и жёстче, поэтому для оконцовки уже применяются более сложные разъёмы: это либо похожие на меньших собратьев обжимные коннекторы, либо присущие оборудованию промышленного уровня составные резьбовые конструкции.
Обжать разъём на таком кабеле бывает непросто и часто проблемы возникают сразу после монтажа из-за несоблюдения стандарта на длину зачистки (6,3мм центральная жила + 6,3мм оплётка), либо потом, из-за плохого контакта при обжиме без специнструмента.
При построении стояка используются разветвители и ответвители.
Внутри они представляют из себя развязку из LC-цепей для согласования волнового сопротивления выводов. Если разделить коаксиальный кабель без такого устройства, а просто скрутками, то уменьшившееся при параллельном включении сопротивление каждого из отводов не даст сигналу полностью пройти и часть его отразится обратно в магистраль, что приведёт к появлению помех и шума в сигнале.
Принципиальная разница между ответвителями и разветвителями состоит в наличии или отсутствии линейного выхода (OUT). Потери на таком выходе минимальны и составляют порядка 1-5дБ в зависимости от номинала. На абонентских отводах (TAP) затухания от 8 до 30 и более дБ. Это необходимо для обеспечения одинакового уровня сигнала на абонентских отводах при различном уровне в магистрали.
Если в начале стояка мы имеем сигнал с уровнем 105дБмкВ, то чтобы отдать абоненту с отвода положенные 75дБмкВ, необходимо установить разветвитель, гасящий 30дБ. А до дальнего конца по магистрали может добежать менее 85дб, в таком случае необходимо поставить разветвитель, потери на отводах которого минимальны и для 4-х выводного составляют 8дБ. Номинал затухания и количество выводов практически у всех производителей закодировано в маркировке устройства: на картинке выше видим, например, 620 — 6 абонентских отводов, гасящих по 20дБ каждый и один магистральный. Обозначение TAH и SAH не является общепринятым, однако встречается очень часто и соответственно означает ответвители (tap) или разветвители (split).
Чтобы снизить разницу в уровне сигнала между участками стояка, на высотных домах необходимо разбивать его на несколько частей при помощи магистральных ответвителей. Это позволяет сократить номенклатуру абонентских ответвителей и обеспечить максимально близкий к нужному уровень на абонентском отводе.
На схеме слева я показал пример стояка, построенного сверху вниз и разделённого на три части («пилястры»). На 12 этажных щитков используются лишь 5 видов абонентских ответвителей. Если бы не было разделения, то пришлось бы использовать 12 видов с шагом 2-3дБ. А для дальнего конца мы скорее всего вообще не смогли бы подобрать разветвитель, так как даже имеющая всего два вывода «пополамка» гасит 4 дБ, а при большем количестве выводов мы уже можем не вписаться в бюджет по затуханию.
В случае, если в системе применяется дистанционное питание оборудования (об этом обязательно расскажу в следующих частях) магистральные ответвители выглядят немного по-другому:
Засчёт массивного корпуса и продуманного конструктива обеспечивается лучшая изоляция как токоведущих частей от внешнего воздействия, так и внешней среды от немалого тока, который может идти по кабелю.
Для защиты оборудования от возможных инцидентов на кабеле, а так же абонентов от неисправностей активного оборудования в начале стояков устанавливаются изоляторы, которые обеспечивают гальваническую развязку между магистральной частью и распределительной.
Для исключения отражения сигнала от несогласованных выводов (конструктивно это только проходные отводы, но существует вероятность, что при некачественной сборке или дефекте разветвителя абонентские так же будут иметь волновое сопротивление, отличное от требуемого) их стоит блокировать согласованными поглощающими заглушками, которые часто несут так же функцию «секретки» в случае, когда с жильцами заключаются индивидуальные договора на предоставление услуг.
habr.com
Гигабиты по старым коаксиальным сетям
Датский телеком-гигант TDC проводит активную работу по модернизации старого коаксиального кабеля телевизионной сети, чтобы получить возможность доставлять в жилые дома высокоскоростной интернет. Как отмечает технический директор компании Карстен Брайдер, технологии уже сейчас позволяют поставлять кабельное телевидение со скоростью 3,6 Gbps, а спустя некоторое время реальностью станет цифра в 10 Gbps.
В TDC считают, что нашли уникальное решение по организации быстрого широкополосного доступа по всей Дании. При этом компания сможет сэкономить гигантские средства на пути к осуществлению своей цели. Как и большинство операторов фиксированной связи по всему миру, в TDC знают, что протяжка «оптики» в каждый дом — это едва ли не единственное верное решение, дабы сверхбыстрая широкополосная связь достигла каждого дома. Однако тянуть волокно в каждый дом — накладно дело.К счастью для TDC, у оператора есть богатое наследство в виде коаксиальной сети кабельного телевидения, которая уже сейчас поставляет программные каналы для 1,4 млн. домохозяйств по всей Дании.
Карта охвата сети TDC
В настоящее время TDC уже существенно продвинулась в ее модернизации. При этом усовершенствование не касается непосредственно коаксиального кабеля — на входе в дома устанавливается электроника, способная разогнать широкополосный доступ до очень приличных скоростей. В планах TDC использовать собственную кабельную сеть телевидения в качестве основы общенациональной сети, которая будет поставлять широкополосный доступ на скорости 1 Gbps для большинства семей в Дании до конца 2017 года, а возможно и со скоростью 10 Gbps со временем. По прогнозам оператора, первые дома должны получить 1 Gbps с начала декабря 2016 года.
В компании отмечают, что в ближайшем будущем сеть кабельного телевидения TDC будет основным поставщиком высокоскоростного интернета пользователям оператора, в отличие от уже существующей волоконно-оптической сети, которая сможет обеспечить лишь 10% домов.
Быстрее и дешевле, чем волокно
«Коаксиальный кабель может передавать сигнал с гораздо большей скоростью, чем оптика, — отмечает Карстен Брайдер. — GPON имеет максимальную скорость 2.4 Gbps, а для коаксиального кабеля сети TDC мы используем последнюю реализацию DOCSIS».
Демонстрация DOCSIS 3.1
Аббревиатура DOCSIS вряд ли оставит в недоумении людей близких к телекому, но все же разъясним для полноты картины. Стандарт, который вот уже почти двадцать лет используют операторы по всему миру, предусматривает передачу данных абоненту по сети кабельного телевидения с максимальной скоростью до 42 Мбит/c (при ширине полосы пропускания 6 МГц и использовании многопозиционной амплитудной модуляции 256 QAM), и получение данных от абонента со скоростью до 10,24 Мбит/с. По задумке, он призван сменить господствовавшие ранее решения на основе фирменных протоколов передачи данных и методов модуляции, несовместимых друг с другом, и должен гарантировать совместимость аппаратуры различных производителей.
CMC DOCSIS3.1 от Huawei
Собственно версий DOCSIS существует несколько:
- DOCSIS 1.0
- DOCSIS 1.1
- DOCSIS 2.0
- DOCSIS 3.0
- DOCSIS 3.1
DOCSIS может стать настоящим «золотым ключиком» к дверям потенциальных абонентов, ведь при грамотно построенной коаксиальной сети, покрывающей значительную площадь, этот стандарт может стать настоящим стартом, который не потребует серьезных вмешательств в физику процесса.
Именно такая развитая сеть коаксиального кабеля есть в наличии у TDC, которые одни из первых начали внедрять DOCSIS 3.1 на своих сетях.
«DOCSIS 3.0 позволяет достигать скорости в 3.6 Gbps, а с DOCSIS 3.1 в конце этого года мы сможем предлагать нашим абонентам 10Gbps», — говорит Брайдер. Это означает, что компания имеет сеть , поддерживающую услуги, которые в четыре раза быстрее, чем GPON.
Модем для работы в стандарте DOCSIS 3.1 ASKEY–TCG310
К слову, еще в сентябре 2015 года немецкая компания Unitymedia также начала активную работу по подготовке своих сетей к внедрению DOCSIS 3.1, наметив коммерческое использование стандарта также на 2016 года. Опыт внедрения DOCSIS есть и у российских операторов, однако широкого распространения у нас в стране стандарт не получил.
Но вернемся все же к нашим датчанам.
Датский Ростелеком
TDC уникален в своем роде, потому как имеет обширную сеть фиксированной телефонной связи и сеть кабельного телевидения. Такое богатство досталось оператору благодаря глобальному объединению региональных телефонных компаний в национального оператора Tele Danmark в 1995, наследником которого в итоге стал TDC.
Кабель был очень популярен в Дании. Причина, как и в большинстве других центров кабельного телевидения в Европе и Северной Америке в то время, в том, что потребителю хотелось больше каналов. Так, например, в свое время, сельские жители США подключали кабельное ТВ, чтобы получать услуги от крупных городов, находящихся поблизости, и иметь возможность увидеть каналы к югу от границы штатов. Датчане хотели того же самого — более широкого выбора ТВ-каналов.
До 1988 года в Дании существовал лишь один телевизионный канал и, естественно, что такое положение вещей не совсем устраивало телевизионную аудиторию страны, которая начинала желать гораздо большего количества развлекательных программ, а значит больше каналов.
В результате появились обширные телевизионные сети коаксиального кабеля, что позволило датчанам смотреть каналы из соседних Германии и Швеции. Эта обширная сеть теперь в ведении TDC, а значит «датский ростелеком» обладает гигантским потенциалом для организации широкополосного доступа практически по всей стране без значительных вложений в монтаж волоконно-оптических сетей.
Процесс модернизации
«Мы взаимодействуем с телевидением абонентов, а это обязывает нас быть осторожными. В конечном итоге модернизация сети приведет к существенному снижению затрат компании, несмотря на то, что у нас достаточно расходов, связанных с управлением существующие DOCSIS, поскольку сеть была построена несколько десятилетий назад и ее качество оставляет желать лучшего», — отмечает Брайдер.
По его словам, модернизированная сеть будет децентрализована, в отличие от сегодняшней архитектуры сети.
«Сейчас мы имеем очень централизованную архитектуру сети, поэтому мы вынуждены будем осуществлять ее децентрализацию. Это значит, что наш клиент будет находиться ближе к сети, что позволит передавать сигнал с более высокой скоростью. К тому же новая сеть — это снижение затрат на техническое обслуживание», — считает Брайден.
Новый проект в корне меняет и маркетинговую стратегию компании. Многие устаревшие продукты уже не имеют прежней рентабельности, поэтому от них в компании планируют отказаться. Потребительские же предложения, такие как DSL, кабель, волокно или мобильная связь будут представлены под единым брендом YouSee.
Стремительное развитие стандарта DOCSIS в Дании и модернизация устаревших кабельных сетей под требования современного потребителя яркий пример того, как можно в разы улучшить качество предоставляемых услуг при этом снижая затраты на вложения и последующее техническое обслуживание сетей.
Примечательно, что датский телеком-гигант далеко не единственный европейский оператор, кинувший взор на стандарт DOCSIS 3.1. Помимо TDC свои сети к переходу на новый стандарт подготавливают такие гиганты, как Telenet и Altice.
Согласно исследованию, проведенному аналитическим агентством ABI, в Европе к 2017 году число домохозяйств, использующих технологию DOCSIS 3.1, достигнет 9 миллионов человек. Тем более что многие известные разработчики уже имеют оборудование готовое к эксплуатации.
«В конце концов, для домохозяйств и компаний, уже имеющих подключение к кабельному интернету, экономически гораздо выгоднее провести модернизацию кабельных технологий, а не переключаться на оптико-волоконные сети. И это даёт технологии DOCSIS 3.1 чёткие преимущества на рынке. Если заглядывать дальше в будущее, можно отметить, что продолжение развёртывания сверх-широкополосных сетей открывает перед кабельными операторами возможность полного перехода в сети DOCSIS к использованию технологии IPTV, отказавшись от устаревшей вещательной технологии QAM. Впрочем, ни один из крупных операторов пока официально не начал изучать такую возможность», — считает управляющий директор и вице-президент ABI Research Сэм Роузен.
nag.ru
Коаксиальный Ethernet кабель, сеть с топологией общая шина или зачем нужны хабы и сетевые концентраторы
Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем изучать основы работы компьютерных сетей, напомню, что эти записи основаны на программе Cisco ICND1 и помогут вам подготовиться к экзаменам CCENT/CCNA. В данной теме мы разберемся с назначением хабов и сетевых концентраторов, а также обсудим особенности компьютерной сети с топологией общая шина и поговорим о правиле четырех хабов. Сразу же в самом начале стоит сказать, что сеть, построенная на хабах обладает практически всеми особенностями сети передачи данных с топологией общая шина.
На данный момент с практической точки зрения данная запись не имеет большой актуальности, так как хабы и коаксиальный Ethernet кабель вы скорее всего уже не встретите, поэтому, чтобы не тратить время в пустую мы будем не просто рассматривать недостатки хабов и общей шины, но и смотреть на преимущества, которые нам дают коммутаторы.
Перед началом я хотел бы вам напомнить, что ознакомиться с опубликованными материалами первой части нашего курса можно по ссылке: «Основы взаимодействия в компьютерных сетях».
1.18.1 Введение
Содержание статьи:
В прошлой теме мы немного попрактиковались и разобрались с вопросом: как объединить три и более компьютера в сеть, делали мы это при помощи коммутаторов, сразу отмечу, что на данный момент для вышеописанной задачи стоит выбирать именно коммутаторы и не стоит прибегать к использованию хабов, повторителей и коаксиального Ethernet кабеля, который использовался ранее в схемах соединения с общей шиной, так как это всё увеличит вам количество проблем, которые придется решать и которые будут влиять на качество работы вашей сети.
Вернее, все вышеописанные ухищрения по сути добавят вам одну единственную, но очень серьезную проблему, которую довольно неприятно решать, эта проблема называется коллизией. Коллизия – это наложение или столкновение двух пакетов, участок сети, на котором может возникнуть такая проблема называется доменом коллизий.
1.18.2 Зачем нужны хабы, повторители и сетевые концентраторы
Для начала давайте коротко поговорим о том, зачем же все-таки нужны или были нужны хабы, повторители и сетевые концентраторы. Ответ довольно прост: все эти устройства используются/использовались для объединения компьютеров в сеть. Но если хабы и сетевые концентраторы, скорее всего, на данный момент вы не встретите в Ethernet сетях, то повторители встретить можно, главным образом на междугородних оптических линиях.
Итак, давайте для начала буквально на пальцах разберемся с вопросом: в чем разница между коммутатором и хабом, а затем поговорим немного о частностях, которые касаются хабов и концентраторов, не сильно вдаваясь в детали, так как это уже не мейнстрим. Для сравнения будем использовать Cisco Packet Tracer, в котором реализуем две простые схемы, но в одной схеме будет использован хаб, а в другой коммутатор, обе схемы показаны на Рисунке 1.18.1. Если вы самостоятельно будете собирать схему в Cisco Packet Tracer, то обратите внимание на то, что порты хаба сразу загораются зеленым, то есть через них сразу могут идти данные, а коммутатору нужно немного подумать, прежде чем разрешить начать передачу данных.
Рисунок 1.18.1 Слева показана схема с хабом, справа – с коммутатором
Давайте перейдем в режим симуляции и попробуем запусить пинг с ноутбука до компьютера 192.168.1.2, в обеих схемах это крайний левый ПК. Начало везде одинаковое: оба ноутбука сформировали IP-пакет с ICMP вложением и пытаются отправить этот пакет на устройство с адресом 192.168.1.1, это показано на Рисунке 1.18.2.
Рисунок 1.18.2 Оба ноутбука сформировали IP-пакет с ICMP вложением
Следующим шагом наш пакет приходит в первом случае на порт хаба, который смотрит в сторону отправителя, а во втором случае на порт коммутатора, который смотрит в сторону отправителя, это показано на рисунке 1.18.3.
Рисунок 1.18.3 В обоих случаях пакет приходит на входящий порт устройств
Пока у нас нет никакой разницы, хотя на самом деле разница уже есть, но она сокрыта внутри устройств, и мы ее не увидим, дело в том, что коммутатор – устройство второго или канального уровня модели OSI, оно уже обладает определенной программной логикой, у его портов есть входные и выходные буферы, в которых своей участи ожидают Ethernet кадры, а поскольку коммутатор умеет работать с кадрами, то в его логику заложен принцип инкапсуляции данных. А вот хаб – это глупое устройство, которое относится к первому уровню модели OSI, то есть к физическому уровню и Рисунок 1.18.4 это хорошо демонстрирует.
Рисунок 1.18.4 Принципиальная разница между хабом и коммутатором
Сперва обратите внимание на схему с хабом: он получил от ноутбука Ethernet кадр, внутри которого находится IP-пакета, а вложением в этот пакет является ICMP запрос (вспоминаем о декомпозиции задачи сетевого взаимодействия, к сожалению, сетевой концентратор с таким понятием не знаком), а затем разослал этот кадр в три других активных порта. При этом компьютеры с IP-адресами 192.168.1.3 и 192.168.1.4, распаковав кадр и проанализировав IP-пакет поняли, что этот пакет им не предназначен (это показано красным крестиком) и просто проигнорируют его, а вот компьютер с адресом 192.168.1.2 понял, что данные предназначены для него, поэтому он ответит (дело в том, что заголовок IP-пакет содержит поле с IP-адресом получателя, именно это поле позволяет понять компьютеру: ему или кому-то другому предназначен тот или иной пакет, в нашем случае два компьютера, для которых пакет не предназначен, просто отбрасывают его).
А теперь обратите внимание на схему с коммутатором: здесь Ethernet кадр со всеми вложениями был отправлен конкретному устройству с IP-адресом 192.168.1.2, другие устройства этот кадр не получили. Все дело в том, что наши сетевые устройства помимо IP-адреса, имею MAC-адреса (протокол, который позволяет узнать по имеющемуся IP-адресу MAC-адрес, называется ARP), а коммутатор, помимо буферов на порт,у имеет специальную табличку, в которую записывает: за каким портом какой мак-адрес находится. Позже мы узнаем, как правильно называется эта таблица и каким образом коммутатор ее заполняет, сейчас лишь отметим, что у этой таблички ограниченный объем и есть несколько атак, которые позволяют забить эту таблицу до отказа, тем самым вызвав отказ в обслуживании. Обратите внимание на Рисунок 1.18.5.
Рисунок 1.18.5 Таблица мак-адресов коммутатора на схеме
Естественно, коммутатор ничего не знает ни о каких схемах и топологиях, ему невдомек что вы там у себя задумали, нарисовали и запланировали, коммутатор – это относительно простой компьютер, который решает определенные задачи, в нашем случае, это объединение четырех компьютеров в сеть. На Рисунке 1.18.5 показано как примерно он это делает, у коммутатора есть порты, к которым подключаются устройства, у этих устройств есть мак-адреса, коммутатор каким-то образом узнает эти мак-адреса и ведет учет в виде специальной таблицы: записывая, за каким портом какой мак-адрес находится, рисунок это демонстрирует. Отмечу, что в любой момент мак-адрес за портом может измениться по разным причинам, поэтому эта табличка периодически очищается и при необходимости заполняется вновь. Но вернемся к нашей схеме, мы помним, что, как в схеме с хабом, так и в схеме с коммутатором, компьютеры с адресом 192.168.1.2 должны ответить на ICMP запросы, посланные ноутбуком, я не буду показывать процесс передачи кадра от узла с адресом 192.168.1.2, а сразу покажу, что сделают хаб и коммутатор с ответом этого узла, посмотрите на Рисунок 1.18.6.
Рисунок 1.18.6 Хаб снова рассылает кадры во все порты, кроме того, откуда этот кадр пришел
Обратите внимание: коммутатор действует конкретно, он отсылает кадр с вложенным ICMP-ответом именно тому устройству, которое делало запрос, а вот хаб, можно сказать обычный повторитель, отправляет кадры во все порты, кроме того порта, в который этот кадр пришел, то есть компьютеры с адресами 192.168.1.3 и 192.168.1.4 снова вынуждены работать вхолостую, а их канал опять загружен бесполезной информацией.
Таким образом мы имеем полное право называть сетевой концентратор обычным повторителем, он просто копирует приходящие на один порт данные и рассылает их во все порты, и тут у нас появляется два очевидных минуса:
- Первый минус заключается в том, что это не безопасно, приходящие на хаб данные получают все устройства, подключенные к нему, в том числе и те, кому эти данные не предназначены.
- Второй минус заключается в том, что хаб создает дополнительную загрузку каналов связи, наша простенькая сеть без трафика это продемонстрировала, но она не демонстрирует весь масштаб бедствия, нам даже не стоит говорить про служебный трафик, который используется в канальной среде для поддержания взаимодействия между устройствами, достаточно представить такую картину: одним портом хаб включен в роутер, который подключен к сети Интернет, а еще три порта хаба используются для подключения трех клиентов, каждый порт имеет пропускную способность 100 Мбит/c и тут один из клиентов решает включить торрент и загружает свой канал на максимум, а теперь вспомните как работает хаб.
А теперь не очевидный минус – коллизии, сразу отмечу, что нормальная компьютерная Ethernet сеть, можно сказать, лишена этого недостатка, а вот компьютерная сеть, в которой есть хабы слеш сетевые концентраторы, даже с учетом того, что Ethernet имеет механизм по разруливанию этих коллизий имеет этот недостаток, чуть ниже мы это обсудим.
Самая важная вещь, которую вам нужно усвоить – не используйте хабы, даже если вам будут угрожать, если вам предлагают обслуживать сеть, в которой есть хабы, то это повод задуматься: а стоит ли вообще связываться с таким работодателем, и это всё без капли иронии.
Давайте подведем итог тому, что может называться хабом, повторителем (мы сейчас не имеем в виду те повторители, которые используются для усиления сигнала) или сетевым концентратором (что касается его технической части). Это устройство работает на физическом уровне модели OSI 7, оно просто дублирует входную последовательность бит во все порты, кроме того, откуда эта последовательность пришла, поэтому хаб ничего не знает ни про какие мак-адреса и уж тем более не в курсе про IP.
Тут же нам стоит отметить, что продемонстрированная схема с коммутатором имеют топологию, которая называется звезда (здесь есть одно центральное устройство, в данном случае это коммутатор, и есть несколько других устройств, которые логически и физически завязаны на центральное устройство), а вот схема, в которой мы использовали концентратор имеет топологию общая шина, все дело в том, что вместо хаба мы могли бы использовать какой-нибудь провод, к которому подключили бы все устройства и с логической точки зрения ничего бы не изменилось.
Устройства, включенные через хаб или несколько хабов, между собой образуют домен коллизий, так как на любом участке такой сети может возникнуть коллизия, в случае же со схемой, в которой используется коммутатор, домен коллизии ограничивается портом коммутатора, коллизия может произойти только между коммутатором и конкретным устройством и то только в такой ситуации, которая привела к рассинхронизации режимы работы портов коммутатора и удаленного устройства, обычно это глюк порта коммутатора или же глюк клиентского устройства.
С точки зрения сетевого администратора у хаба есть три важных характеристики: количество портов, пропускная способность этих портов и физический тип подключения, здесь можно выделить витую пару, коаксиальный кабель и оптические линии. В общем, на этом мы можем закончить разговор о концентраторах и повторителях.
1.18.3 Коаксиальная сеть Ethernet и топология общая шина с ее недостатками
Сделаем еще один шаг назад в эволюции компьютерных сетей и рассмотрим коаксиальную Ethernet сеть с топологией общая шина, и тут нам стоит сразу отметить, что в такой сети есть все недостатки, которые присущи сетям с хабами, но помимо всего прочего добавляется еще один: при повреждении кабеля сеть становится неработоспособной, ну и процесс траблшутинга или поиска неисправностей заметно усложняется. Обратите внимание на Рисунок 1.18.7, на нем показана сеть, построенная по топологии общая шина.
Рисунок 1.18.7 Компьютерная сеть с топологией общая шина
Стоит немного пояснить данный рисунок:
- Толстая синяя линия в центре – это общая шина, но по факту это коаксиальный Ethernet кабель.
- Устройство в центре шины – это повторитель, он ставился в том случае, когда длина общей шины была слишком большой, в этом случае сеть разбивается на сегменты, в нашем случае их два (если говорить про стандарт Ethernet 10BASE-2, то длина общей шины на одном сегменте не должна превышать 185 метров).
- Тонкие линии от шины до конечных устройств – это отводы, это тоже коаксиальный Ethernet кабель.
- Одной важной особенностью топологии общая шина являлось то, что каждый провод в такой схеме должен быть обязательно окончен каким-либо устройством, поэтому на краях общей шины устанавливались специальные устройства, называемые терминаторами, которые поглощали сигнал, в противном случае сигнал доходил бы до края общей шины, отражался от него и возвращался в сеть, из-за чего могла возникнуть коллизия, собственно, поэтому компьютерные сети с топологией общая шина были так чувствительны к обрывы кабеля, даже если это кабель идет от шины к конечному устройству, так как важная особенность общей шины заключалась в том, что кадр, отправленный одним конкретным устройством другому, приходил на все устройства, подключенные к общей шине.
Из-за того, что кадры, отправляемые устройством на общую шину, придут на все машины сети, все устройства в такой топологии обязаны проверять: кому предназначен кадр и отбрасывать кадры, если они предназначены не им. Конечно, это не безопасно, и, конечно, это увеличивает нагрузку на сеть.
Для избегания коллизий на сети с общей шиной применяется два метода: первый заключается в том, что в сети определяется главная станция, которая раздает указания всем остальным устройствам сети о том, когда и сколько передавать, второй метод заключается в том, что устройства самостоятельно прослушивают канал и если канал занят, они ничего не делают, если канал свободен, то устройство, если хочет начать передачу данных, сперва отсылает служебный сигнал, в котором сообщает всем остальным участникам о том, что сейчас начнется передача и просит не занимать канал, конечно, тут могут возникнуть разные ситуации и они описаны в документах, связанных с технологией Ethernet, сейчас мы вдаваться в это не будем.
Также стоит заметить, что ранние компьютерные сети, построенные на технологии Ethernet работали в полудуплексном режиме (half duplex), это означает, что по одной линии устройство могло либо передавать, либо принимать информацию, но не было возможности одновременно и передавать, и принимать, для снижения вероятности возникновения коллизий в ранних Ethernet сетях (IEEE 802.3) использовался механизм CSMA/CD (Carrier Sense Multiple Access with Collision Detection или множественный доступ с прослушиванием несущей и обнаружением столкновений), эта как раз та ситуация, когда устройство само слушает канал и ищет свободные окна для передачи данных.
Пожалуй, единственным плюсом общей шины является то, что здесь используется минимальное количество соединительных линий, если сравнивать с другими топологиями компьютерных сетей. В общем-то, это, наверное, все, что следует знать про топологию сети Ethernet с общей шиной, хотя давайте еще посмотрим на физические устройства, которые образуют сеть с топологией общая шина.
На Рисунке 1.18.8 показан коаксиальный Ethernet кабель, который является основным компонентом сети с общей шиной.
Рисунок 1.18.8 Коаксиальный Ethernet кабель
Тут стоит обратить внимание на то, что коаксиальный Ethernet кабель отличается от того кабеля, который используется для предоставления услуг кабельного телевидения, и тут можно запутаться, так как в европейских и американских книгах и источниках можно найти информацию о том, что операторы кабельного телевидения предоставляют услуги доступа в Интернет по тем же коаксиальным линиям, что и телевидение, так вот, это совсем другая технология, отличная от Ethernet, ее мы рассматривать не будем.
Вернемся к нашему коаксиальному кабелю. У него есть медный сердечник, который защищен диэлектриком (белая трубка, в данном случае это полиэтилен) и медной луженной сеткой, которая называется оплетка, от всевозможных внешних помех и наводок, а черная трубка или внешняя оболочка защищает кабель от воздействия внешней среды (пыль, влага, температура, химия), в данном случае это поливинилхлорид. По-умному такой кабель называется RG-58, волновое сопротивление такого кабеля порядка 50 Ом, сейчас его используют в основном в системах видео наблюдения, российский аналог такого кабеля – РК-50.
Остальные пассивные элементы Ethernet сети с топологией общая шина показаны на Рисунке 1.18.9 (про условные обозначения стандартных физических компонентов компьютерной сети можно почитать здесь), каждый элемент снабжен подписью, но давайте дадим еще небольшие пояснения, чтобы закрыть все вопросы окончательно. Я называю элементы пассивными, потому что они не генерируют трафик и никак его не изменяют, они просто выполняют определенные физические задачи.
Рисунок 1.18.9 Пассивные элементы компьютерной сети с топологией общая шина
Итак, первое что стоит заметить – в любой локальной сети, построенной по топологии общая шина имеется ровно два терминатора на концах этой общей шины, один из терминаторов обязательно должен быть заземлен. Для подключения абонентских устройств используется специальный разъем или коннектор, который называется BNC. На Рисунке 1.18.10 показана сетевая карта с портом для подключения Ethernet кабеля.
Рисунок 1.18.10 Сетевая карта компьютера с BNC разъемом для коаксиального Ethernet кабеля
Обратите внимание на то, что к сетевой карте подключен T-коннектор (тройной переходник), таким образом можно последовательно включать несколько устройств друг за другом, если компьютерная сеть состоит ровно из двух участников, то один разъем Т-коннектора включает сетевую карту, в другой разъем включается кабель, а в третий разъем подключается терминатор, который представляет собой балластный резистор сопротивлением 50 Ом.
Если по каким-либо причинам вам не хватило длины кабеля, то для его наращивания используется l-коннектор. Обратите внимание: сейчас мы говорили про сеть Ethernet на тонком коаксиальном кабеле, который используется для объединения компьютеров в локальную сеть, есть еще и толстый Ethernet кабель, который использовался для объединения локальных сетей, об этом вы можете почитать, воспользовавшись Яндексом или Гуглом. На этом мы завершим разговор, который касался непосредственно коаксиального Ethernet кабеля и топологии сети с общей шиной.
1.18.4 Правило четырех хабов и домен коллизий
В этой теме нам осталось поговорить о правиле четырех хабов и разобраться с вопросом: что представляет собой домен коллизий. Начнем мы с правила четырех хабов, так будет проще понять, где образуется у нас домен коллизий и почему он образуется. Вернемся к алгоритму CSMA/CD, сейчас нам важно знать, что этот алгоритм основан на том, что все устройства сети с общей шиной слушают канал и, если он не занят, они отправляют специальную последовательность, которая сообщает всем участникам сети: сейчас начнется передача, не занимайте пожалуйста канал.
И тут нам не стоит забывать, что биты по проводу передаются не мгновенно, это означает, что кадр из точки А в точку Б будет передаваться за определенный промежуток времени и чем больше этот кадр, тем дольше он будет передаваться, собственно, правило четырех хабов гласит о том, что в одном широковещательном домене (в одной подсети), должно быть не более четырех хабов, иначе механизм CSMA/CD может не сработать и произойдет коллизия, например, у вас есть сеть, в которой шесть хабов, к каждому хабу подключено по два ПК, эта сеть показана на Рисунке 1.18.11.
Рисунок 1.18.11 Схема Ethernet сети с шестью хабами
И допустим, что компьютер 192.168.1.2 хочет начать обмениваться данными с компьютером 192.168.1.11 и отправляет в сеть специальную последовательность, а в это время компьютер 192.168.1.12 тоже начинает свою передачу данных, так как последовательность от компьютера 192.168.1.2 не успела дойти до 192.168.1.12, так как он был очень далеко, естественно происходит коллизия. Если машины начали передачу одновременно, то с наибольшей вероятностью коллизия происходит на участке между третьим и четвертым хабом, режим симуляции Cisco Packet Tracer это подтверждает, посмотрите на Рисунок 1.18.12.
Рисунок 1.18.12 Участок компьютерной сети, на котором происходит коллизия
Обратите внимание: хабы глупые устройства, они не умеют проверять целостность кадров, они их просто повторяют на все свои порты, кроме того порта, из которого кадр пришел. Хотя на самом деле хабы даже не знают о существование кадров, они транслируют последовательность бит, пришедшую на один порт, во все остальные порты, таким образом передача не прерывается, а искаженные кадры продолжают свое движение по сети до конечной точки и только конечное устройство сможет понять, что произошла коллизия и только тогда вступит в действие механизм CSMA/CD. Искаженный кадр отмечен огоньком на Рисунке 1.18.13.
Рисунок 1.18.13 Поврежденный в результате коллизии Ethernet кадр отмечен огоньком
Внутрь кадра можно заглянуть, нажав на него два раза левой кнопкой мышки, появится окно, в котором нужно выбрать вкладку OSI Model на этой вкладке можно посмотреть, что делает устройства с полученной информацией на разных уровнях модели OSI, в данном случае обработка идет только на физическом уровне модели OSI, так как информация проходит через хаб и хаб не видит, что произошла коллизия, об этом можно узнать по логу сообщений снизу, который на Рисунке 1.18.14 подсвечен синим, две других вкладки в этом окне позволяют увидеть структуру кадров и пакетов, нам это пока не нужно.
Рисунок 1.18.14 Хаб не смог определить, что Ethernet-кадр поврежден коллизией
Давайте посмотрим, что будет на этапе, когда отправленные кадры дойдут до получателей. Наша сеть будет выглядеть так, как показано на Рисунке 1.18.5.
Рисунок 1.18.15 Искаженный коллизией Ethernet-кадр дошел до конечного узла
А теперь посмотрим, что у нас внутри кадра и что как его обработал компьютер. Для этого нажмем на одном из кадров два раза левой кнопкой мыши, показано на Рисунке 1.18.16.
Рисунок 1.18.16 Искаженный коллизией кадр внутри конечного узла
Здесь мы видим, что конечный узел получил битовую последовательность, а при попытке собрать из битовой последовательности кадр, он обнаружил, что тот искажен коллизией и просто отбросил его, об этом нам говорит вторая запись, подсвеченная синим цветом. Далее компьютер запустит механизм CSMA/CD и тем самым узлы начнут договариваться о времени передачи данных. Мы сейчас не вдаемся в механизм CSMA/CD и не пытаемся понять, как узел определяет, что кадр битый, нам сейчас важно понять следующее: чем больше хабов в нашей компьютерной сети, тем больше вероятность возникновения коллизий, а раз так, то и больше время передачи данных, ведь узлам будет сложнее договориться о последовательности и времени передачи данных. Таким образом, пропускная способность компьютерной сети с хабами заметно снижается, как впрочем и другие важные характеристики компьютерной сети (пожалуй, за исключением стоимости).
Обратите внимание: правило четырех хабов не гарантирует, что коллизий в сети, в которой установлено не больше четырех хабов не будет, это правило гарантирует, что число коллизий в сети, в которой количество хабов больше четырех, сильно возрастет. Теперь перейдем к домену коллизий, сразу заметим, что в нашей схеме, с которой мы только что работали домен коллизий – это вся наша сеть, то есть вся наша сеть – это один большой домен коллизий, то есть участок, на котором может произойти наложение пакетов и кадров.
Если быть более формальным, то домен коллизий — это часть сети Ethernet, все узлы которой конкурируют за общую разделяемую среду передачи и, следовательно, каждый узел которой может создать коллизию с любым другим узлом этой части сети. Другими словами: домен коллизий – это участок сети, на котором в один момент времени может передавать только одно устройство, все остальные должны слушать и принимать, в противном случае произойдет наложение пакетов. Тут сразу можно сделать вывод: чем больше узлов на таком участке сети, тем выше вероятность возникновения коллизий, а еще в сетях half duplex невозможно реализовать сетевое взаимодействие типа h3H, так как оно подразумевает, что обе стороны могут одновременно и передавать и получать данные.
В современных компьютерных сетях с коммутаторами, порты которых работают в полнодуплексном режим (full duplex, этот режим означает, что устройства могут одновременно принимать и отправлять данные), доменов коллизий нет, за исключением ситуации, когда происходит рассинхронизация портов, например, порт коммутатора работает в режиме full duplex, а порт клиентского устройства по каким-то причинам перешел в режим half duplex, тогда домен коллизии ограничен портом коммутатора, также, если коммутатор и клиентское оборудование согласовали режим half duplex, домен коллизий ограничен портом коммутатора, но вероятность того, что коллизия возникнет очень мала, так как порт коммутатора имеет входные и выходные буферы, где кадры могут накапливаться и ждать своей очереди на отправку, впрочем, как и порт клиентского оборудования.
1.18.5 Выводы
Итак, мы осуществили небольшой исторический экскурс, во время которого мы обозначили некоторые темы, с которыми будем разбираться в части посвященной технологии Ethernet, но самое главное мы должны были сделать два вывода:
- В современных компьютерных сетях не стоит использовать хабы, повторители и сетевые концентраторы, так как благодаря этим устройствам физического уровня появляются домены коллизий, ошибки с которыми очень неприятно работать.
- В современных компьютерных сетях не стоит использовать коаксиальный Ethernet кабель, так как такие сети имеют все недостатки, которые есть у хабов, плюс добавляют несколько своих технических минусов.
Используя коммутаторы и витую пару вы можете забыть о доменах коллизий, правиле четырех хабов и всех тех неурядицах, которые были связаны с этими устройствами.
zametkinapolyah.ru
Сети кабельного телевидения для самых маленьких. Часть 7: Оптические приёмники / Хабр
Граница между оптической средой и коаксиальным кабелем — оптический приёмник. В этой статье рассмотрим их конструкцию и настройки.
Задача оптического приёмника — перенос сигнала из оптической среды в электрическую. В самом простом виде это можно сделать при помощи пассивного устройства, подкупающего своей незатейливостью:
Однако это инженерное чудо обеспечивает весьма посредственные параметры сигнала: при уровне оптического сигнала в -1 — -2 дБм выходные параметры едва укладываются в ГОСТ, а завышение сигнала приводит к значительному увеличению шума.
Чтобы быть уверенным в качестве доставляемого сигнала при архитектуре FTTB требуется использовать более сложные устройства:
Приёмники, встречающиеся в нашей сети: Vector Lambda, Telmor MOB и отечественный Planar.
От своего пассивного младшего собрата все они отличаются более сложной схемотехникой, включающей в себя фильтры и усилители, благодаря чему можно быть спокойным за сигнал, добегающий до абонента. Рассмотрим их поближе:
Оптический приёмник Telmor имеет внутри панель с изображением структурной схемы. Такая схема типична для ОП.
Требуемый уровень оптического сигнала составляет обычно от -10 до +3 дБм, при проектировании и пусконаладке оптимальным значением является -1 дБм: это приличный запас на случай деградации линии передачи и в то же время невысокий уровень создаёт меньше шума при прохождении цепей оборудования.
Встроенная в оптический приёмник схема АРУ (AGC) как раз и занимается тем, что засчёт регулирования уровня входящего сигнала удерживает выходной в заданных параметрах. Это значит, что если по каким-либо причинам оптический сигнал вдруг значительно изменится, но останется в рабочем диапазоне АРУ (примерно от 0 до -7 дБм), то приёмник будет исправно отдавать в коаксиальную сеть сигнал с тем уровнем, который был задан при настройке. Для особо важных случаев, существуют приборы с двумя оптическими вводами, каждый из которых мониторится и может быть задействован как вручную, так и автоматически.
Все активные ОП содержат в себе усилительный каскад, который так же обеспечивает возможность регулирования наклона и уровня выходного сигнала.
Для настройки параметров сигнала, а так же изменения и контроля встроенных сервисных функций внутри самих приёмников обычно присутствуют простые органы управления. У MOBа, показанного на фото выше это отдельная плата, которая опционально устанавливается в корпус. Также, как альтернатива, предлагается использование быстросъёмной платы, устанавливаемой лишь на время настройки в порты на основной плате. На практике это не очень удобно, конечно.
Панель управления позволяет устанавливать значения входного аттенюатора (при увеличении которого выходящий сигнал снижается соответственно коэффициенту усиления), включать или выключать (а так же устанавливать фиксированные значения) АРУ, устанавливать параметры наклона и настраивать ethernet интерфейс.
Челябинский ОП Planar имеет понятный индикатор уровня оптического сигнала, а настройки осуществляются по-простому: крутилкой и сменой вставок, изменяющих характеристики усилительного каскада. В откидывающейся крышке расположен блок питания.
А выполненный в дизайне «технопорно» ОП Vector Lambda имеет двухразрядный экран и всего три кнопки.
Чтобы отличать положительные значения от отрицательных, этот ОП отображает отрицательные значения всеми сегментами, а положительный ноль и +1 показывает высотой в половину экрана. При значениях более +1,9 просто пишет «HI».
Такие органы управления удобны при оперативной настройке на объекте, но для возможности удалённого мониторинга и управления почти все приёмники имеют порт ethernet. Вебинтерфейс позволяет контролировать и изменять параметры, а для интеграции с системами мониторинга поддерживается опрос по SNMP.
Тут мы видим ту же типичную структурную схему ОП, на которой имеется возможность изменения параметров АРУ и аттенюатора. А вот наклон у этого ОП устанавливается лишь джамперами на плате и имеет три фиксированных положения.
Рядом со схемой отображаются важные для контроля параметры: уровни входящего и выходного сигналов, а так же значения напряжений, получаемых от встроенного блока питания. 99% выходов из строя таких ОП происходят после ухудшения этих напряжений, так что их стоит мониторить для предотвращения аварий.
Под словом Transponder тут имеется ввиду IP интерфейс и эта вкладка содержит настройки адреса, маски и шлюза — ничего интересного.
Это не относится к тематике серии, но я лишь в двух словах расскажу о эфирном приёме ТВ. Почему сейчас? Да просто если рассматривать сеть многоквартирного дома, то именно от источника сигнала в коаксиальной распредсети зависит будет ли сеть кабельной или эфирной.
При отсутствии оптоволокна с сигналом КТВ вместо ОП может быть установлен приёмник эфирного вещания, например Terra MA201:
К вводным портам приёмника подключаются несколько антенн (обычно три), каждая из которых обеспечивает приём своего диапазона частот.
Собственно, с переходом на цифровое телевещание в этом отпадает необходимость, так как цифровые мультиплексы вещаются в одном диапазоне.
Для каждой из антенн можно настроить чувствительность для снижения шума, а так же при необходимости подать дистанционное питание на встроенный в антенну усилитель. Далее сигнал проходит усилительный каскад и суммируется. Возможность регулировки выходного уровня сводится к отключению ступеней каскада, а регулировка наклона не предусмотрена вовсе: получить нужную форму спектра можно регулировками чувствительности каждой антенны в отдельности. А если за таким приёмником лежат километры коаксиального кабеля, то с затуханием в нём борются уже установкой и настройкой усилителей, таких же, как и на кабельной сети.
При желании можно комбинировать источники сигнала: собрать в одну сеть и кабельный, и эфирный, а заодно ещё и спутниковый сигнал. Это делается при помощи мультисвитчей — устройств, позволяющих суммировать и распределять сигналы с разных источников.
habr.com
2.4.2. Коаксиальные кабели — Компьютерные сети
Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку
Коаксиальный кабель ранее был достаточно распространен, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), а также более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до километра и выше). К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных . излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше. Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.
Основное применение коаксиальный кабель находит в сетях с топологией типа «шина». При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры, подключенные к сети. Терминаторы должны быть обязательно согласованы с кабелем, то есть их сопротивление должно быть равно волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.
Реже коаксиальные кабели применялись в сетях с топологией «звезда» и «пассивная звезда» (например, в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.
Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применялись 50-омные (например, RG-58, RG-11) и 93-омные кабели (например, RG-62). 75-омные кабели, распространенные в телевизионной технике, в локальных сетях не используются. Вообще, марок коаксиального кабеля значительно меньше, чем кабелей на основе витых пар. Он не считается особо перспективным – в сетях Fast Ethernet и Gigabit Ethernet не предусмотрено применение коаксиальных кабелей.
Существу
www.sites.google.com
Типы кабелей и проводов: силовой, коаксиальный, оптоволоконный кабель и витая пара | RuAut
Автор: Руслан Мусин
Силовые кабели
Среди наиболее популярных в последнее время видов кабельной продукции можно назвать кабель ВВГ и его модификации. ВВГ обозначается силовой кабель с изоляцией ТПЖ из ПВХ, оболочкой (кембриком) из ПВХ, медным материалом жилы, не имеющий внешней защиты.
Используется для передачи и распределения электрического тока, рабочее напряжение 660 – 1000 В, частота 50 Гц. Количество жил может варьироваться от 1 до 5. Сечение – от 1,5 кв.мм до 240 кв.мм. Жилы могут быть как одно-, так и многопроволочными.
ВВГ применяется в широком диапазоне температур: от – 50 до + 50 ºС. Выдерживает влажность до 98% при температуре до + 40 ºС. Кабель достаточно прочен на разрыв и изгиб, стоек к агрессивным химическим веществам. При монтаже следует помнить, что каждый кабель или провод имеет определенный радиус изгиба. Это означает, что для поворота на 90º в случае с ВВГ радиус изгиба должен быть не меньше 10 диаметров сечения кабеля. Внешняя оболочка, как правило, черного цвета. Не распространяет горение.
Разновидности ВВГ:
- АВВГ – те же характеристики, только вместо медной жилы используется алюминиевая;
- ВВГнг – кембрик с повышенной негорючестью;
- ВВГп – наиболее часто встречающаяся разновидность. Сечение кабеля не круглое, а плоское;
- ВВГз – пространство между изоляцией ТПЖ и кембриком заполнены жгутами из ПВХ или резиновой смесью.
КГ расшифровывается очень просто – кабель гибкий. Это проводник с рабочим переменным напряжением до 660 В, частотой до 400 Гц или постоянного напряжения 1000 В.
Жилы медные, гибкие или повышенной гибкости. Их количество варьируется от 1 до 6. Изоляция ТПЖ – резина, внешняя оболочка из того же материала. Диапазон рабочих температур от – 60 до + 50 ºС. Кабель применяется в основном для подсоединения различных переносных устройств. Есть разновидность КГнг с негорючей изоляцией. КГ прекрасно зарекомендовал себя именно в качестве кабеля, работающего практически при любых условиях на открытом воздухе.
Кабели для передачи информации
Помимо электроэнергии кабели предают информационные сигналы.
Коаксиальный кабель
Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку.
К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля существенно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.
Экран выполняет 2 функции: 1) защита от электромагнитных помех. 2)передача информационных сигналов.
Преимущества: низкая чувствительность к электромагнитным помехам, высокая частота передачи (порядка 50 МГц) на длинных линиях порядка километров. Недостаток: высокий вес кабеля, сложность прокладки. Обычно служит для передачи высокочастотных сигналов. Благодаря совпадению осей обоих проводников у идеального коаксиального кабеля обе компоненты электромагнитного поля полностью сосредоточены в пространстве между проводниками (в диэлектрической изоляции) и не выходят за пределы кабеля, что исключает потери электромагнитной энергии на излучение и защищает кабель от внешних электромагнитных наводок. В реальных кабелях ограниченные выход излучения наружу и чувствительность к наводкам обусловлены отклонениями геометрии от идеальности.
Существует два типа коаксиальных кабелей: тонкий и толстый.
Тонкий КК – это кабель диаметром 0,5 см. Прост в применении и годится практически для любых видов сетей. Подключается непосредственно к платам сетевого адаптера компьютера. Тонкий КК способен передавать сигнал на расстояния до 185 м без искажений.
Толстый КК – это кабель диаметров 1 см. Чем толще кабель, тем большее расстояние способен преодолеть сигнал. Толстый КК передает сигнал до 500 м. Для подключения к толстому КК применяют специальное устройство – трансивер.
При заземлении экрана в нескольких точках по нему начинают протекать выравнивающие токи (ведь разные «земли» обычно имеют неравные потенциалы). Такие токи могут стать причиной внешних наводок (иной раз достаточных для выхода из строя интерфейсного оборудования), именно это обстоятельство является причиной требования заземления кабеля локальной сети только в одной точке.
Наибольшее распространение получили кабели с волновым сопротивлением 50 ом. Это связано с тем, что эти кабели из-за относительно толстой центральной жилы характеризуются минимальным ослаблением сигнала (волновое сопротивление пропорционально логарифму отношения диаметров внешнего и внутреннего проводников).
RG-6 – коаксиальный кабель для передачи высокочастотных сигналов.
Кабели марки RG имеют множество разновидностей и отличаются друг от друга по некоторым характеристикам, например сопротивлению проводника, устойчивости к температурным и ударным нагрузкам, времени затухания сигнала, разновидности экрана и т.д.
Коаксиальный кабель РК-50 очень часто применяется в ультразвуковой расходометрии. Первичные преобразователи (излучатели и приемники ультразвуковых волн) соединяются с блоком электроники ультразвукового расходомера посредством отрезков коаксиального кабеля фиксированной длины.
Коаксиальный кабель является частью схемы, параметры которой определяют параметры формируемого ультразвукового импульса. Поэтому самовольное изменение длины отрезков коаксиальных кабелей входящих в комплект поставки ультразвуковых расходомеров (US-800, UFM-001 и т.п.) либо запрещено производителем вовсе, либо требует ввода «новой» длины кабелей в настройки расходомера. В противном случае погрешность измерения может оказаться выше заявленной производителем, а в некоторых случаях это может и вовсе привести к отказам в работе. К такому же эффекту может привести применение коаксиального кабеля с другим волновым сопротивлением. Например, РК-75 с волновым сопротивлением 75 Ом против 50 Ом у РК-50.
Витая пара
Служит для построения компьютерных сетей. Витая пара может быть экранированной и неэкранированной.
Состоит из одной или нескольких пар проводов, перевитых попарно, что делается в целях улучшения приема и передачи сигнала. Проводники в парах изготовлены из монолитной медной проволоки толщиной 0,4—0,6 мм. Скручивание проводов снижает влияние внешних и взаимных помех на полезные сигналы, передаваемые по кабелю (электромагнитные помехи одинаково влияют на оба провода пары).
Также внутри кабеля встречается так называемая «разрывная нить» (обычно капрон), которая используется для облегчения разделки внешней оболочки — при вытягивании она делает на оболочке продольный разрез, который открывает доступ к кабельному сердечнику, гарантированно не повреждая изоляцию проводников. Также разрывная нить, ввиду своей высокой прочности на разрыв, выполняет защитную функцию.
Каждый проводник заключен в изоляцию из ПВХ или пропилена. Внешняя оболочка также из ПВХ. Кабель может быть дополнительно оснащен влагонепронициаемой оболочкой из полипропилена.
В зависимости от вида кабеля возможны различные варианты защиты:
- UTP или незащищенная, без общего экрана для пар проводов;
- FTP, или фольгированная, с экраном из алюминиевой фольги;
- STP, или защищенная, с общим экраном из медной сетки, к тому же каждая витая пара окружена отдельным экраном;
- S/FTP, или фольгированная, экранированная с общим экраном из фольги, к тому же каждая пара дополнительно включена в экран.
Кроме того, витые пары разделяются на категории по количеству пар, объединенных в один кабель. Самый распространенный вид, применяемый для компьютерных сетей – это категория CAT5. Он состоит из 4 пар проводов различного цвета. Скорость передачи данных – до 1 Гб/с при использовании всех пар.
Нужно отличать электрическую изоляцию проводящих жил, которая имеется в любом кабеле, от электромагнитной изоляции. Первая состоит из непроводящего диэлектрического слоя — бумаги или полимера, например поливинилхлорида или полистирола. Во втором случае помимо электрической изоляции проводящие жилы помешаются также внутрь электромагнитного экрана, в качестве которого чаще всего применяется проводящая медная оплетка.
Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитные помехи одинаково влияют на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов.
Экранированная витая пара хорошо защищает передаваемые сигналы от внешних помех, а также меньше излучает электромагнитные колебания вовне, что, в свою очередь, защищает пользователей сетей от вредного для здоровья излучения. Наличие заземляемого экрана удорожает кабель и усложняет его прокладку.
Для построения сетей применяются следующие разновидности кабеля:
UTP (unshielded twisted pair) — незащищенная витая пара — витые пары которого не имеют экранирования;FTP (Foiled Twisted Pair) — фольгированная витая пара — имеет общий экран из фольги, однако у каждой пары нет индивидуальной защиты;
STP (shielded twisted pair) — защищенная витая пара — каждая пара имеет собственный экран;
Преимущества: простота монтажа, низкая цена. Недостаток: высокая чувствительность к электромагнитным помехам. Для защиты от электромагнитных помех применяют экран. В зависимости от количества витков на 1м провода, от типа изоляции и типа экрана витые пары разделяются на категории и на частоту использования: 3 категория – 16МГц, 4 категория – 20 МГц, 5 категория – 100 МГц. Типичная длина сегмента – сотни метров.
Категории кабеля витая пара
Существует несколько категорий кабеля витая пара, которые определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины.
- Кабель категории 1 — это обычный телефонный кабель (пары проводов не витые), по которому можно передавать только речь, но не данные. Данный тип кабеля имеет большой разброс параметров (волнового сопротивления, полосы пропускания, перекрестных наводок).
- Кабель категории 2 — это кабель из витых пар для передачи данных в полосе частот до 1 МГц. Кабель не тестируется на уровень перекрестных наводок. В настоящее время он используется очень редко. Стандарт Е1А/Т1А 568 не различает кабели категорий 1 и 2.
- Кабель категории 3 — это кабель для передачи данных в полосе часто до 16 МГц, состоящий из витых пар с девятью витками проводов на метр длины. Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Это самый простой тип кабелей, рекомендованный стандартом для локальных сетей.
- Кабель категории 4 — это кабель, передающий данные в полосе частот до 20 МГц. Используется редко, так как не слишком заметно отличается от категории 3. Стандартом рекомендуется вместо кабеля категории 3 переходить сразу на кабель категории 5. Кабель категории 4 тестируется на все параметры и имеет волновое сопротивление 100 Ом.
- Кабель категории 5 — самый совершенный кабель в настоящее время, рассчитанный на передачу данных в полосе частот до 100 МГц. Состоит из витых пар, имеющих не менее 27 витков на метр длины (8 витков на фут). Кабель тестируется на все параметры и имеет волновое сопротивление 100 Ом. Рекомендуется применять его в современных высокоскоростных сетях. Кабель категории 5 примерно на 30-50% дороже, чем кабель категории 3.
- Кабель категории 6 — перспективный тип кабеля для передачи данных в полосе частот до 200 МГц.
- Кабель категории 7 — перспективный тип кабеля для передачи данных в полосе частот до 600 МГц.
Оптоволокно
Оптоволоконный кабель (он же волоконно-оптический) — это принципиально иной тип кабеля по сравнению с другими типами электрических или медных кабелей. Информация по нему передается не электрическим сигналом, а световым. Главный его элемент — это прозрачное стекловолокно, по которому свет проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.
Волоконно-оптический кабель состоит из тонких (5-60 микрон) гибких стеклянных волокон (волоконных световодов), по которым распространяются световые сигналы. Это наиболее качественный тип кабеля — он обеспечивает передачу данных с очень высокой скоростью (до 10 Гбит/с и выше) и к тому же лучше других типов передающей среды обеспечивает защиту данных от внешних помех (в силу особенностей распространения света такие сигналы легко экранировать).
Каждый световод состоит из центрального проводника света (сердцевины) — стеклянного волокна, и стеклянной оболочки, обладающей меньшим показателем преломления, чем сердцевина. Распространяясь по сердцевине, лучи света не выхолят за ее пределы, отражаясь от покрывающего слоя оболочки.
Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции — стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. В данном случае мы имеем дело с режимом так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).
Никакие внешние электромагнитные помехи в принципе не способны исказить световой сигнал, а сам этот сигнал принципиально не порождает внешних электромагнитных излучений. Однако в данном случае необходимо применение специальных оптических приемников и передатчиков, преобразующих световые сигналы в электрические и обратно, что порой существенно увеличивает стоимость сети в целом.
Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, используемых в локальных сетях, составляет около 5 дБ/км, что примерно соответствует показателям электрических кабелей на низких частотах.
Однако оптоволоконный кабель имеет и некоторые недостатки. Самый главный из них — высокая сложность монтажа (при установке разъемов необходима микронная точность, от точности скола стекловолокна и степени его полировки сильно зависит затухание в разъеме). Для установки разъемов применяют сварку или склеивание с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде заранее нарезанных кусков разной длины, на обоих концах которых уже установлены разъемы нужного типа. Никаких проблем согласования и заземления в данном случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети.
www.ruaut.ru
Коаксиальные кабели, применение и характеристики
Коаксиальный кабель представляет собой электрический кабель, состоящий из центрального провода и металлической оплетки, разделенных между собой слоем диэлектрика (внутренней изоляции) и помещенных в общую внешнюю оболочку.
Коаксиальный кабель до недавнего времени был распространен наиболее широко, что связано с его высокой помехозащищенностью (благодаря металлической оплетке), а также более высокими, чем в случае витой пары, допустимыми скоростями передачи данных (до 500 Мбит/с) и большими допустимыми расстояниями передачи (до километра и выше). К нему труднее механически подключиться для несанкционированного прослушивания сети, он также дает заметно меньше электромагнитных излучений вовне. Однако монтаж и ремонт коаксиального кабеля суще¬ственно сложнее, чем витой пары, а стоимость его выше (он дороже примерно в 1,5-3 раза по сравнению с кабелем на основе витых пар). Сложнее и установка разъемов на концах кабеля. Поэтому его сейчас применяют реже, чем витую пару.
Основное применение коаксиальный кабель находит в локальных компьютерных сетях с топологией типа «шина». При этом на концах кабеля обязательно должны устанавливаться терминаторы для предотвращения внутренних отражений сигнала, причем один (и только один!) из терминаторов должен быть заземлен. Без заземления металлическая оплетка не защищает сеть от внешних электромагнитных помех и не снижает излучение передаваемой по сети информации во внешнюю среду. Но при заземлении оплетки в двух или более точках из строя может выйти не только сетевое оборудование, но и компьютеры. Терминаторы должны быть обязательно согласованы с кабелем, то есть их сопротивление должно быть равно волновому сопротивлению кабеля. Например, если используется 50-омный кабель, для него подходят только 50-омные терминаторы.
Реже коаксиальные кабели применяются в сетях с топологией «звезда» и «пассивная звезда» (например, в сети Arcnet). В этом случае проблема согласования существенно упрощается, так как внешних терминаторов на свободных концах не требуется.
Волновое сопротивление кабеля указывается в сопроводительной документации. Чаще всего в локальных сетях применяются 50-омные (например, RG-58, RG-11) и 93-омные кабели (например, RG-62). 75-омные кабели, распространенные в телевизионной технике, в локальных сетях не используются. Вообще, марок коаксиального кабеля значительно меньше, чем кабелей на основе витых пар. Он не считается особо перспективным.
Существует два основных типа коаксиального кабеля:
- Тонкий кабель, имеющий диаметр около 0.5 см, более гибкий;
- Толстый кабель, имеющий диаметр около 1 см, значительно более жесткий. Он представляет собой классический вариант коаксиального кабеля, который уже почти полностью вытеснен более современным тонким кабелем.
Тонкий кабель используется для передачи на меньшие расстояния, чем толстый, так как в нем сигнал затухает сильнее. Зато с тонким кабелем гораздо удобнее работать: его можно оперативно проложить к каждому компьютеру, а толстый требует жесткой фиксации на стене помещения. Подключение к тонкому кабелю (с помощью разъемов BNC байонетного типа) проще и не требует дополнительного оборудования, а для подключения к толстому кабелю надо использовать специальные довольно дорогие устройства, прокалывающие его оболочки и устанавливающие контакт как с центральной жилой, так и с экраном. Толстый кабель примерно вдвое дороже, чем тонкий. Поэтому тонкий кабель применяется гораздо чаще.
Как и в случае витых пар, важным параметром коаксиального кабеля является тип его внешней оболочки. Точно так же в данном случае применяются как non-plenum (PVC), так и plenum кабели. Естественно, тефлоновый кабель дороже поливинилхлоридного. Обычно тип оболочки можно отличить по ее окраске (например, для кабеля PVC фирма Belden использует желтый цвет, а для тефлонового — оранжевый).
Типичные величины задержки распространения сигнала в коаксиальном кабеле составляют для тонкого кабеля около 5 нс/м, а для толстого — около 4,5 нс/м.
Существуют варианты коаксиального кабеля с двойным экраном (один экран расположен внутри другого и отделен от него дополнительным слоем изоляции). Такие кабели имеют лучшую помехозащищенность и защиту от прослушивания, но они немного дороже обычных.
В настоящее время считается, что коаксиальный кабель устарел, в большинстве случаев его вполне может заменить витая пара или оптоволоконный кабель . Новые стандарты на кабельные системы уже не включают его в перечень типов кабелей.
rostech.info