Конденсатор 101 маркировка: Страница не найдена | RCmarket.ua

Кодовая и цветовая маркировка конденсаторов


 

Допуски


    В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

Допуск [%]Буквенное обозначениеЦвет
±0,1*В(Ж) 
±0,25*С(У)оранжевый
±0,5*D(Д)желтый
±1,0*F(P)коричневый
±2,0G(Л)красный
±5,0J(И)зеленый
±10К(С)белый
±20М(В)черный
±30N(Ф) 
-10…+30Q(0) 
-10…+50Т(Э] 
-10…+100Y(Ю) 
-20…+50S(Б)фиолетовый
-20,. .+80Z(A)серый

   *-Для конденсаторов емкостью < 10 пФ допуск указан в пикофарадах.

   Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

   Пример:
 

Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10-9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)


Маркировка конденсаторов с ненормируемым ТКЕ

Таблица 2

Группа ТКЕДопуск при -6О…+85°С[%]Буквенный кодЦвет*
Н10±10Воранжевый+черный
Н20±20Zоранжевый+красный
Н30±30Dоранжевый+зеленый
Н50±50Xоранжевый+голубой
Н70±70Еоранжевый+фиолетовый
Н90±90Fоранжевый+белый

   * Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Маркировка конденсаторов с линейной зависимостью от температуры


Таблица 3

Обозначение
ГОСТ
Обозначение
международное
ТКЕ
[ppm/°C]*
Буквенный
код
Цвет**
П100P100100 (+130…-49)Aкрасный+фиолетовый
П33 33Nсерый
МПОNPO0(+30..-75)Счерный
М33N030-33(+30…-80]Нкоричневый
М75N080-75(+30…-80)Lкрасный
M150N150-150(+30…-105)Роранжевый
М220N220-220(+30…-120)Rжелтый
М330N330-330(+60…-180)Sзеленый
М470N470-470(+60. ..-210)Тголубой
М750N750-750(+120…-330)Uфиолетовый
М1500N1500-500(-250…-670)Vоранжевый+оранжевый
М2200N2200-2200Кжелтый+оранжевый

   * В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85°С.

   ** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Маркировка конденсаторов с нелинейной зависимостью от температуры


Таблица 4

Группа ТКЕ*Допуск[%]Температура**[°C]Буквенный
код ***
Цвет***
Y5F±7,5-30…+85  
Y5P±10-30…+85 серебряный
Y5R -30. ..+85Rсерый
Y5S±22-30…+85Sкоричневый
Y5U+22…-56-30…+85A 
Y5V(2F)+22…-82-30…+85  
X5F±7,5-55…+85  
Х5Р±10-55…+85  
X5S±22-55…+85  
X5U+22…-56-55…+85 синий
X5V+22…-82-55..+86  
X7R(2R)±15-55…+125  
Z5F±7,5-10…+85В 
Z5P±10-10…+85С 
Z5S±22-10…+85  
Z5U(2E)+22…-56-10…+85E 
Z5V+22. ..-82-10…+85Fзеленый
SL0(GP)+150…-1500-55…+150Nilбелый

   * Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.

** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.

*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.

Рис. 1

Таблица 5

Метки
полосы, кольца, точки
123456
3 метки*1-я цифра2-я цифраМножитель
4 метки1-я цифра2-я цифраМножительДопуск
4 метки1-я цифра2-я цифраМножительНапряжение
4 метки1 и 2-я цифрыМножительДопускНапряжение
5 меток1-я цифра2-я цифраМножительДопускНапряжение
5 меток»1-я цифра2-я цифраМножительДопускТКЕ
6 меток1-я цифра2-я цифра3-я цифраМножительДопускТКЕ

   * Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

    ** Цвет корпуса указывает на значение рабочего напряжения.

Рис. 2

Таблица 6

Цвет1-я цифра
мкФ
2-я цифра
мкФ
Множи-
тель
Напряже-
ние
Черный 0110
Коричневый1110 
Красный22100
Оранжевый33 
Желтый446,3
Зеленый5516
Голубой6620
Фиолетовый77 
Серый880,0125
Белый990,13
Розовый 35

 

Рис. 3

Таблица 7

Цвет1-я цифра
пФ
2-я цифра
пФ
3-я цифра
пФ
МножительДопускТКЕ
Серебряный 0,0110%Y5P
Золотой 0,15% 
Черный 00120%*NPO
Коричневый111101%**Y56/N33
Красный2221002%N75
Оранжевый333103 N150
Желтый444104N220
Зеленый555105N330
Голубой666106N470
Фиолетовый777107N750
Серый88810830%Y5R
Белый999 +80/-20%SL

   * Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.

Рис. 4

Таблица 8

Цвет1-я и
2-я цифра
пФ
МножительДопускНапряжение
Черный10120%4
Коричневый12101%6,3
Красный151002%10
Оранжевый181030,25 пФ16
Желтый221040,5 пФ40
Зеленый271055%20/25
Голубой331061%30/32
Фиолетовый39107-2О…+5О% 
Серый470,01-20…+80%3,2
Белый560,110%63
Серебряный68 2,5
Золотой82 5%1,6

   Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Рис. 5

Таблица 9

Номинальная емкость [мкФ]ДопускНапряжение
0,01   ±10%250
0,015 
0,02 
0,03 
0,04  
0,06  
0,10   
0,15 
0,22 
0,33 ±20400
0,47  
0,68  
1,0   
1,5 
2,2 
3,3 
4,7  
6,8  
 1 полоса2 полоса3 полоса4 полоса5 полоса

Кодовая маркировка конденсаторов


   В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

А. Маркировка 3 цифрами

   Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

КодЕмкость [пФ]Емкость [нФ]Емкость [мкФ]
1091,00,0010,000001
1591,50,00150,000001
2292,20,00220,000001
3393,30,00330,000001
4794,70,00470,000001
6896,80,00680,000001
100*100,010,00001
150150,0150,000015
220220,0220,000022
330330,0330,000033
470470,0470,000047
680680,0680,000068
1011000,10,0001
1511500,150,00015
2212200,220,00022
3313300,330,00033
4714700,470,00047
6816800,680,00068
10210001,00,001
15215001,50,0015
22222002,20,0022
33233003,30,0033
47247004,70,0047
68268006,80,0068
10310000100,01
15315000150,015
22322000220,022
33333000330,033
47347000470,047
68368000680,068
1041000001000,1
1541500001500,15
2242200002200,22
3343300003300,33
4744700004700,47
6846800006800,68
105100000010001,0

   * Иногда последний ноль не указывают.

В. Маркировка 4 цифрами

   Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

КодЕмкость[пФ]Емкость[нФ]Емкость[мкФ]
16221620016,20,0162
47534750004750,475


 

Рис. 6

С. Маркировка емкости в микрофарадах
 

   Вместо десятичной точки может ставиться буква R.

Таблица 12

КодЕмкость [мкФ]
R10,1
R470,47
11,0
4R74,7
1010
100100


 

Рис. 7

D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения

   В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Таблица 13

КодЕмкость
p100,1 пФ
Ip51,5 пФ
332p332 пФ
1НО или 1nО1,0 нФ
15Н или 15n15 нФ
33h3 или 33n233,2 нФ
590H или 590n590 нФ
m150,15мкФ
1m51,5 мкФ
33m233,2 мкФ
330m330 мкФ
1mO1 мФ или 1000 мкФ
10m10 мФ


 

Рис. 8

Кодовая маркировка кондесаторов электролетических  для поверхностного монтажа


   Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования

А. Маркировка 2 или 3 символами

   Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Рис. 9

Таблица 14

КодЕмкость [мкФ]Напряжение [В]
А61,016/35
А7104
АА71010
АЕ71510
AJ62,210
AJ72210
AN63,310
AN73310
AS64,710
AW66,810
СА71016
СЕ61,516
СЕ71516
CJ62,216
CN63,316
CS64,716
CW66,816
DA61,020
DA71020
DE61,520
DJ62,220
DN63,320
DS64,720
DW66,820
Е61,510/25
ЕА61,025
ЕЕ61,525
EJ62,225
EN63,325
ES64,725
EW50,6825
GA7104
GE7154
GJ7224
GN7334
GS64,74
GS7474
GW66,84
GW7684
J62,26,3/7/20
JA7106,3/7
JE7156,3/7
JJ7226,3/7
JN63,36,3/7
JN7336,3/7
JS64,76,3/7
JS7476,3/7
JW66,86,3/7
N50,3335
N63,34/16
S50,4725/35
VA61,035
VE61,535
VJ62,235
VN63,335
VS50,4735
VW50,6835
W50,6820/35


 

Рис. 10

В. Маркировка 4 символами

   Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Рис. 11

С. Маркировка в две строки

   Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Рис. 12

Маркировка конденсаторов пленочных для поверхностного монтажа фирмы «HITACHI»


Рис. 13

Маркировка конденсаторов Onelec.ru

Маркировка конденсаторов Onelec.ru

Маркировка конденсатора

Емкость
ОбозначениеЕмкость
100 10pF
101 100pF
102 100pF
103 0.01uF
104 0.1uF
105 1uF
106 10uF
Рабочее напряжение
ОбозначениеНапряжение
1H 50V
1J 63V
2A 100V
2C 160V
2D 200V
2E 250V
2G 400V
2J
630V
3A 1,000V
3C 1,600V
3D 2,000V
3F 3,000V
A3 250VAC
A1 275VAC
A2 300VAC
A8 305VAC
A9 310VAC
A4 400VAC
A5 440VAC
Допуски
ОбозначениеДопуск, %
В(Ж) ±0. 1пФ
С(У) ±0.25пФ
D(Д) ±0.5пФ
F(П) ±1.0пФ
G(Л) ±2.0
J(И)
±5.0
K(C) ±10
M(B) ±20
N(Ф) ±30
Q(O) -10…+30
T(Э) -10…+50 
Y(Ю) -10…+100
S(Б) -20…+50 
Z(A) -20…+80 

Цифровая маркировка конденсаторов

  

Цифровая маркировка конденсаторов
[email protected]
Отладочные  платы  на  базе  модуля  SIM900D

ST-LINK-GA

STM32F030F4P6


				

	
	
Код Пикофарады (пФ, pF) Нанофарады (нФ, nF) Микрофарады (мкФ, uF)
109 1. 0 0.001 0.000001
159 1.5 0.0015 0.000001
229 2.2 0.0022 0.000001
339 3.3 0.0033 0.000001
479 4.7 0.0047 0.000001
689 6.8 0.0068 0.000001
100 10 0.01 0.00001
150 15 0.015 0.000015
220 22 0.022 0.000022
330 33 0.033 0.000033
470 47 0. 047 0.000047
680 68 0.068 0.000068
101 100 0.1 0.0001
151 150 0.15 0.00015
221 220 0.22 0.00022
331 330 0.33 0.00033
471 470 0.47 0.00047
681 680 0.68 0.00068
102 1000 1.0 0.001
152 1500 1.5 0.0015
222 2200 2.2 0. 0022
332 3300 3.3 0.0033
472 4700 4.7 0.0047
682 6800 6.8 0.0068
103 10000 10 0.01
153 15000 15 0.015
223
22000 22 0.022
333 33000 33 0.033
473 47000 47 0.047
683 68000 68 0.068
104 100000 100 0.1
154 150000 150 0. 15
224 220000 220 0.22
334 330000 330 0.33
474 470000 470 0.47
684 680000
680
0.68
105 1000000 1000 1.0
Определение емкости с четырьмя цифрами: 



Таблица маркировки конденсаторов

Таблица маркировки конденсаторов

Емкость конденсаторов может измеряться в микрофарадах (uF), нанофарадах (nF), пикофарадах (pF) и обозначаеться специальным кодом. Данная таблица поможет вам разобраться в маркировке обозначений при различных измерительных номиналах и подобрать нужные аналоги для замены. Существует универсальный измерительный прибор для радиокомпонентов. Может измерять индуктивности, ESR и потери электролитических конденсаторов. Проверяет и транзисторы (включая MOSFET), диоды, стабилитроны, кварцы. Тип деталей определяется автоматически и выводит значения на дисплей. В этом обзоре ESR тестер я описывал этот прибор.

 

uF (мкФ) nF (нФ) pF (пФ) Code (Код)
1uF 1000nF 1000000pF 105
0.82uF 820nF 820000pF 824
0.8uF 800nF 800000pF 804
0.7uF 700nF 700000pF 704
0. 68uF 680nF 680000pF
624
0.6uF 600nF 600000pF 604
0.56uF 560nF 560000pF 564
0.5uF 500nF 500000pF 504
0.47uF 470nF 470000pF 474
0.4uF 400nF 400000pF 404
0.39uF 390nF 390000pF 394
0.33uF 330nF 330000pF 334
0.3uF 300nF 300000pF 304
0.27uF 270nF 270000pF 274
0.25uF 250nF 250000pF 254
0.22uF 220nF 220000pF
224
0. 2uF 200nF 200000pF 204
0.18uF 180nF 180000pF 184
0.15uF 150nF 150000pF 154
0.12uF 120nF 120000pF 124
0.1uF 100nF 100000pF 104
0.082uF 82nF 82000pF 823
0.08uF 80nF 80000pF 803
0.07uF 70nF 70000pF 703
0.068uF 68nF 68000pF 683
0.06uF 60nF 60000pF
603
0.056uF 56nF 56000pF 563
0.05uF 50nF 50000pF 503
0. 047uF 47nF 47000pF 473
0.04uF 40nF 40000pF 403
0.039uF 39nF 39000pF 393
0.033uF 33nF 33000pF 333
0.03uF 30nF 30000pF 303
0.027uF 27nF 27000pF 273
0.025uF 25nF 25000pF 253
0.022uF 22nF 22000pF 223
0.02uF 20nF 20000pF 203
0.018uF 18nF 18000pF 183
0.015uF 15nF 15000pF 153
0.012uF 12nF 12000pF 123
0. 01uF 10nF 10000pF 103
0.0082uF 8.2nF 8200pF 822
0.008uF 8nF 8000pF 802
0.007uF 7nF 7000pF 702
0.0068uF 6.8nF 6800pF 682
0.006uF 6nF 6000pF 602
0.0056uF 5.6nF 5600pF 562
0.005uF 5nF 5000pF 502
0.0047uF 4.7nF 4700pF 472
0.004uF 4nF 4000pF 402
0.0039uF 3.9nF 3900pF 392
0.0033uF 3. 3nF 3300pF 332
0.003uF 3nF 3000pF 302
0.0027uF 2.7nF 2700pF 272
0.0025uF 2.5nF 2500pF 252
0.0022uF 2.2nF 2200pF 222
0.002uF 2nF 2000pF 202
0.0018uF 1.8nF 1800pF 182
0.0015uF 1.5nF 1500pF 152
0.0012uF 1.2nF 1200pF 122
0.001uF 1nF 1000pF 102
0.00082uF 0.82nF 820pF 821
0.0008uF 0.8nF 800pF 801
0. 0007uF 0.7nF 700pF 701
0.00068uF 0.68nF 680pF 681
0.0006uF 0.6nF 600pF 621
0.00056uF 0.56nF 560pF 561
0.0005uF 0.5nF 500pF 52
0.00047uF 0.47nF 470pF 471
0.0004uF 0.4nF 400pF 401
0.00039uF 0.39nF 390pF 391
0.00033uF 0.33nF 330pF 331
0.0003uF 0.3nF 300pF 301
0.00027uF 0.27nF 270pF 271
0. 00025uF 0.25nF 250pF 251
0.00022uF 0.22nF 220pF 221
0.0002uF 0.2nF 200pF 201
0.00018uF 0.18nF 180pF 181
0.00015uF 0.15nF 150pF 151
0.00012uF 0.12nF 120pF 121
0.0001uF 0.1nF 100pF 101
0.000082uF 0.082nF 82pF 820
0.00008uF 0.08nF 80pF 800
0.00007uF 0.07nF 70pF 700
0.000068uF 0.068nF 68pF 680
0. 00006uF 0.06nF 60pF 600
0.000056uF 0.056nF 56pF 560
0.00005uF 0.05nF 50pF 500
0.000047uF 0.047nF 47pF 470
0.00004uF 0.04nF 40pF 400
0.000039uF 0.039nF 39pF 390
0.000033uF 0.033nF 33pF 330
0.00003uF 0.03nF 30pF 300
0.000027uF 0.027nF 27pF 270
0.000025uF 0.025nF 25pF 250
0.000022uF 0.022nF 22pF 220
0. 00002uF 0.02nF 20pF 200
0.000018uF 0.018nF 18pF 180
0.000015uF 0.015nF 15pF 150
0.000012uF 0.012nF 12pF 120
0.00001uF 0.01nF 10pF 100
0.000008uF 0.008nF 8pF 080
0.000007uF 0.007nF 7pF 070
0.000006uF 0.006nF 6pF 060
0.000005uF 0.005nF 5pF 050
0.000004uF 0.004nF 4pF 040
0.000003uF 0.003nF 3pF 030
0. 000002uF 0.002nF 2pF 020
0.000001uF 0.001nF 1pF 010

Очень часто для проведения ремонтных работ в электронных устройствах, необходимо иметь в запасе конденсаторы различных номиналов. Так как в магазине зачастую на все случаи жизни приобрести нет возможности, поэтому в большинстве случаев заказываю у китайских товарищей на площадке Aliexpress. В продаже имеются также в большем асортименте электролитические конденсаторы. Можно приобрести набором по 10-20 различных номиналов.

 

Конденсаторы на Aliexpress

Автор: silver от 14-04-2017, посмотрело: 92259

Категория: Ремонт

Комментарии: 0

Оставить комментарии к этой записи

Маркировка конденсаторов

Маркировка и расшифровка конденсаторов
Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов.
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать  эти коды, можно узнать  их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.
Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10
оС). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается  «Н»).
Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код
Ёмкость
Пикофарад
(пФ, pF)
Нанофарад (нФ, nF)
Микрофорад (мкФ, µF)
109
1.0
0.001
159
1.5
0.0015
229
2.2
0.0022
339
3.3
0.0033
479
4.
7
0.0047
689
6.8
0.0068
100
10
0.01
150
15
0.015
220
22
0.022
330
33
0.033
470
47
0.047
680
68
0.068
101
100
0.1
151
150
0.15
221
220
0.22
331
330
0.
33
471
470
0.47
681
680
0.68
102
1000
1.0
0.001
152
1500
1.5
0.0015
222
2200
2.2
0.0022
332
3300
3.3
0.0033
472
4700
4.7
0.0047
682
6800
6.8
0.0068
103
10000
10
0.01
153
15000
15
0.
015
223
22000
22
0.022
333
33000
33
0.033
473
47000
47
0.047
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
224
220000
220
0.22
334
330000
330
0.33
474
470000
470
0.47
684
680000
680
0.
68
105
1000000
1000
1.0
1622
16200
16.2
0.0162
4753
475000
475
0.475
 
 
 
 
 
Надеюсь, принцип понятен, а с остальным разберётесь.
На этом всё.
Пишите комментарии и делитесь в соц.сетях!
Успехов вам!
P.S. Если хотите получать уведомления о новых публикациях, рекомендую оформить подписку на обновления, заполнив форму справа.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Маркировка конденсаторов: расшифровка цифр и букв

Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.

Как маркируются большие конденсаторы

Чтобы правильно прочитать технические характеристики устройства, необходимо провести определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.

При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение 10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф.

Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.

Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов.

В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 – (6000 х 0,7).

При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения.

При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.

При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения.

Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.

Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления. Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.

Расшифровка маркировки конденсаторов

Чтобы расшифровать маркировку, необходимо значение первых двух цифр, обозначающих емкость. Если конденсатор имеет очень маленькие размеры, не позволяющие обозначить емкость, его маркировка происходит по стандарту EIA, применяемому для всех современных изделий.

Обозначение цифр

Если в обозначении присутствует только две цифры и одна буква, в этом случае цифровые значения соответствуют емкости устройства. Все остальные маркировки расшифровываются по-своему, в соответствии с той или иной конструкцией.

Третья цифра в обозначении является множителем нуля. В этом случае расшифровка выполняется в зависимости от цифры, расположенной в конце. Если такая цифра находится в диапазоне 0-6, то к первым двум цифрам добавляются нули в определенном количестве. Для примера можно взять маркировку 453, которая будет расшифровываться как 45 х 103 = 45000.

Когда последняя цифра будет 8, то первые две цифры умножаются на 0,01. Таким образом, при маркировке 458, получается 45 х 0,01 = 0,45. Если же 3-й цифрой будет 9, то первые две цифры нужно умножить на 0,1. В результате обозначение 459 преобразуется в 45 х 0,1 = 4,5.

После определения емкости, нужно определить единицу для ее измерения. Самые мелкие конденсаторы – керамические, пленочные и танталовые имеют емкость, измеряемую в пикофарадах (пФ), составляющих 10-12. Для измерения емкости больших конденсаторов применяются микрофарады (мкФ), равные 10-6. Единицы измерения могут обозначаться буквами: р – пикофарад, u– микрофарад, n – нанофарад.

Обозначение букв

После цифр необходимо расшифровать буквы, входящие в маркировку. Если буква присутствует в двух первых символах, ее расшифровка производится несколькими способами. При наличии буквы R, она заменяется запятой, применяемой для десятичной дроби. Расшифровка маркировки 4R1 будет выглядеть как 4,1 пФ.

При наличии букв р, n, u, соответствующих пико-, нано- и микрофараде также выполняется замена на десятичную запятую. Обозначение n61 читается как 0,61 нФ, маркировка 5u2 соответствует 5,2 мкФ.

Маркировка керамических конденсаторов

Керамические конденсаторы обладают плоской круглой формой и двумя контактами. На корпусе кроме основных показателей, указывается допуск отклонений от номинальной емкости. С этой целью используется определенная буква, проставляемая сразу же после цифрового обозначения емкости. Например, буква «В» соответствует отклонению + 0,1 пФ, «С» – + 0,25 пФ, D – + 0,5 пФ. Эти значения применяются при емкости менее 10 пФ. У конденсаторов с емкостью более 10 пФ буквенные обозначения соответствуют определенному проценту отклонений.

Смешанная буквенно-цифровая маркировка

Маркировка допуска может состоять из буквенно-цифрового обозначения по схеме «буква-цифра-буква». Первый буквенный символ соответствует минимальной температуре, например, Z = 10 градусам, Y = -30C, X = -55C. Второй цифровой символ – это максимальная температура.

Цифры соответствуют следующим показателям: 2 – 45С, 4 – 65С, 5 – 85С, 6 – 105С, 7 – 125С. Значение третьего буквенного символа означает изменяющуюся емкость конденсатора, в пределах между минимальной и максимальной температурой. К более точным показателям относится «А» со значением + 1,0%, а к менее точным – «V» с показателем от 22 до 82%. Чаще всего используется «R», составляющая 15%.

Прочие маркировки

Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.

В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу.

Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.

Маркировка конденсаторов. Кодовая и цветовая маркировака конденсаторов

Маркировка тремя цифрами.

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
1.0 пФ 1000 пФ 1 нФ
1.5 пФ 1500 пФ 1.5 нФ
2. 2 пФ 2200 пФ 2.2 нФ
3.3 пФ 3300 пФ 3.3 нФ
4.7 пФ 4700 пФ 4.7 нФ
6.8 пФ 6800 пФ 6.8 нФ
10 пФ 0.01 нФ 10000 пФ 10 нФ 0.01 мкФ
15 пФ 0.015 нФ 15000 пФ 15 нФ 0.015 мкФ
22 пФ 0.022 нФ 22000 пФ 22 нФ 0.022 мкФ
33 пФ 0.033 нФ 33000 пФ 33 нФ 0.033 мкФ
47 пФ 0. 047 нФ 47000 пФ 47 нФ 0.047 мкФ
68 пФ 0.068 нФ 68000 пФ 68 нФ 0.068 мкФ
100 пФ 0.1 нФ 100000 пФ 100 нФ 0.1 мкФ
150 пФ 0.15 нФ 150000 пФ 150 нФ 0.15 мкФ
220 пФ 0.22 нФ 220000 пФ 220 нФ 0.22 мкФ
330 пФ 0.33 нФ 330000 пФ 330 нФ 0.33 мкФ
470 пФ 0.47 нФ 470000 пФ 470 нФ 0.47 мкФ
680 пФ 0.68 нФ 680000 пФ 680 нФ 0. 68 мкФ
1000000 пФ 1000 нФ 1 мкФ
маркировка значение маркировка значение маркировка значение маркировка значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6. 8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

«Справочник» справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация электронных компонентов электронных компонентов .

· Допуски

· Кодовая маркировка

· Допуски

· Конденсаторы с линейной зависимостью от температуры

· Конденсаторы с нелинейной зависимостью от температуры

· Кодовая маркировка

· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

Допуски

Таблица 1

*-Для конденсаторов емкостью

Δ=(δхС/100%)[Ф]

Пример:


Конденсаторы с ненормируемым ТКЕ

Таблица 2

Конденсаторы с линейной зависимостью от температуры

Таблица 3

Обозначение ГОСТ Обозначение международное ТКЕ * Буквенный код Цвет**
П100 P100 100 (+130. ..-49) A красный+фиолетовый
П33 N серый
МПО NPO 0(+30..-75) С черный
М33 N030 -33(+30…-80] Н коричневый
М75 N080 -75(+30…-80) L красный
M150 N150 -150(+30…-105) Р оранжевый
М220 N220 -220(+30…-120) R желтый
М330 N330 -330(+60…-180) S зеленый
М470 N470 -470(+60…-210) Т голубой
М750 N750 -750(+120…-330) U фиолетовый
М1500 N1500 -500(-250…-670) V оранжевый+оранжевый
М2200 N2200 -2200 К желтый+оранжевый

* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55. ..+85 ° С.

** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Кодовая маркировка

А. Маркировка 3 цифрами

Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.

Таблица 10

Код Емкость [пФ] Емкость [нФ] Емкость [мкФ]
1,0 0,001 0,000001
1,5 0,0015 0,000001
2,2 0,0022 0,000001
3,3 0,0033 0,000001
4,7 0,0047 0,000001
6,8 0,0068 0,000001
100* 0,01 0,00001
0,015 0,000015
0,022 0,000022
0,033 0,000033
0,047 0,000047
0,068 0,000068
0,1 0,0001
0,15 0,00015
0,22 0,00022
0,33 0,00033
0,47 0,00047
0,68 0,00068
1,0 0,001
1,5 0,0015
2,2 0,0022
3,3 0,0033
4,7 0,0047
6,8 0,0068
0,01
0,015
0,022
0,033
0,047
0,068
0,1
0,15
0,22
0,33
0,47
0,68
1,0

В. Маркировка 4 цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.

Таблица 11

В. Маркировка 4 символами

Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

С. Маркировка в две строки

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

http://www.radioradar.net/hand_book/hand_books/conder.html

Кодовая маркировка

В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.

Кодировка тремя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ.

Таблица 1

* Иногда последний ноль не указывают.

Кодировка четырьмя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

Таблица 2

Цветовая маркировка

На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки

* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.

** Цвет корпуса указывает на значение рабочего напряжения.

Вывод «+» может иметь больший диаметр.

Для маркировки пленочных конденсаторов используют 5 цветных полос или точек:

Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.

Маркировка допусков

В соответствии с требованиями Публикаций 62 и 115-2 IEC (МЭК) для конденсаторов установлены следующие допуски и их кодировка:

Маркировка ТКЕ

Маркировка тремя цифрами.

Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
1. 0 пФ 1000 пФ 1 нФ
1.5 пФ 1500 пФ 1.5 нФ
2.2 пФ 2200 пФ 2.2 нФ
3.3 пФ 3300 пФ 3.3 нФ
4.7 пФ 4700 пФ 4.7 нФ
6.8 пФ 6800 пФ 6.8 нФ
10 пФ 0.01 нФ 10000 пФ 10 нФ 0.01 мкФ
15 пФ 0.015 нФ 15000 пФ 15 нФ 0.015 мкФ
22 пФ 0. 022 нФ 22000 пФ 22 нФ 0.022 мкФ
33 пФ 0.033 нФ 33000 пФ 33 нФ 0.033 мкФ
47 пФ 0.047 нФ 47000 пФ 47 нФ 0.047 мкФ
68 пФ 0.068 нФ 68000 пФ 68 нФ 0.068 мкФ
100 пФ 0.1 нФ 100000 пФ 100 нФ 0.1 мкФ
150 пФ 0.15 нФ 150000 пФ 150 нФ 0.15 мкФ
220 пФ 0.22 нФ 220000 пФ 220 нФ 0.22 мкФ
330 пФ 0.33 нФ 330000 пФ 330 нФ 0. 33 мкФ
470 пФ 0.47 нФ 470000 пФ 470 нФ 0.47 мкФ
680 пФ 0.68 нФ 680000 пФ 680 нФ 0.68 мкФ
1000000 пФ 1000 нФ 1 мкФ

2. Маркировка четырьмя цифрами.

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

3. Буквенно-цифровая маркировка.

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ, 22p = 22 пФ, 2н2 = 2. 2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы.

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

маркировка значение маркировка значение маркировка значение маркировка значение
A 1. 0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

5. Планарные электролитические конденсаторы.

Кодовая и цветовая маркировака конденсаторов

«Справочник» справочная информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам ,конденсаторам , светодиодам и т.д. Вся справочная информация содержит все, необходимые для подбора электронных компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию электронных компонентов .

· Допуски

· Конденсаторы с линейной зависимостью от температуры

· Конденсаторы с нелинейной зависимостью от температуры

· Кодовая маркировка

· Кодовая маркировка электролетических конденсаторов для поверхностного монтажа

· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

· Допуски

· Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ

· Конденсаторы с линейной зависимостью от температуры

· Конденсаторы с нелинейной зависимостью от температуры

· Кодовая маркировка

· Кодовая маркировка электролитических конденсаторов для поверхностного монтажа

· Маркировка пленочных конденсаторов для поверхностного монтажа фирмы «HITACHI»

Допуски

В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:

Таблица 1

*-Для конденсаторов емкостью

Перерасчет допуска из % (δ) в фарады (Δ):

Δ=(δхС/100%)[Ф]

Пример:

Реальное значение конденсатора с маркировкой 221J (0. 22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10 -9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.

Температурный коэффициент емкости (ТКЕ)
Конденсаторы с ненормируемым ТКЕ

Таблица 2

* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.

Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC (табл. 2.5, 2.6).

При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R: R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

После обозначения емкости может быть нанесен буквенный символ, обозначаю­ щий допустимое отклонение емкости конденсатора в соответствии с табл. 2.4.

Таблица 2.5. Кодировка номинальной емкости конденсаторов тремя цифрами

Пикофарады (пФ; pF)

Нанофарады (нФ; nF)

Микрофарады (мкФ)

Емкость

Пикофарады ( пф ; pF)

Нанофарады ( нФ ; nF)

Микрофарады ( мкФ ; mF)

Таблица 2. 6. Кодировка номинальной емкости конденсаторов четырьмя цифрами

Емкость

Пикофарады (пФ; pF)

Нанофарады (нФ; nF)

Микрофарады (мкФ

ТКЕ (температурный коэффициент емкости) — параметр конденсатора, который характеризует относительное изменение емкости от номинального значения при изменении температуры окружающей среды. Этот параметр принято выражать в миллионных долях емкости конденсатора на градус
(10/-6 / °С). ТКЕ может быть положительным (обозначается буквой «П» или «Р»), отрицательным
(«М» или « N »), близким к нулю («МП») или ненормированным («Н»).

Конденсаторы изготавливаются с различными по ТКЕ типами диэлектриков: группы NPO , X 7 R , Z 5 U , Y 5 V и другие. Диэлектрик группы NPO (COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильно­стью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовлен­ ные с применением этого диэлектрика, наиболее дорогостоящие. Диэлектрик группы X 7 R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность.

Диэлектрики групп Z 5 U и Y 5 V имеют очень высокую диэлектрическую проница­ емость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющие значительный разброс параметров. SMD конденсаторы с диэлектриками групп X 7 R и Z 5 U используются в цепях общего назначения.


Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов :

  • Кодовая маркировка 3 цифрами;
  • Кодовая маркировка 4 цифрами;
  • Буквенно цифровая маркировка;
  • Специальная маркировка для планарных конденсаторов.

Кодовая маркировка конденсаторов 3 цифрами

К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.

КодПикофарады, пФ, pFНанофарады, нФ, nFМикрофарады, мкФ, μF
1091.0 пФ 0.0010нф
1591.5 пФ0.0015нф
2292.2 пФ0.0022нф
3393. 3 пФ 0.0033нф
4794.7 пФ 0.0048нф
6896.8 пФ 0.0068нФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0. 068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1. 5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
15315000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
33333000 пФ33 нФ0. 033 мкФ
47347000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0. 68 мкФ
1051000000 пФ1000 нФ1 мкФ

Кодовая маркировка конденсаторов 4 цифрами

При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*10 2 пФ = 10000 пФ = 10.0 нФ . Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.

Буквенно-цифровая маркировка

В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).

Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ 22 = 0.22 мкФ.

Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.

Иногда вместо мкФ используют букву R.

Например: 6R8 = 6,8 мкФ

Маркировка планарных керамических конденсаторов

Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.

Руководство по идентификации комплекта конденсаторов

— learn.sparkfun.com

Введение

Никогда не знаешь, когда тебе понадобится конденсатор. Иногда вам нужно немного больше развязки источника питания, выходной соединительный колпачок или тщательная настройка схемы фильтра — все это приложения, где конденсаторы имеют решающее значение. Набор конденсаторов SparkFun содержит широкий диапазон емкостей конденсаторов, поэтому вы всегда будете иметь их под рукой, когда они вам понадобятся.

Комплект конденсаторов SparkFun

Нет на складе КОМПЛЕКТ-13698

Это комплект, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить возиться с электроникой. Нет мес…

10

Этот учебник поможет вам определить содержимое вашего набора и покажет вам пару приемов, позволяющих еще больше расширить диапазон значений.

Рекомендуемая литература

Состав комплекта

Набор конденсаторов содержит колпачки с декадными интервалами от 10 пикофарад до 1000 мкФ.

Состав комплекта конденсатора
Значение Тип Маркировка Количество Номинальное напряжение
10pF Керамика 100 50V
22pF Керамика 220 10 50V
100pF Керамика101 10 50V
1nF Керамика102 Керамика102 10 50 В
10 нФ Керамика 103 10 50 В
100 нФ Керамика 104 25 50 В
1 мкФ 1µF Электролитический / 50 В 10 50 В
10 мкФ Электролитический 10 мкФ / 25 В 10 25 В
100 мкФ Электролитический 100 мкФ / 25 В
10 25 В
1000 мкФ Электролитический 1000 мкФ / 25 В 10 25 В

Имеется десять частей большинства значений, но 25 частей по 100 нанофарад, которые обычно используются для развязки местного источника питания рядом с ИС. Есть также десять частей по 22 пФ, которые часто используются в качестве нагрузочных конденсаторов при создании кварцевых генераторов.

Идентификация конденсатора

Обзор маркировки конденсаторов

Посмотрим правде в глаза, Фарад — это большая емкость. Значения конденсаторов обычно крошечные — часто в миллионных или миллиардных долях Фарада. Чтобы кратко выразить эти маленькие значения, мы используем метрическую систему. Следующие префиксы являются современным условным обозначением * .

Конденсатор Метрические префиксы
Префикс Обозначение СИ Дробь Символ
Микрофарад 10 -6 Один миллионный
нанофарад 10 -9 один миллиард нф
пикофарад 10 -12 один триллион пф
* Эти единицы являются современным условием и в основном соответствуют рекомендациям по применению метрической системы, но не всегда единообразны.

Mu (µ), символ микро, может быть проблемой при наборе. Его сложно печатать, и не на каждом шрифте есть символ. В SparkFun мы часто используем вместо нее букву «u». Иногда вместо этого используется буква «м», которая обозначается сокращением в микрофарадах как «mF». Технически есть еще «миллифарад», но на практике миллифарады почти не встречаются, а тысячи микрофарадов встречаются гораздо чаще.

Время и география тоже влияют. В старшем В североамериканских конструкциях нано-фарады встречаются нечасто, в спецификациях и схемах вместо этого используются только мкФ и пФ, дополненные ведущими или конечными нулями.

Керамические колпачки

Меньшие значения в комплекте — керамические конденсаторы на 50 В. Это маленькие неполяризованные колпачки с желтыми пятнами на теле.

Слева направо: 10 пФ, 22 пФ, 100 пФ, 1 нФ, 10 нФ, 100 нФ

Значение напечатано на каждом трехзначном коде. Этот код похож на цветовую кодировку резисторов, но вместо цветов используются цифры. Первые две цифры — это две старшие цифры значения, а третья цифра — это показатель степени 10.Стоимость выражается в пикофарадах.

Чтобы расшифровать значение, возьмите первые две цифры, а затем поставьте за ними количество нулей, обозначенное третьей цифрой. 104 становится «10», за которым следует «0000» или 100000 пФ, более кратко записываемое как 100 нФ.

Колпачки электролитические

Электролитические колпачки имеют большие цилиндрические корпуса, похожие на небольшие банки из-под соды. Обычно они обладают большей емкостью, чем керамические колпачки. В отличие от керамики они поляризованы.

Слева направо: 1 мкФ, 10 мкФ, 100 мкФ, 1000 мкФ

Маркировка литических колпачков легко читается — значение и единицы измерения напечатаны прямо на корпусе.

За значением следует номинальное напряжение, указывающее максимальный потенциал постоянного тока, который колпачок может выдержать без повреждений. В этом комплекте 1 мкФ рассчитан на 50 В, остальные — на 25 В.

поляризованные

Более высокая емкость электролитов имеет несколько утомительную деталь — они поляризованы.Положительный полюс должен иметь более высокий потенциал постоянного тока, чем отрицательный. Если они установлены в обратном порядке, они могут взорваться.

К счастью, выводы четко обозначены.

На электролитической крышке есть два индикатора полярности:

  1. Полоса на корпусе обычно обозначает отрицательный вывод.
  2. Положительный провод длиннее отрицательного.

Умные приложения

Кварцевые генераторы

В комплект специально входят керамические колпачки 22 пФ для создания кварцевых генераторов, обычно требуемых для ИС микроконтроллеров.

Схема кварцевого генератора от ProMicro

Комбинации значений

Этот комплект предлагает широкий спектр значений, но выбор по десятилетию оставляет некоторые промежутки между ними. Есть несколько приемов, которые можно использовать для устранения этих пробелов, комбинируя заглушки последовательно или параллельно.

Параллельный

Значения конденсаторов, подключенных параллельно, суммируются. Вы можете объединить меньшие крышки, чтобы эффективно сформировать большую крышку.

серии

Конденсаторы, соединенные последовательно, объединяются в обратную сумму — возьмите обратную величину каждого значения и сложите их вместе, а затем возьмите обратную величину этой суммы.


Переформулировано как упрощенное руководство, пока вы находитесь на рабочем месте:

  • Если вы хотите, чтобы в комплекте была половина стоимости крышки, поместите две из них последовательно.
  • Если вы хотите удвоить стоимость крышки в комплекте, поставьте две параллельно.

Конденсаторы — Маркировка конденсаторов — Radio Daze LLC

КОНДЕНСАТОР
МАРКИРОВКА

ЗНАЧЕНИЕ

101 . 0001uf = 100pf
151 .00015 мкФ = 150 пф
221 .00022 мкФ = 220 пф
331 .00033 мкФ = 330 пф
471 .00047 мкФ = 470 пф
681 .00068uf = 680pf
102 .001 мкФ = 1000 пф
152 .0015 мкФ = 1500 пф
222 .0022 мкФ = 2200 пф
332 .0033 мкФ = 3300 пф
472 . 0047uf = 4700pf
682 .0068 мкФ = 6800 пф
103 0,01 мкФ
153 0,015 мкФ
223 0,022 мкФ
333 .033 мкФ
473 0,047 мкФ
683 0,068 мкФ
104 .1 мкФ
154 0,15 мкФ
224 . 22 мкФ
334 .33 мкФ
474 .47 мкФ
684 .68 мкФ
105 1,0 мкФ
225 2,2 мкФ

Не можете определить значение
конденсатора на вашем стенде?
Вот таблица, которая вам в помощь.Буква
после маркировки часто указывает на допуск.

+/- 5% (J), +/- 10% (K), +/- 20% (M)
Пример: 101K будет 100pf, +/- 10%

Когда вы устали, у вас болит голова при переводе пикофарадов в микрофарады?


Может это вам поможет.

4,7 ммf или pf = .0000047 mf
47 ммс или пф = .000047 м.ф.
470 ммс или пф = .00047 mf
4,700 ммв или пф = .0047 mf
47000 ммс или пф = .047 мф
470,000 ммс или пф = .47 mf

Маркировка конденсатора

Маркировка конденсатора — это код, который указывает номинал компонента. Обычно он состоит из трех цифр, обозначающих значение, и буквы, обозначающей допуск. Таблицы обычно предоставляют средства для декодирования чисел; однако есть и калькуляторы. Его легко декодировать, потому что первые две цифры указывают значение, а третья цифра указывает количество добавляемых нулей в конце, известное как множитель. Затем, наконец, добавьте единицу pF. Так, например, код 101 означает 100 пФ.

Таблица — декодер

90 026 56 пФ 903 900 9 00262026

9019 90

пФ

00

9000 пФ

00 10024

560026 90300 пФ
пикофарад Код
10 пФ100
11 пФ 110
12 пФ 120
13 пФ3 130
15 пФ150
16 пФ160
18 пФ180
20 пФ 200
22 пФ 220
24 пФ 240
27 пФ 270
30 пФ 300
33 пФ 330
36 пФ 360
39 пФ 390
43 пФ 430
47 пФ 470
51 пФ 510
560
62 пФ 620
68 пФ680
75 пФ750
82 пФ 820
91 пФ 820
91 пФ 910
100 пФ101
110 пФ111
120 пФ 121
130 пФ 131
150 пФ 900 151
160 пФ 161
180 пФ 181
200 пФ 201
220 пФ 221
240 пФ 241
270 пФ271
300 пФ301
330 пФ331
360 пФ361
390 пФ391
430 пФ 431
470 пФ 471
510 пФ 511
561
620 пФ 621
680 пФ681
750 пФ751
820 пФ 821
910 пФ
1000 пФ102
1100 пФ 112
1200 пФ 122
1300 пФ 132
1500 пФ 132 152
1600 пФ162
1800 пФ 182
2000 пФ
2200 пФ222
2400 пФ 242
2700 пФ 272
3000 пФ 302
33003 3600 пФ 362
3900 пФ 392
4300 пФ 432
4700 пФ 472
5100 пФ 512
562
6200 пФ622
6800 пФ682
7500 пФ752
8200 пФ 822
22 9100
10000 пФ103
11000 пФ113
12000 пФ 123
13000 пФ133
15000 пФ 153
16000 пФ163
18000 пФ 183 203
22000 пФ223
24000 пФ 243
27000 пФ 273
30000 пФ 303
33000 пФ 303
33000
36000 пФ3
39000 пФ393
43000 пФ 433
47000 пФ 473
51000 пФ513
563
62000 пФ623
68000 пФ683
75000 пФ753
82000 пФ 823
913
100000 пФ 23 104
114
120000 пФ 124
130000 пФ 134
150000 пФ 154
160000 пФ 164
180000 пФ 183 9019 200000 пФ 204
220000 пФ 224
240000 пФ 244
270000 пФ 274
300000 пФ 304
330000 пФ
360000 пФ364
3

пФ 90 023

394
430000 пФ 434
470000 пФ 474
510000 пФ 514
560000 пФ 564
620000 6240024
680000 пФ684
750000 пФ754
820000 пФ 824
914
1100000 пФ 115
1200000 пФ 125
1300000 пФ135
1500000 пФ 155
1600000 пФ 165
185
2000000 пФ205
2200000 пФ 225
2400000 пФ 245
2700000 пФ275
3000000 пФ 305
3300000 пФ 33519
3300000 пФ365
3

0 пФ

395
4300000 пФ435
4700000 пФ 475
5100000 пФ 515
560026 6200000 пФ625
6800000 пФ685
7500000 пФ755
8200000 пФ 825
9157

0 не придерживаться системы кодирования EIA, а значения отмечать непосредственно на крышке acitor.

Пример
0,001K — конденсатор 0,001 мкФ с допуском ± 10%.
0,01Z — конденсатор 0,01 мкФ с допуском +80% и -20%.


Примеры маркировки и значений

900
Код Значение
101100 пФ
104100 нФ
105 1 мкФ
224 220 нФ
221 220 пФ
334 330 нФ
475 4.7 мкФ
473 47 нФ
561 560 пФ
503 50 нФ
683 68 нФ
821 820 903
822 8,2 нФ
925 9,2 мкФ

Для новичков некоторые значения могут сбить с толку. Значения с заглавной буквой K соответствуют допуску ± 10%. Моя статья о значениях керамических дисковых конденсаторов может помочь с буквами допуска.

Пример
103K — конденсатор 10 нФ с допуском 10%.
222K — конденсатор емкостью 2,2 нФ с допуском 10%.
823K составляет 82 нФ с допуском 10%.
682K имеет допуск 6,8 нФ 10%.

Все о маркировке конденсаторов — Axegrinderz Guitar Tone Products

Что означают буквы и цифры на этих крышках. Я заказал крышки 0,022 мкФ, и они помечены как 223К, какого черта ???, LOL.

Ну ….

Конденсаторы

обычно обозначаются маркировкой с использованием стандарта IEC, который является международным стандартом, введенным Международной электротехнической комиссией, чтобы избежать путаницы на международных рынках, производящих электронные компоненты.

Стандарт IEC для конденсаторов работает следующим образом:

Числа работают следующим образом:

Первые 2 числа являются базовым значением,

третье число — множитель (количество нулей).

Конденсаторы имеют маркировку в пикофарадах.

Итак:

Конденсатор с маркировкой 473 означает 47 плюс 3 нуля = 47000 пикофарад = 0,047 мкФ

Конденсатор с маркировкой 503 равен 50 плюс 3 нуля = 50000 пикофарад = 0,05 мкФ

Стандартная маркировка IEC пФ Значение мкФ Значение nf Значение
101 100 0.0001
151 150 0,00015
221 220 0,00022
331 330 0,00033
471 470 0,00047
681 680 0.00068
102 1000 0,001 1
152 1500 0,0015 1n5
222 2200 0,0022 2н2
332 3300 0,0033 3н3
472 4700 0. 0047 4н7
682 6800 0,0068 6н8
103 10000 0,01 10
153 15000 0,015 15
183 18000 0,018 18
203 20000 0.02 20
223 22000 0,022 22
333 33000 0,033 33
473 47000 0,047 47
503 50000 0,05 50
683 68000 0.068 68
104 100000 0,1 100

Что означают буквы?

IEC использует следующую букву для обозначения допуска:

Коды допуска следующие:

Код Допуск Код Допуск
B ± 0. 1 пФ Дж ± 5%
К ± 0,25 пФ К ± 10%
Д ± 0,5 пФ M ± 20%
ф. ± 1% Z + 80%, -20%
G ± 2%

Конденсаторы 101 — iFixit

Вот немного сухого материала, просто чтобы помочь понять, что такое конденсатор и что он обычно делает.Конденсатор — это небольшой (в большинстве случаев) электрический / электронный компонент на большинстве печатных плат, который может выполнять различные функции. Когда конденсатор помещается в цепь с активным током, электроны с отрицательной стороны накапливаются на ближайшей пластине. Отрицательный перетекает к положительному, поэтому отрицательный является активным проводом, хотя многие конденсаторы не поляризованы. Как только пластина больше не может удерживать их, они выталкиваются через диэлектрик на другую пластину, тем самым вытесняя электроны обратно в цепь.Это называется разрядом. Электрические компоненты очень чувствительны к колебаниям напряжения, и поэтому скачок мощности может убить эти дорогостоящие детали. Конденсаторы направляют постоянное напряжение на другие компоненты и, таким образом, обеспечивают стабильное электропитание. Переменный ток выпрямляется диодами, поэтому вместо переменного тока есть импульсы постоянного тока от нуля до пика. Когда конденсатор от линии питания подключен к земле, и постоянный ток не проходит, но по мере того, как импульс заполняет конденсатор, он снижает ток и эффективное напряжение.Пока напряжение питания падает до нуля, конденсатор начинает вытекать из своего содержимого, это сглаживает выходное напряжение и ток. Таким образом, конденсатор размещается на одной линии с компонентом, что позволяет поглощать выбросы и дополнять впадины, что, в свою очередь, поддерживает постоянное питание компонента.

Существует множество различных типов конденсаторов. Часто они по-разному используются в схемах. Все слишком знакомые конденсаторы в виде круглой жестяной банки обычно представляют собой электролитические конденсаторы.Они сделаны из одного или двух листов металла, разделенных диэлектриком. Диэлектриком может быть воздух (простейший конденсатор) или другие непроводящие материалы. Металлические пластины из фольги, разделенные диэлектриком, затем скручиваются, как Fruit Roll-up, и помещаются в банку. Они отлично подходят для объемной фильтрации, но не очень эффективны на высоких частотах.

Вот конденсатор, который некоторые, возможно, еще помнят со времен старого радио. Это многосекционный баночный конденсатор. Этот конкретный конденсатор представляет собой четырехсекционный конденсатор.Все это означает, что в одной емкости содержится четыре отдельных конденсатора с разными номиналами.

Керамические дисковые конденсаторы идеальны для более высоких частот, но не подходят для объемной фильтрации, поскольку керамические дисковые конденсаторы становятся слишком большими по размеру для более высоких значений емкости. В схемах, где жизненно важно поддерживать стабильность источника напряжения, обычно имеется большой электролитический конденсатор, подключенный параллельно керамическому дисковому конденсатору. Электролитический конденсатор будет делать большую часть работы, тогда как небольшой керамический дисковый конденсатор будет отфильтровывать высокую частоту, которую пропускает большой электролитический конденсатор.

Еще есть танталовые конденсаторы. Они маленькие, но имеют большую емкость по сравнению с керамическими дисковыми конденсаторами. Они более дорогие, но находят широкое применение на печатных платах небольших электронных устройств.

Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению).Основное назначение экрана из фольги — продлить срок службы бумажного конденсатора.

Вот тот, который нас, скорее всего, интересует больше всего, когда речь идет об iDevices. Они очень маленькие по сравнению с перечисленными выше конденсаторами. Это крышки для устройств поверхностного монтажа (SMD). Несмотря на то, что они миниатюрны по размеру по сравнению с предыдущими конденсаторами, функция остается той же. Одной из важных особенностей этих конденсаторов является их «упаковка». Существует стандартизация размеров этих компонентов, т.е.е. упаковка 0201 — 0,6 мм x 0,3 мм (0,02 дюйма x 0,01 дюйма). Размер корпуса керамических конденсаторов SMD соответствует размеру корпуса резисторов SMD. Это делает практически невозможным определить, конденсатор это или резистор, с помощью визуализации. Вот хорошее описание индивидуальных размеров на основе номеров пакетов.

Определить значение конденсатора можно несколькими способами. Номер один, конечно же, это маркировка на самом конденсаторе.

Этот конкретный конденсатор имеет емкость 220 мкФ (микрофарад) с допуском 20%. Это означает, что он может находиться в диапазоне от 176 мкФ до 264 мкФ. Он имеет номинальное напряжение 160 В. Расположение выводов показывает, что это радиальный конденсатор. Оба вывода выходят с одной стороны, в отличие от осевого расположения, когда один вывод выходит с обеих сторон корпуса конденсатора. Кроме того, полоса со стрелками на стороне конденсатора указывает полярность, стрелки указывают на отрицательный вывод .

Теперь главный вопрос — как проверить конденсатор на предмет необходимости его замены.

Для проверки конденсатора, пока он еще установлен в цепи, потребуется измеритель ESR. Если конденсатор удален из схемы, то можно использовать мультиметр, установленный в качестве омметра, , но только для выполнения теста «все или ничего» . Этот тест покажет только, полностью ли разряжен конденсатор. , а не , будет определять, в хорошем или плохом состоянии конденсатор. Чтобы определить, работает ли конденсатор при правильном значении (емкости), потребуется тестер конденсатора. Конечно, это также верно для определения номинала неизвестного конденсатора.

Счетчик, используемый в этой вики, является самым дешевым из всех доступных в любом универмаге. Для этого теста также рекомендуется использовать аналоговый мультиметр. Он покажет движение более наглядно, чем цифровой мультиметр, отображающий только быстро меняющиеся числа. Это должно позволить любому выполнять эти тесты, не тратя целое состояние на что-то вроде глюкометра Fluke.

Всегда разряжайте конденсатор перед тестированием, если этого не сделать, будет шокирующим сюрпризом.Конденсаторы очень маленькой емкости можно разрядить, переставив оба вывода отверткой. Лучше всего это сделать, разрядив конденсатор через нагрузку. В этом случае это выполнят кабели из крокодиловой кожи и резистор. Вот отличный сайт, показывающий, как построить инструменты для разряда.

Чтобы проверить конденсатор с помощью мультиметра, установите показания измерителя в диапазоне высоких сопротивлений, где-то выше 10 кОм и 1 м Ом. Прикоснитесь к выводам измерителя к соответствующим выводам на конденсаторе, красный к плюсу и черный к минусу.Измеритель должен начинать с нуля, а затем медленно приближаться к бесконечности. Это означает, что конденсатор находится в рабочем состоянии. Если счетчик остается на нуле, конденсатор не заряжается через батарею счетчика, что означает, что он не работает.

Это также будет работать с заглушками SMD. Тот же тест, когда стрелка мультиметра медленно движется в том же направлении.

Еще одно испытание конденсатора — это испытание напряжением. Мы знаем, что конденсаторы накапливают на своей пластине разность потенциалов зарядов, это напряжения.Конденсатор имеет анод с положительным напряжением и катод с отрицательным напряжением. Один из способов проверить, работает ли конденсатор, — это зарядить его напряжением, а затем измерить напряжение на аноде и катоде. Для этого необходимо зарядить конденсатор напряжением и подать напряжение постоянного тока на выводы конденсатора. В этом случае очень важна полярность. Если у этого конденсатора есть положительный и отрицательный вывод, это поляризованные конденсаторы (электролитические конденсаторы). Положительное напряжение пойдет на анод, а отрицательное — на катод конденсатора.Не забудьте проверить маркировку на тестируемом конденсаторе. Затем на несколько секунд подайте напряжение, которое должно быть меньше номинального напряжения конденсатора. В этом примере конденсатор 160 В будет заряжаться от батареи постоянного тока 9 В в течение нескольких секунд.

По окончании заряда отключите аккумулятор от конденсатора. Воспользуйтесь мультиметром и снимите напряжение на выводах конденсатора. Напряжение должно быть около 9 вольт. Напряжение будет быстро уменьшаться до 0 В, потому что конденсатор разряжается через мультиметр.Если конденсатор не сохраняет это напряжение, он неисправен и его следует заменить.

Проще всего конечно будет проверить конденсатор с помощью измерителя емкости. Вот осевой GPF 1000 мкФ 40 В FRAKO с допуском 5%. Проверить этот конденсатор с помощью измерителя емкости очень просто. На этих конденсаторах отмечен положительный вывод. Подключите положительный (красный) провод от мультиметра к нему, а отрицательный (черный) — к противоположному. Этот конденсатор показывает 1038 мкФ, что явно в пределах допуска.

Для проверки конденсатора SMD может быть сложно сделать с громоздкими пробниками. Можно либо припаять иглы к концам этих зондов, либо купить умный пинцет. Лучше всего использовать умный пинцет.

Некоторые конденсаторы не требуют испытаний для определения неисправности. Если визуальный осмотр конденсаторов обнаруживает какие-либо признаки вздутия верхних частей, их необходимо заменить. Это наиболее частая неисправность блоков питания. При замене конденсатора крайне важно заменить его конденсатором того же или более высокого номинала.Никогда не субсидируйте конденсатор меньшей стоимости.

Если конденсатор, который собираются заменить или проверить, не имеет маркировки, потребуется схема. На изображении ниже показано несколько символов конденсаторов, которые используются на схеме.

В этом отрывке из схемы iPhone указаны символы конденсаторов, а также их значения.

Эта Wiki — это в значительной степени только основы того, что искать в конденсаторах, она никоим образом не является полной.Чтобы узнать больше о любых распространенных электронных компонентах, существует множество хороших онлайн-курсов и офлайн-курсов.

Электроника Eaton

Максвелл

Digikey

Mouser

Easy View, идентификация номиналов конденсаторов с помощью цветных или цифровых кодов

Как считывать значения конденсаторов по их цветным или цифровым кодам
Было бы неплохо, если бы маркировка конденсаторов была более последовательной.Если у производителя много места (например, на больших электролитиках), он обычно печатает все, что может; значение, номинальное напряжение, номинальная температура, серия и даже страна-производитель. Однако чем меньше будет деталь, тем меньше информации вы получите, пока на самых маленьких деталях может вообще ничего не быть. На керамике со сквозными отверстиями двухзначное число плюс показатель степени система часто (но не всегда) используется. Это, как и большинство систем маркировки, основано на пикофараде, наименьшем общем знаменателе емкости.470 может быть 47 (47 x 100) или 470 пФ, но 471 почти наверняка будет 470 (47 x 101). 473, вероятно, будет 0,0047. Однако 479, вероятно, будет означать 4,7 (47 x 10 -1). Значения ниже 10 пФ могут использовать «R» для десятичной точки, например, 4R7 = 4,7 пФ. Если повезет, вы также можете найти материал (C0G, X7R и т. Д.) И номинальное напряжение. Допуск может быть рядом с значение.

jpg»> Номер Умножить на..
(доп. Количество нулей)
0 Нет (0)
1 10 (1)
2 100 (2)
3 1 000 (3)
4 10 000 (4)
5 100 000 (5)
6 1 000 000 (6)
jpg»> Код Допуск
К 0.25пФ
Дж 5%
К 10%
м 20%
Д 0,5 пФ
Z + 80% / -20%

Конденсаторы 101

Конденсаторы известны многим инженерам-электронщикам как «рабочая лошадка» компонента электрической цепи. Эти пассивные компоненты с двумя выводами когда-то были известны как «конденсаторы», потому что первые предшественники современных компонентов использовались еще в 18 веке для конденсации пара в конструкциях паровых двигателей. По мере развития технологий на протяжении веков было разработано множество типов конденсаторов для использования в широком диапазоне электрических цепей во всех отраслях промышленности.

От крошечных конденсаторов на печатной плате, используемых в персональных электронных устройствах, до больших суперконденсаторов, используемых в гибридных электромобилях, конденсаторы бывают самых разных форм и размеров.Для предприятий OEM и EMS, которые хотят покупать конденсаторы для своих проектов, будет полезно знать, какие типы конденсаторов доступны на рынке и как эти конденсаторы лучше всего использовать в электрическом дизайне. Вот наше подробное руководство по основам выбора и покупки конденсаторов.

Конденсаторы электролитические

Также известные как электролитические конденсаторы или «электронные конденсаторы», эти типы конденсаторов используются, когда требуется большое значение емкости, например, в цепях питания постоянного тока. Электролитические конденсаторы обычно бывают трех разных форм: алюминиевые электролитические конденсаторы, танталовые электролитические конденсаторы и ниобиевые электролитические конденсаторы. Эти конденсаторы уникальны тем, что вместо использования тонких металлических слоев на обоих электродах в качестве катода обычно используется желеобразный или пастообразный полужидкий раствор.

Электролитические конденсаторы поляризованы, с четкой маркировкой, указывающей положительные и отрицательные клеммы. Диэлектрик, или изолирующий слой конденсатора, состоит из оксидной пленки шириной менее 10 микрон.Из-за большой емкости и небольшого размера электролитические конденсаторы широко используются в цепях постоянного тока для уменьшения пульсаций напряжения. Поскольку электролитические конденсаторы в основном поляризованы, они имеют относительно низкое напряжение и не могут использоваться в источниках переменного тока.

Слюдяные конденсаторы

Эти типы конденсаторов получили свое название от природных кристаллических минералов, таких как мусковит и флогопит, используемых в их составе. С годами слюдяные конденсаторы с зажимом устарели, а серебряные слюдяные конденсаторы являются основным типом слюдяных конденсаторов на рынке.Серебряные слюдяные конденсаторы являются одними из самых стабильных и надежных конденсаторов из-за минеральных слоев слюды, расположенных по всему компоненту.

Конденсаторы

Silver слюдяные сконструированы таким образом, что устраняют воздушные зазоры между слоями слюды и серебра, защищают их от влаги и коррозии, обеспечивая постоянное значение емкости, которое редко колеблется. Известно, что они имеют низкое значение емкости при низких потерях, что делает стабильность его ключевой характеристикой.

Эти типы конденсаторов используются в силовых радиочастотных схемах и высокочастотных настраиваемых схемах, таких как фильтры и генераторы. Хотя они являются одними из самых стабильных конденсаторов на рынке, они также являются одними из самых дорогих. Они могут быть заменены в некоторых схемах керамическими конденсаторами класса 1, но в некоторых приложениях, например, в радиопередатчиках, они не могут быть заменены.

Бумажные конденсаторы

Как видно из названия, в этих типах конденсаторов используется бумага в качестве диэлектрических слоев, зажатых между полосками проводников из металлической фольги, таких как алюминий.Чтобы защитить диэлектрик от эффектов коронного разряда и вспышек, бумагу часто замачивают в масле или воске. Однако существуют и другие типы бумажных конденсаторов, такие как металлизированные бумажные конденсаторы, в которых используются покрытия из металлов, таких как цинк или медь, для защиты бумажного диэлектрического слоя.

Бумажные конденсаторы

идеально подходят для обеспечения фиксированной емкости цепи. Таким образом, они используются в высоковольтных и сильноточных устройствах, таких как радиопередатчики и приемники. Эти типы конденсаторов экономичны, но они подвержены повреждениям из-за пористой природы бумаги, которая может поглощать водяной пар из воздуха.Металлизированные бумажные конденсаторы лучше выдерживают воздействие окружающей среды, но стоят дороже за единицу.

Пленочные конденсаторы

Конденсаторы этого типа сконструированы аналогично бумажным конденсаторам, но вместо этого диэлектрический слой сделан из пластиковой пленки. Эти типы конденсаторов в основном используются в качестве заменителей бумажных конденсаторов, поскольку они более стабильны и способны противостоять факторам окружающей среды. Пленочные конденсаторы бывают двух различных категорий: пленочные конденсаторы и металлизированные пленочные конденсаторы.

В разновидности пленки-фольги диэлектрические слои обычно изготавливаются из полиэфира, полипропилена, полиэтилентерефталата или полифениленсульфидных пластиков с электродами из алюминиевых листов. В металлизированных пленочных конденсаторах алюминиевые электроды заменены слоем металла, который нанесен в вакууме на слой пластиковой пленки. Это позволяет сделать металлизированные пленочные конденсаторы более компактными, что делает их идеальными для схем с низким током и высоким импедансом.

Конденсаторы керамические

Эти типы конденсаторов чаще всего используются в личных электронных устройствах. Керамические конденсаторы были предметом разговоров в полупроводниковой промышленности, потому что на рынке в настоящее время во всем мире присутствует дефицит многослойных керамических конденсаторов . Тем не менее, керамические конденсаторы бывают однослойной дисковой керамики и многослойной (MLCC) разновидностей. Диэлектрические слои этих конденсаторов состоят из керамических материалов с различными геометрическими формами. MLCC пользуются большим спросом, потому что они используются в персональных вычислительных устройствах, таких как смартфоны и ноутбуки. Наряду с электролитическими конденсаторами, керамические конденсаторы являются наиболее часто используемыми типами конденсаторов на рынке.

Покупка конденсаторов

Конденсаторы

бывают всех типов и размеров, и иногда их бывает трудно отследить из-за нехватки. Sensible Micro имеет надежную сеть поставщиков и может поставлять широкий спектр электронных компонентов, включая все типы конденсаторов. Мы также можем предоставить нашим клиентам индивидуальные пакеты складирования и планирования, которые сократят время выполнения компонентов и защитят их от нехватки.

0 comments on “Конденсатор 101 маркировка: Страница не найдена | RCmarket.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *