Крановый двигатель с фазным ротором – Крановые электродвигатели с фазным и короткозамкнутым ротором

Крановые электродвигатели с фазным и короткозамкнутым ротором

Для работы подъемных механизмом необходимо использование специального редуктора. Предлагаем рассмотреть, как работают асинхронные крановые электродвигатели с фазным ротором для частотного регулирования, их обмоточные данные и технические характеристики.

Особенности двигателей

Все тяговые электродвигатели ГОСТ 18374 делятся на две группы:

  • работающие с фазным ротором;
  • работающие с короткозамкнутым ротором.

Обе эти группы имеют высокий КПД, но у них несколько разный принцип работы. Данные моторы используются во всех видах кранов: тельферах, талях, башенных, козловых и портальных установках. Главным преимуществом работы обоих типов является то, что помимо динамического способа работы, когда определенное количество времени поднимается груз  с некоторым весом, они могут работать статично, когда груз некоторое время висит на кране неподвижно. Рассмотрим подробнее их принцип работы.

Фото — Общий вид фазного двигателя

У данных устройств есть щеткодержатели для крановых электродвигателей, которые применяются для обеспечения лучшего контакта коллектора и контактного кольца. У них очень простая конструкция: щеточный механизм, держатель, также они оснащены встроенным механизмом нажатия, который служит не только ля их запуска, но и предотвращения движения в случае ЧП на производстве. Благодаря такой конструкции, щеткодержатель является гарантом безопасности при эксплуатации электрического асинхронного кранового двигателя, а также своеобразным тормозом.

Замена кранового двигателя

Основные технические характеристики

Фото — Обмоточные данные

Двигатели с фазным ротором

Стандартные габариты и основные размеры мощностей двигателей:

Фото — Короткозамкнутые двигатели

Роторный мотор – это асинхронный двигатель, где ротор обмотки соединен через контактные кольца для внешнего сопротивления с рабочей и передаточной частью. Регулировка сопротивления позволяет контролировать частоты вращения крутящего момента двигателя. Роторный движок может быть запущен при помощи низкого пускового тока, а также путем использования высокого сопротивления в цепи ротора; при разгоне двигателя, сопротивление может быть уменьшено.

По сравнению с короткозамкнутым ротором, фазный двигатель роторного типа имеет больше витков обмотки; наведенное напряжение увеличивается, и имеющееся ниже, чем для короткозамкнутого ротора. При запуске типичного ротора используются 3 полюса, связанные с контактными кольцами. Каждый полюс соединен последовательно с переменной мощностью резистора. Во время запуска резисторов  можно снизить напряженность поля статора. Как результат, пусковой ток сокращается. Еще одним важным преимуществом по сравнению с короткозамкнутым ротором является высокий стартовый крутящий момент.

Фото — Управление торможением фазного двигателя

Фазный роторный двигатель (сибэлектромотор), может быть использован в нескольких формах регулируемой скоростью вращения диска. Определенные типы вариаторов могут восстановить частоту скольжения и мощность от цепи ротора и питать  его обратно в сеть, позволяя охватывать широкий диапазон скоростей с высокой энергетической эффективностью. Двойное питание электрических машин использует контактные кольца для внешнего питания в цепи ротора, что позволяет увеличить диапазон регулирования скорости вращения. Но сейчас такие механизмы редко используются, в основном они заменены на асинхронные двигатели с частотно-регулируемым приводом.

Фото — Конструкция фазного кранового электродвигателя

Короткозамкнутые роторы

Электродвигатели с короткозамкнутым ротором – это асинхронные крановые двигатели, которые состоят из стального цилиндра с алюминиевыми или медными жилами, внедренными в их поверхность и вращающейся части — ротора.

Эта модель двигателя представляет собой цилиндр, закрепленный на валу. Внутренне он содержит продольные проводящие бары (обычно изготавливается из алюминия или меди), установленные в пазы и присоединенные с обоих концов путем замыкания кольца, образующих каркасообразную форму. Название происходит от схожести между кольцами обмотки и баров с короткозамкнутым ротором.

Твердый сердечник ротора состоит из соединений легированной стали. Ротор имеет меньшее количество слотов, чем статор и не может быть кратен числу его пазов, для того чтобы предотвращать магнитные блокировки зубов ротора и статора первоначальный крутящий момент.

Описание принципа работы короткозамкнутого ротора: поля обмотки статора асинхронного электродвигателя переменного тока настраиваются на вращающееся магнитное поле через ротор. Благодаря движению, устройство начинает индуцировать ток и передавать его в обмотку и на бары. В свою очередь эти продольные токи в проводниках взаимодействуют с магнитным полем для производства моторной силы, выступая на касательный ортогональный ротор, в результате чего крутящий момент проворачивает вал. Также ротор вращается от магнитного поля, но на более низкой скорости. Разница в скорости называется скольжением и увеличивается с ростом нагрузки.

Схема работы изображена ниже:

Фото — Схема работы короткозамкнутых приводов

Проводники часто слегка наклонены по длине ротора, что снижает шум и сглаживает колебания крутящего момента, это может привести к увеличению скорости из-за взаимодействия с полюсными наконечниками статора. Количество баров на короткозамкнутом роторе определяет, в какой степени индуцированные токи возвращаются на обмотки статора и, следовательно, ток через них. Конструкция также может работать в качестве реверсивного механизма.

Железный якорь используется для того, чтобы проводить магнитное поле через проводники ротора. Дело в том, что МП ротора взаимодействует с МП якоря, и несмотря на то, что конструкция аналогичная трансформатору, это является причиной снижения и потери энергии. Якорь сделан из тонких пластин, разделенных лаковой изоляцией, чтобы уменьшить вихревые токи, циркулирующие в нем. Материал отличается низким уровнем выбросов углекислого газа, высоким кремния. Основа из чистого железа значительно снижает потери на вихревые токи, низкая коэрцитивная сила уменьшает малые потери на гистерезис.

Эта базовая конструкция используется как для однофазных, так и для трехфазных двигателей в широком диапазоне размеров. Роторы для трехфазных двигателей будут иметь вариации в глубину и форму баров. Как правило, бруски с большей толщиной могут иметь хороший крутящий момент и являются более эффективными в борьбе со скольжением, поскольку они представляют меньшую устойчивость к ЭМП.

Фото — Конструкция трехфазного двигателя

Трехфазные двигатели с короткозамкнутым ротором широко используются для:

  1.  Крановых механизмов;
  2. Тяговых машин;
  3. Комбайнов;
  4. Грузовых автомобилей и кораблей.

Говоря про варианты установки двигателей, они бывают вертикально-фланцевые, горизонтальные, горизонтально-фланцевые.

Марки двигателей и обзор цен

На данный момент, в России и Украине осуществляется производство таких крановых электродвигателей:

Фазных – MTF, MTKF, MTM, MTН, MEZ FRENSTAT, KMR, DMTF, (завод Leroy Somer), WASI, FLSLB, SMH;

Короткозамкнутых – Sew-Eurodrive, двигатели от Bularia, Siemens, VEM, HORS, МТВ, МТИ, МТК, МТКМ, МТКН, МТМ, МТН, МТФ;

Для некоторых видов крановых механизмов (к примеру, металлургические подъемники), используются серии АИР (двухскоростные двигатели постоянного тока).

Купить крановые электродвигатели можно в любом городе СНГ, цена товара напрямую зависит от его мощности, фирмы-производителя и города, де он покупается. Возможен наличный и безналичный расчет. Из открытых источников мы собрали прайс-лист, предлагаем с ним ознакомиться (цены приблизительные, при покупке кранового электродвигателя обязательно просмотрите дополнительно каталог производителя, возможны изменения цен):

ГородСтоимость, рублиГородСтоимость, рубли
Москва50 000Минск43 000
Киев50 000Владивосток46 000
Воронеж43 000Омск40 000
Новосибирск46 000Владимир40 000
Вологда40 000Томск
46 000
Тула40 000Уфа40 000
Екатеринбург43 000Казань40 000
Астана46 000Волгоград40 000

Все производители дают на свои приборы гарантию – 5 лет (минимум – год, т.к. мощность более 10 кВт). Продажа осуществляется в специализированных центрах, магазинах. Мы не советуем приобретать данные устройства из рук либо на стихийных рынках. Следите за тем, чтобы двигатели были работоспособные и полностью исправные, обязательно должны быть соблюдены условия хранения (влажность ниже 40 %, температура от +3 до +20 градусов), иначе возможно окисление внутренних контактов.

www.asutpp.ru

Крановые электродвигатели: виды и характеристики

Содержание:

  1. Отличие крановых двигателей
  2. Основные типы крановых электродвигателей
  3. Двигатели с фазным и короткозамкнутым ротором
  4. Характеристики асинхронных двигателей переменного тока
  5. Особенности краново-металлургических двигателей (серия 4МТ)

Многие машины и механизмы в силу своей специфики вынуждены работать в режиме существенных перегрузок, частых пусков и остановок, реверсов и торможений. Особенно это касается подъемных устройств, где используются специальные крановые электродвигатели переменного и постоянного тока. Они характеризуются повторно-кратковременными рабочими циклами и широким диапазоном регулировок частоты вращения.

Их работа сопровождается тряской и вибрациями, а в металлургическом производстве на них дополнительно воздействуют пары, газы и высокая температура. Поэтому основные характеристики и технико-экономические показатели крановых двигателей существенно отличаются от аналогичных устройств общего назначения.

Чем отличаются крановые двигатели

Электродвигатель, предназначенный для кранового оборудования, как правило, выпускается в закрытом исполнении. Класс устойчивости изоляционных материалов к высоким температурам соответствует F и Н.

Технические характеристики данных агрегатов отличаются минимальным моментом инерции ротора и невысокой частотой вращения. Это позволяет значительно снизить энергетические потери во время переходных процессов. Высокая устойчивость к перегрузкам обеспечивается большой величиной магнитного потока.

Существуют показатели значений кратковременных перегрузок по моменту, которые в часовом режиме составляют для двигателей переменного тока от 2,3 до 3,5, а для агрегатов постоянного тока – 2,15-5,0. Максимально допустимая рабочая частота вращения соотносится с номинальной с коэффициентом 3,5-4,9 при постоянном токе и 2,5 – при переменном токе.

Основные виды крановых электродвигателей

Агрегаты этого типа могут иметь фазный или короткозамкнутый ротор. Оба типа обладают высоким КПД и незначительно отличаются принципом действия. Они способны работать как в динамическом, так и в статическом режимах. В первом случае груз определенного веса поднимается в течение установленного времени, а во втором – неподвижно висит на кране какое-то время.

Крановые электродвигатели с фазным ротором отличаются щеткодержателями, обеспечивающими наиболее тесный контакт коллектора с контактным кольцом. Они состоят из щеточного механизма, держателя и встроенного механизма нажатия. Последний элемент не только запускает двигатель, но и прекращает его вращение в случае возникновения аварийной ситуации.

Двигатели с фазным и короткозамкнутым ротором

Агрегаты этого типа являются асинхронными двигателями, в которых ротор обмотки соединяется с рабочими и передаточными элементами посредством контактных колец. Крутящий момент двигателя и его частота вращения регулируется внешним сопротивлением.

Для запуска роторного агрегата используется низкий пусковой ток и высокое сопротивление, установленное в цепи ротора. В процессе дальнейшего разгона сопротивление в случае необходимости уменьшается. Обмотка двигателя с фазным ротором отличается от короткозамкнутого большим количеством витков. Еще одним отличием является увеличенное наведенное напряжение и более низкое имеющееся напряжение.

Стандартный ротор запускается при участии трех полюсов, соединенных с контактными кольцами. В этом случае осуществляется последовательное соединение каждого полюса и переменной мощности резистора. Снижение напряженности поля статора может быть выполнено при запуске этого резистора, что приводит к снижению пускового тока. Кроме того, электродвигатели с фазным ротором отличаются высоким стартовым крутящим моментом.

Крановый агрегат с короткозамкнутым ротором также относится к асинхронным двигателям. Его конструкция включает в себя стальной цилиндр, на поверхности которого в пазах расположены медные или алюминиевые жилы и вращающийся ротор. Для изготовления сердечника ротора применяется специальная легированная сталь.

Характеристики асинхронных двигателей переменного тока

Мощность асинхронных крановых двигателей, выпускаемых отечественной промышленностью, находится в пределах 1,4-160 кВт. Они рассчитаны для работы при частоте 50 Гц и напряжении 220/380 вольт. Некоторые модели могут работать с напряжением 500 В.

Экспортная продукция металлургической серии работает с частотой 60 Гц, напряжение 220\380 и 440 вольт. При увеличении напряжения в сети 60 Гц на 20% больше, чем при 50 Гц, возможно увеличение номинальной мощности двигателя на 10-15%. Кратность моментов и пусковых токов условно остается без изменений.

Если номинальные напряжения в обеих сетях равны, то повышать номинальную мощность двигателя уже нельзя. В подобной ситуации происходит снижение номинального момента, пускового момента и тока, а также других параметров на величину кратности частот 50/60 – 17%.

Крановые электродвигатели с короткозамкнутым ротором серии МТН и МТКН могут быть двухскоростными с синхронной частотой вращения 1000/500, 1000/375, 1000/300 оборотов в минуту. Агрегаты МТФ и MTKF могут иметь две или три скорости при синхронной частоте вращения 1500/500, 1500/750, 1500/250 оборотов в минуту. У большинства электродвигателей присутствует повышенная перегрузочная способность и высокие пусковые моменты при сравнительно малом пусковом токе и незначительном времени пуска.

Мощность новейших агрегатов МТН возросла на одну ступень при сохранении тех же самых габаритных размеров. Подобного улучшения позволили добиться используемые в конструкциях современные изоляционные материалы.

Особенности краново-металлургических двигателей (серия 4МТ)

Конструкции данных агрегатов выполнены в четырехполюсном варианте. Их мощность может быть увеличена при сохранении определенной частоты вращения. Они отличаются высокой надежностью и могут безотказно работать на протяжении всего гарантийного срока с вероятностью 0,96-0,98. Срок эксплуатации таких крановых двигателей составляет в среднем 20 лет.

У электродвигателей серии 4МТ заметно снизилась вибрация и уровень шума, существенно улучшились энергетические показатели. В конструкции использованы новые материалы – электротехническая холоднокатаная сталь, изоляция из финилоновой бумаги и синтетической пленки, эмалированные провода с высоким запасом прочности и прочие компоненты.

Электродвигатели с 8 полюсами могут достигать мощности до 200 киловатт.

electric-220.ru

Крановые электродвигатели.

Асинхронные электродвигателя для грузоподъемных кранов.

Грузоподъемные краны объединяют большую группу подъемнотранспортных установок циклического действия. В зависимости от назначения краны имеют различные конструктивные исполнения. Наибольшее распространение получили мостовые, козловые, башенные, портальные и стреловые краны.

Основными механизмами крана являются: механизм подъема, механизм передвижения, механизм поворота и механизм передвижения грузовой тележки.

В зависимости от вида грузозахватывающего устройства различают: крюковые, магнитные, грейферные, клещевые и другие краны.

Козловые краны предназначены для работы под открытым небом. По принципиальной схеме, характеру работы и форме обслуживаемого поля они весьма схожи с мостовыми, поэтому их относят к кранам мостового типа. Мостовое пролетное строение козлового крана снабжено опорами и передвигается по рельсам, уложенным на земле.

На строительных, монтажных и перегрузочных работах широкое применение находят стреловые, башенные и портальные краны. Особенностью этих кранов является наличие механизма поворота.

Строительный башенный кран состоит из башни, опорной рамы (портала), которая опирается на ходовые тележки. В верхней части крана имеется поворотный круг (может быть и в ниж­ней части крана), на котором вращается поворотная головка башни со стрелой и консольным противовесом. Изменение вылета крюка достигается перемещением тележки вдоль стрелы. Все рабочие движения крана обслуживаются следующими механизмами: подъема, состоящего из подъемной лебедки и грузозахватывающего устройства, передвижения крана, передвижения тележки и поворота крана.

Механизмы крана работают в повторно-кратковременном режиме с частыми пусками и остановками.

В связи с частыми пусками и перегрузками электропривода, а также особо тяжелыми климатическими условиями работы (температура, большая влажность и т.д.), электрооборудование должно иметь конструкцию повышенной механической прочности и защищенности от воздействия окружающей среды.

Электрооборудование должно также допускать повышенные перегрузки и большое число включений в час. Выпускается специальная серия крановых электродвигателей постоянного и переменного тока, предназначенных для механизмов кранов.

Крановые электродвигатели в отличие от двигателей общего применения имеют повышенную механическую прочность, высокую перегрузочную способность за счет усиления коллектора и обмотки: якоря в двигателях постоянного тока и повышенного зазора в двигателях переменного тока, и ротор уменьшенного диаметра и удлиненной формы, для снижения его момента инерции. Из-за повышенного зазора асинхронные двигатели имеют повышенный ток холостого хода (до 75% от номинального).

В процессе эксплуатации двигателя необходимо вести общее наблюдение за его работой, систематически проводить технические осмотры, текущие и планово-предупредительные ремонты.

В процессе эксплуатации двигателя необходимо вести общее наблюдение за его работой, систематически проводить технические осмотры, текущие и планово-предупредительные ремонты.

При общем наблюдении периодически контролировать режим работы, нагрузку и нагрев двигателя, состояние контактов в коробке выводов и щеточном узле, надежность заземления и следить за напряжением сети. Допустимое отклонение напряжения питающей сети от номинального значения от -5% до +10%.

Техническое обслуживание крановых электродвигателей.

Периодичность технических осмотров устанавливается в зависимости от производственных условий, но не реже одного раза в два месяца.

При технических осмотрах очистить двигатель от загрязнений, проверить надежность заземления и соединения двигателя с приводным механизмом, состояние контактов в коробке выводов и состояние щеточного узла.

При осмотре двигателя удалять металлическую и угольную пыль из камер контактных колец, кольца и щетки протирать сухой и чистой неволокнистой салфеткой. Следы подгорания на кольцах зачищать мелкой стеклянной бумагой. Изношенные щетки заменить запасными марки M1 по ТУ16-88 ИЛЕА.685211.037ТУ в соответствии с таблицей.

 

Типоразмер

двигателя

Марка

щеток

Кол-во щеток

на двигатель,

шт

Размеры,

мм

Давление щетки на контактное кольцо,

кг

МТН 011-211,

4МТН132

М1

по

ТУ 16-88ИЛЕА.

685211.037ТУ

6

8х12,5х32

от 0,5

до 0,8

МТН 311-512,

4МТМ200, 225

12,5х32х40

от 1,1

до 1,6

4МТМ280,

4МТН280,

МТН611,612,613

16х40х50

от 1,6

до 2,3

Необходимо также измерить сопротивление изоляции обмоток статора и ротора и цепи термодатчиков (при их наличии), проверить затяжку крепежных соединений и состояние уплотнений по линии вала. Замеченные недостатки устранить.

Текущий ремонт производится при замеченных отклонениях в работе двигателя: повышенном нагреве корпуса, увеличении шума и вибрации и других неисправностях.

Периодичность планово-предупредительных ремонтов устанавливается в зависимости от производственных условий, но не реже одного раза в год.

При планово-предупредительных ремонтах производится:

— демонтаж и разборка двигателя, промывка, сушка и чистка узлов и деталей;

— осмотр подшипников, щеточного, узла, статора и ротора для обнаружения механических повреждений, выявления деталей, подлежащих замене, восстановлению и пригонке;

— устранение замеченных недостатков и неисправностей, балансировка ротора (при необходимости), замена изношенных щеток, устранение следов подгорания контактных колец, притирка щеток и контактных колец.

Следы подгорания, неровности поверхности контактных колец и биения устранить шлифовкой или обточкой. Контактные поверхности колец должны быть строго цилиндрическими и иметь гладкий полированный вид без неровностей, царапин и горелых мест.

Замену щеток у двигателей с фазным ротором производить при их износе до 60% по высоте.

Щетки должны быть тщательно притерты к поверхности контактных колец. Для этого между обеими щетками и кольцом проложить стеклянную бумагу, обращенную рабочей стороной к щеткам, и передвигать бумагу вперед-назад при нормальном давлении на щетки. Для правильной притирки концы бумаги нужно отогнуть вниз от щеток вдоль поверхности кольца.

Применение наждачного или карборундового полотна для притирки щеток недопустимо.

Подпитка войлочных уплотнений (при их наличии) производится по линии вала трансформаторным маслом через 2000-3000 часов работы, но не реже одного раза в полгода.

Замену износившихся подшипников производить в соответствии с таблицей.

 

Типоразмер двигателя

Тип подшипника

Кол- во,

шт.

Размеры, мм (dхDхB)

Обозначение

Российское

Международное

МТН011, 012;

МТКН011,012

76-180307С9Ш2У

6.307 2RS P63 QE6/C9

2

35х80х21

МТН111, 112; МТКН111, 112; МТН211А, В; МТКН211А,В;

4МТН132LA, LB;

4МТКН132LA, LB

76-180309C9Ш2У

6.309 2RS P63 QE6/C9

2

45х100х25

МТН311, 312;

МТКН311, 312

4МТ200LA,

МТН411;

4МТ200LB,

МТН412;

4МТМ200LB;

4МТК200LA,

МТКН411;

4МТК200LB,

МТКН412;

4МТКМ200LB;

BO-60314Ш

2

70х150х35

4МТМ225М,

МТН511;

4МТКМ225М,

МТКН511;

4МТМ225L, MTН512;

4МТКМ225L, MTKH512

B20-42616Ш

2

80х170х58

4МТМ280S, MTH611;

4МТМ280М,

МТН612;

4МТМ280L,

МТН613;

30-42620

2

100х215х73

4МТН280S, М, L

30-42620

1

100х215х73

30-42624

1

120х26х86

Необходимость замены подшипников определятся истечением их гарантийного срока службы, подшипниковым шумом при работе двигателя, задеванием ротора о статор, стуком в подшипниках, наличием механических повреждений.

Подшипники снимать с вала при помощи съемника. Перед установкой подшипников тщательно очистить и промыть бензином поверхности под подшипники на валу и в щите. Подшипники насаживать на вал нагретыми в воздушной среде или масляной ванне до температуры 80°С.

Подшипники с двумя уплотнительными шайбами поставляются со смазкой, заложенной на заводе-изготовителе на весь срок службы (20000 часов).

В открытые и полуоткрытые подшипники двигателей видов климатического исполнения У1, Т1 закладывать смазку УНИОЛ-1 УССР201150-78, для видов климатического исполнения УХЛ1, О1 – смазку ЦИАТИМ-221 ГОСТ 9433-80.

Двигатели МТ(К)Н 311-613; 4МТ(К), 4МТ(К)М200, 225; 4МТМ280, 4МТН280 поставляются с рабочей смазкой в подшипниках, обеспечивающей работу в течение 3000-4000 часов. Допускается применять другие равноценные по характеристикам смазки.

Замена смазки в открытых и полуоткрытых подшипниках при нормальных условиях работы двигателя должна производиться через 3000-4000 часов работы, но не реже одного раза в год. При работе двигателя в пыльной и влажной среде замена смазки в подшипниках производится по мере необходимости. Смазкой заполняется свободный объем подшипника, лабиринтные канавки и полости внутренних подшипниковых крышек в количестве согласно таблицы.

 

Тип двигателя

Количество смазки,

кг на двигатель

Тип смазки

4МТ(К)М225,

4МТ(К)Н511, 512

0,14

УНИОЛ-1

ТУ 38 УССР201.150-78

— для У1, Т1;

ЦИАТИМ 221

ГОСТ 9433-80

— для УХЛ1, О1

МТН311, 312

4МТ(К)М200, 4МТ(К)Н411, 412

0,14

4МТМ280, МТН611-613;

4МТН280

0,2

Примечание: 50% всей массы смазки закладывается в подшипники (равномерно по окружности), 50% — в камеры подшипников и жировые канавки.

Технические осмотры и ремонты производить при обязательном отключении двигателей от питающей сети.

Подшипники рассчитаны для работы в течение 20000 часов.

 Неисправности и методы устранения и ремонта неисправностей крановых электродвигателей.

Неисправность, внешнее проявление и дополнительные признаки

Вероятная причина

Методы устранения

Двигатель при пуске не разворачивается.

Отсутствие или  недопустимое понижение напряжения питающей сети.

Устранить неисправность сети.

Двигатель при пуске гудит и не разворачивается.

Обрыв одной из фаз в обмотке статора или ротора двигателя, в подводящих проводах. Неправильное соединение фаз.

Недопустимое понижение напряжения питающей сети. Двигатель перегружен.

Неисправность приводного механизма.

Найти и устранить неисправность в обмотках статора и ротора. При необходимости заменить ротор. Проверить и поменять местами выводы фаз.

Устранить неисправность в сети.

Проверить нагрузку и снизить ее.

Устранить неисправность в приводном механизме.

При вращении двигатель гудит и перегревается.

Междувитковое замыкание. Короткое замыкание между фазами.

Обрыв одной из фаз.

Устранить неисправность обмотки.

Повышенный перегрев двигателя.

Двигатель перегружен.

Повышено или понижено напряжение сети.

Повреждена витковая изоляция обмотки статора. Повышена температура окружающей среды.

Нарушена нормальная вентиляция. Неисправность вентилятора двигателя.

Снизить нагрузку до номинальной.

Установить номинальное напряжение сети. Отремонтировать обмотку.

Проверить температуру окружающей среды и обеспечить снижение мощности двигателя.

Устранить загрязнения в вентиляционных отверстиях в кожухе и между ребрами станины. Устранить неисправность вентилятора, при необходимости заменить.

Двигатель вращается с сильно пониженной скоростью.

Во время разгона отключилась одна из фаз. Понизилось напряжение питающей сети.

Двигатель перегружен.

Устранить неисправности в питающей сети, аппаратуре.

Устранить перегрузку.

Пониженное сопротивление изоляции.

Загрязнение или отсыревание обмоток статора и (или) ротора.

Разобрать двигатель, прочистить, продуть, просушить обмотки.

Повышенный перегрев подшипников.

Неправильная центровка двигателя с приводным механизмом.

Повреждение подшипников. Избыток или недостаток смазки в подшипниках. Загрязнение смазки.

Проверить центровку. Устранить несоосность валов.

Заменить подшипники. Обеспечить необходимое количество смазки. Промыть бензином

подшипники и заполнить их и подшипниковые камеры необходимым количеством смазки.

Стук в подшипнике.

Повреждение подшипника.

Заменить подшипник.

Повышенная вибрация.

Недостаточная жесткость фундамента. Несоосность вала двигателя с валом приводного механизма.

Неотбалансирован приводной механизм или соединительный элемент (муфта, шкив и т.д.)

Устранить причину.

Проверить балансировку приводного механизма и соединительного элемента. При необходимости отбалансировать.

Искрение под щетками двигателя с фазным ротором.

Перекос щетки.

Загрязнение контактных колец. Недостаточное нажатие на щетки.

Повреждение контактной поверхности колец.

Износ щеток.

Плохая притирка щеток.

Несоответствие марки щетки.

Устранить причину. Протереть контактные кольца. Устранить причину.

Прошлифовать или проточить контактную поверхность колец.

Установить новые щетки. Притереть щетки, протягивая полоски стеклянной шкурки по направлению вращения между кольцами и щетками.

Заменить щетку.

Замыкание контактных колец двигателя или  фазного ротора.

Загрязнение контактных колец и щеточного устройства медноугольной пылью.

Сырая изоляция контактных колец.

Замыкание соединений обмотки с торцов фазного ротора.

Прочистить и продуть контактные кольца и щеточное устройство.

Просушить изоляцию.

Устранить замыкание.

 

elektro-dvigateli.ru

Крановые электродвигатели с фазным ротором — ТПО ТехПромМаш

Крановый электродвигатель  MTF (МТФ), МТН, 4МТМ с фазным ротором

Крановые асинхронные электродвигатели серий MTF, MTH, MTM предназначены для работы в подъемно-транспортных механизмах и в электроприводе агрегатов самых различных машин.

Применяются трехфазные асинхронные крановые двигатели в таких сферах, как жилищное и капитальное строительство, в транспортной, энергетической отрасли, а также в металлургической и горнодобывающей промышленностях, помимо этого, устанавливаются на лебедки электрические и другие подъемные механизмы. Крановые электродвигатели нередко применяют в различных сферах народного хозяйства.

Расшифровка условного обозначения кранового электродвигателя

Пример: МТН-412-6 У1

  • МТ — серия двигателя
  • Н — класс изоляции (температурный индекс Н — 180°С; F — 155°С)
  • 4 — габарит двигателя
  • 1 — порядковый номер серии
  • 2 — условная длина сердечника
  • 6 — количество полюсов
  • У1 — умеренное климатическое исполнение

Технические характеристики

Электродвигатели для кранов изготавливаются для частоты 50 ГЦ на номинальные напряжения 380 или 220/380. Двигатели на одно напряжение имеют 3 выводных конца, на два напряжения – 6 выводных концов. Номинальным режимом является повторно-кратковременный (S3) с относительной продолжительностью включения ПВ 40%. Номинальные данные двигателя указаны на фирменной табличке или в заводском паспорте. Схема соединения фаз обмотки статора кранового электродвигателя и подключения ее к трехфазной сети размещена на внутренней стороне крышки клемной коробки каждого электродвигателя.

 Тип Мощность кВт об/мин КПД, % cos φ Iн при
U=380В, А
 Iр, АUр, В  Мm/МнМасса, кг 
     1000 об/мин (6 полюсов)
МТН-011 1,4 890 650,674,98,81142,660
МТН-012 2,2 895  70 0,69 6,911,01382,768
МТН-111 3,5 900  75 0,739,714,31712,391
МТН-1125 930 79 0,70 13,715,72132,7101
 МТН-211А  5,5925 79 0,73 14,317,42113,0115
МТН-211В 7,5 935 80 0,71  19,619,12553,3126
 МТН-311  11 950  83 0,79  25,414,01702,8210
 МТН-312 15 950 84 0,78  34,746,02103,1240
 МТН-411 22960 860,76  51,059,02462,8270
 МТН-412 30960 87 0,79  66,072,02732,8300
 МТН-511  37955 87 0,81  80,080,02953,0390
 МТН-512  55 955  88 0,81  1171222852,9490
 МТН-611 75955 890,86  1491802663,2740
 МТН-612 95960  90 0,86  1871753503,3855
 МТН-613 100970 91 0,85  2161684203,5970
         750 об/мин (8 полюсов)
 МТН-311 7,5700  79 0,69  23212402,8220
 МТН-312  11710  81 0,69 30411653,0240
 МТН-411  15 720  83 0,62 44461893,2275
 МТН-412 22 715  83 0,70 58582483,0305
 МТН-511  30 715 85 0,72  74702752,9390
 МТН-512  37 725  860,74  88763052,9470
     600 об/мин (10 полюсов)
 МТН-61145 570  86 0,73 1091671773,0715
 МТН-61255575  88 0,74 1401622353,2825
 МТН-61375 575 89 0,74 1751503083,0975
 МТН-711 100 580  89 — —2,81255
 МТН-712125 580 90 — —2,81420
  МТН-713 160 580 91

Конструкция кранового двигателя с фазным ротором

  • Крышка подшипника
  • Подшипниковый щит
  • Крышка подшипника внутренняя
  • Контактное кольцо
  • Крышка люка для сброса пыли из щёточного узла
  • Стержень щёткодержателей
  • Щёткодержатель
  • Коллекторный щит
  • Крышка коллекторного люка
  • Корпус клемной коробки
  • Крышка клемной коробки
  • Статор
  • Ротор
  • Рым-болт
  • Корпус
  • Крышка подшипника внутренняя
  • Подшипниковый щит
  • Кожух вентилятора
  • Вентилятор
  • Подшипник
  • Крышка подшипника
  • Шпонка
  • Вал кранового электродвигателя

Вид мотажа

  • IM1001, IM1002 — на лапах, с одним или двумя цилиндрическими концами вала
  • IM2001, IM2002 — и фланец и лапы (комбин.), с одним или двумя цилиндрическими концами вала
  • IM1003, IM1004 — на лапах, с одним или двумя коническими концами вала
  • IM2003, IM2004 — и фланец и лапы (комбин.), с одним или двумя коническими концами вала
  • IM2008 — и фланец и лапы (комбин.), один цилиндрический конец вала, второй конический конец вала

В комплекте с двигателем

  • крановые щетки (запасной комплект) – 6 шт
  • паспорт производителя — 1 шт

Для плавного пуска и продления срока службы кранового электродвигателя используйте крановое сопротивление, т.е. блок резисторов крановый.

 

td36.ru

Электрическое оборудование мостовых кранов

Категория:

   Электрическое оборудование

Публикация:

   Электрическое оборудование мостовых кранов

Читать далее:



Электрическое оборудование мостовых кранов

Устройство и основные данные крановых электродвигателей. Устанавливаемые на мостовых кранах электродвигатели относятся к специальной группе электрических машин, называемых крановыми. Крановые электродвигатели с фазным ротором обозначают МТ, с короткозамкнутым ротором — МТК. Эти двигатели в большинстве случаев изготовляют на напряжение 220/380 В. Если напряжение питающей сети равно 220 В, статорную обмотку двигателя соединяют треугольником, при напряжении сети 380 В — звездой.

Отношение максимального крутящегося момента к номинальному у двигателей серии МТ находится в пределах 2,5-3, поэтому они могут надежно работать при некоторых колебаниях напряжения сети. Начальный пусковой момент двигателей серии МТК в 2,6-3,2 раза выше номинального. Асинхронный двигатель имеет достаточно жесткую характеристику — мало изменяет частоту вращения при изменении нагрузки. В пределах нормальной нагрузки и допустимых перегрузок между током двигателя и нагрузкой на валу существует пропорциональная зависимость: с увеличением нагрузки двигатель потребляет из сети больший ток и большую мощность. При работе вхолостую асинхронный двига-ель потребляет из сети намагничивающий ток, нужный для создания вращающегося магнитного поля. Намагничивающий ток у крановых двигателей переменного тока достигает 60-70% номинального тока при ПВ, равном 950/ (ПВ — продолжительность включения при повторно-кратковременном режиме работы двигателя). Повторно-кратковременный режим состоит из многократно повторяющихся циклов, в каждом из которых последовательно чередуются включенное состояние (работа) двигателя и его отключенное состояние (пауза).

Согласно ГОСТ 183-74 время цикла не должно превышать 10 мин. Стандартные значения ПВ равны 15, 25, 40 и 60%. Каждому из них соответствует нагрузка электродвигателя, допускаемая его нагревом при данном режиме работы. Нормально крановые двигатели рассчитываются на работу при ПВ = 25%, однако один и тот же двигатель может работать при ПВ, равном 15 и 40%, но при этом должна соответственно изменяться его нагрузка. При ПВ = 15% разрешается увеличить нагрузку двигателя по сравнению с ПВ=25%, а при ПВ=40% нагрузка снижается на 25%. Объясняется это тем, что при частых пусках из-за больших пусковых токов двигатель нагревается больше, чем при работе полной нагрузкой.

Рекламные предложения на основе ваших интересов:

Крановые электродвигатели работают в тяжелых условиях, поэтому для увеличения прочности и улучшения теплоотдачи они имеют стальной литой корпус с ребристой поверхностью. Двигатели снабжены водозащитной изоляцией, которая обеспечивает их нормальную эксплуатацию на открытом воздухе. Статор электродвигателя изготовляют из тонких (0,5 мм) листов электротехнической стали. В пазах статора размещены обмотки с выведенными на зажимы концами. Фазный ротор, как и статор, изготовляют из электротехнической стали. Пластины укреплены на сердечнике, напрессованном на валу.

В двигателях применяют электроизоляционные материалы с различными характеристиками по нагреву, урановые двигатели серий MTF и MTKF имеют изоля-обш Класса выдерживающую нагрев до 155 °С. Для непромышленных двигателей, работающих в более легких условиях, используют изоляцию класса А (До 105 °С). Ранее выпускавшиеся крановые двигатели серий МТ, МТБ, МТКВ имели изоляцию класса В, выдерживающую нагрев до 130 °С.

Заводы изготовляют электродвигатели с одним или двумя выступающими концами вала. Концы валов двигателей 0-3-го габаритов — цилиндрические, 4-7-го габаритов — конические.

Первая цифра в марке кранового электродвигателя обозначает условный габарит двигателя, принятый по диаметру пакета статора, вторая цифра -условную длину статора, третья — число полюсов.
Обмотка статоров электродвигателей катушечная, однослойная или двухслойная, намотанная из круглого провода, обмотка ротора (для фазных роторов) однослойная, катушечная. Статоры и роторы пропитывают изоляционными лаками или компаундами. Для статоров и роторов изготовляемых в настоящее время электродвигателей серии MTF и статоров короткозамкнутых электродвигателей серии MTKF применены обмоточные провода ПЭТ-155 класса нагревостойкости F. Эти двигатели имеют повышенную перегрузочную способность при сравнительно небольших токах и .малом времени разгона. Начала обмоток ротора выведены к трем контактным кольцам на валу ротора. Токосъемный механизм ротора выполнен с постоянно прилегающими щетками, что позволяет реверсировать двигатель.

Короткозамкнутые двигатели имеют литой ротор из алюминиевого сплава повышенного удельного сопротивления. На короткозамкнутых кольцах расположены вентиляционные лопатки, которые отлиты заодно с ротором. Эти лопатки создают циркуляцию воздуха с торцевых сторон двигателя, что способствует лучшему охлаждению обмоток статора. В основном же электродвигатели серий MTF и MTKF охлаждаются вентилятором с радиальным расположением лопаток, что создает струю воздуха вдоль наружной поверхности станины. Вентилятор посажен на вал ротора со стороны, противоположной токосъемному устройству.

На кранах иногда применяют также асинхронные двигатели единой серии АОФ, АОС, AOIIT с повышенной продолжительностью включения. Электродвигатели серии А изготовляют семи габаритов, причем каждый из них может иметь обычную в двигателях общего назначе ния или специальную механическую характеристику с повышенным пусковым моментом, повышенным сколь жением или фазный ротор. Двигатели серии А изготовляют в алюминиевом или чугунном корпусе, который имеет защиту от попадания внутрь посторонних предметов и воды, а в закрытых двигателях — и пыли.

В соответствии с исполнением установлено следую, щее обозначение двигателей: А — защищенный в чугунном корпусе; АО — закрытый, обдуваемый, в чугунном корпусе; АЛ — закрытый, обдуваемый, в алюминиевом корпусе. Кроме буквенных имеются также цифровые индексы: первая цифра указывает условный номер диаметра статора, вторая — длину статора, третья — число полюсов. Например, АОЛ-31-6 обозначает электродвигатель общего назначения в закрытом обдуваемом алюминиевом корпусе, третьего диаметра, первой длины, шестиполюсный. Специальные двигатели единой серии обозначаются следующим образом: АОЭ — со встроенным электромагнитным тормозом; АОП — с повышенным пусковым моментом; АОС -с повышенным скольжением

В настоящее время наша промышленность начинает выпускать новые электродвигатели четвертой серии с улучшенными технико-экономическими показателями. Изменяется также их маркировка: вводятся данные о высоте оси вращения, установочные и габаритные размеры статора согласно международной системе классификации.

Пуск и регулирование частоты вращения асинхронных двигателей. Электродвижущая сила, наводимая в роторе асинхронного двигателя, обратно пропорциональна его частоте вращения. При неподвижном роторе она имеет значительную величину, поэтому в начальный момент пуска под действием этой э. д. с. в роторе проходят токи, в 5-8 раз превышающие номинальное значение. Чтобы избежать перегрузок в сети, в цепь фазного ротора вводят пускорегулирующие резисторы, которые ограничивают ток ротора, а следовательно, и пусковой ток статора. При включении в цепь ротора дополнительных резисторов получают более пологие (мягкие) характеристики, которые называются искусственными.

Если ввести в обмотку ротора дополнительные резисторы, то двигатель будет развивать необходимый момент при повышенном скольжении, а следовательно, при меньшей частоте вращения. Введение резисторов сопротивлением, превышающим, например, в 5 раз сопротивление обмоток ротора, при неизменной «агрузке примерно во столько же раз увеличит скольжение, которое соста-вит s=0,055 5=0,275.

Тогда частота вращения ротора будет равна: я= 1000(1-0,275) -725 об/мин.

В большинстве случаев короткозамкнутые двигатели небольшой мощности пускают в ход без дополнительных устройств, так как их характеристики мягче, чем у двигателей с фазным ротором.

Особенности управления двигателем механизма подъема. При опускании груза его масса способствует вращению, поэтому частота вращения двигателя весьма быстро достигает синхронной и может даже превзойти ее. Это значит, что скольжение двигателя, уменьшившись до нуля, может стать отрицательным, т.е. ротор не только не будет отставать от вращающегося поля, но и начнет обгонять его.

Поэтому при спуске тяжелых грузов увеличение сопротивления в роторе увеличивает частоту вращения двигателя.

Пускорегулирующие резисторы. Для регулирования частоты вращения двигателя, уменьшения пускового тока до значения, безопасного для двигателя и сети, и увеличения вращающего пускового момента применяют ящики резисторов (рис. 1). В каждом ящике установленно несколько одинаковых элементов. Каждый элемент состоит из стальной пластинки с надетыми на нее сверху и снизу фарфоровыми гребенками. В пазы гребенок заложена наматываемая на элемент константановая проволока или фехралевая лента, которая может выдерживать долговременный нагрев до 300-400 °С. Элементы соединены последовательно, для чего при сборке между ними прокладывают поочередно фарфоровые изоляторы и дистанционные трубки. Брызгозащищенный ящик закрыт цельными боковинами и крышкой. Передний и задний щиты имеют отверстия типа жалюзи. Внешние зажимы расположены на панели в нижней части ящика.

Рис. 1. Ящики пусковых резисторов, а -типа НК-1; б -типа НФ I.

Ящики резисторов предназначены только для определенного электродвигателя или группы их, управляемой конкретным типом контроллера. Поэтому внешние зажимы ящиков резисторов маркируются аналогично зажимам контроллера. На кране ящик должен быть установлен строго горизонтально. Для отвода тепла между отдельными ящиками в комплекте необходимо иметь зазор не менее 120 мм. Кожухи ящиков должны быть надежно заземлены. Согласно действующим правилам устанавливать ящики резисторов в кабине крана запрещается, поэтому если в старых конструкциях кранов такая установка была произведена ранее, то ящики надо перенести из кабины. Это требование необходимо выполнить в двух случаях: если они мешают нормальной работе крановщика или если кран работает в горячем цехе.

При отсутствии пусковых резисторов требуемого типа их можно подобрать из нормализованного ряда.

Силовые контроллеры. Для включения и регулирования пусковых характеристик электродвигателей на мостовых кранах применяются контроллеры. Известны два типа контроллеров: барабанные и кулачковые.

В последние годы для управления электроприводом преимущественно применяют кулачковые контроллеры. Эти контроллеры имеют один или два ряда кулачковых элементов, состоящих из подвижных и неподвижных контактов с укрепленными на их концах медными губками. Подвижный контакт контроллера вращается на оси и постоянно прижат своим хвостовиком с роликом к кулачковой шайбе. Фасонные кулачковые шайбы К (рис. 23) укреплены на валу, спрессованном электроизоляционным материалом. По шайбам перекатываются ролики Р, изменяющие свое положение в зависимости от того, находится ролик на участке с меньшим или большим радиусом. В первом случае медные контактные элементы контроллера замкнуты и прижимаются пружиной П, во втором, наоборот, контакты разомкнуты. Замыкание и размыкание контактов сопровождается их перекатыванием, что позволяет им очищаться от окиси меди и нагара. Износ контактных поверхностей в кулачковых контроллерах меньше, чем в барабанных, из-за отсутствия трения скольжения и вследствие того, что рабочая часть контакта, через которую более или менее длительно проходит ток, удалена от места образования искр и дуги. Эти особенности кулачковых контроллеров дают возможность использовать их при тяжелых режимах работы. Для облегчения работы контактных деталей в контроллерах применяют электромагнитное гашение дуги. Специальная катушка, выполненная из нескольких витков толстой проволоки, укреплена на стальном сердечнике. По дугогасительной катушке проходит ток., разрываемый контроллером (ток силовой цепи). Дуга и дугогасительная катушка создают магнитные поля, направленные навстречу друг другу, что схематично показано на рис. 2.

Рис. 2. Схема работы контактов кулачкового контроллера.

На кранах применяют в основном контроллеры ККТ-61А и ККТ-62А двухрядного горизонтального исполнения. В отличие от ранее применяемых однорядных вертикальных контроллеров НТ-61 и НТ-51 масса и габариты этих аппаратов при одинаковых характеристиках по току и мощности в 1,5 раза меньше. Контроллеры рассчитаны на большое число включений (600-1000 в час).

Принципиальная электрическая схема кулачкового контроллера показана на рис. 3. На этой схеме изображена развертка кулачковой шайбы, указывающая, на какой из позиций ее вращения контакты замыкаются.

Шайбы контроллера в нулевом положении не касаются рычагов подвижных губок и, следовательно, силовые цепи разомкнуты. Если перевести рукоятку контроллера в первое положение направления Вперед, то обмотки статора электродвигателя окажутся под напряжением. Включенный в цепь ротора полный комплект резисторов обеспечивает пуск двигателя по мягкой характеристике на пониженную частоту вращения.

Рис. 3. Электрическая схема управления двигателем с помощью силового контроллера. 1 — двигатель; 2 — пускорегулирующие резисторы; 3 — контроллер.

Во второй позиции штурвала контроллера замыкаются контакты Р5, выводя из работы часть сопротивления. В третьем, а затем и в четвертом положении замыкаются последовательно контакты Р4 и РЗ, выводя из работы вторую и третью части сопротивления. В пятом положении все контакты в цепи ротора замкнуты, его обмотки оказываются соединенными накоротко, поэтому электродвигатель развивает наибольшую частоту вращения.

Магнитные контроллеры. Для приводов, работающих тушки которых питаются ПОСТОЯННЫМ током от выпрямителей ВС.

В первом положении командоконтроллера при подъеме срабатывают контакторы В, КП и Т, реле 1РУ, 2РУ, а затем контактор П. В результате двигатель подключается к сети, растормаживается, в цепи его ротора шунтируется часть резисторов и происходит разгон двигателя с предварительной выборкой слабины каната. Во втором и третьем положении рукоятки срабатывают соответственно контакторы 1У и 2У, что дает возможность получить промежуточные скорости. При включении контактора 2У отключается катушка 1РУ, в результате чего с выдержкой времени замыкается контакт 1РУ в цепи катушек ЗУ и 4У. В четвертом положении рукоятки срабатывает контактор ЗУ, при этом отключается катушка 2РУ, после чего с выдержкой времени включается контактор 4У. Двигатель переходит сначала на промежуточную, а после разгона на рабочую характеристику подъема.

При быстром переключении рукоятки из нулевого в четвертое положение двигатель переходит на рабочую характеристику с автоматической выдержкой времени с помощью реле 1РУ и 2РУ.

При быстром переводе рукоятки командоконтроллера из нулевого в четвертое положение при спуске двигатель также достигает рабочей характеристики с автоматической выдержкой времени с помощью реле 1РУ и 2РУ. При спуске грузов с малой массой, когда потери трения в механизме больше момента двигателя, последний будет работать вхолостую, а более тяжелые грузы будут опускаться со сверхсинхронной частотой вращения. Для уменьшения скорости опускания переводят рукоятку командоконтроллера в третье положение, в результате чего срабатывает контактор однофазного торможения. В этом случае двигатель работает в режиме электромагнитного тормоза. Дальнейшее снижение скорости получают во втором и первом положениях рукоятки, когда двигатель, подключенный к сети контактором В, работает в режиме противовключения.

Магнитный контроллер типа ТА выполнен по симметричной схеме. Здесь предусмотрена возможность свободного выбега двигателя в нулевом положении контроллера, в то время как механическое торможение осуществляется в любом из остальных положений рукоятки командоконтроллера, при срабатывании конечных выключателей или при нажатии кнопки АК. Реле РН и контактор Т в нулевом положении не отключаются. В данной схеме режим противовключения обеспечивает торможение движущегося крана или грузовой тележки. При вращении двигателя, например, в направлении Вперед переключают командоконтроллер в одно из положений Назад. Первым срабатывает контактор Н, в результате чего в цепях статора и ротора, включая и пускорегулирующие сопротивления, вновь появляется ток.

Рис. 5. Магнитный контроллер типа ТА. а — электрическая схема силовой части; б — схема цепей управления.

Так как направление вращения магнитного пели противоположно направлению вращения двигателя, напряжение, генерируемое в роторе, возрастает, вследствие чего срабатывает реле РН, подключенное к пускорегулирующему сопротивлению, и прерывает цепь катушек П, 1У, 2У, ЗУ. Двигатель будет работать в режиме противо-включения с полным сопротивлением в цепи ротора независимо от положения командоконтроллера. По мере снижения частоты вращения напряжение на зажимах катушки реле РП снижается, и при /г» О реле отключается. Для предотвращения самопроизвольного движения крана в противоположном направлении командоконтроллер необходимо переключить в нулевое положение.

Командоаппараты. Для приведения в действие магнитных контроллеров, контакторов, защитных и реверсивных панелей применяют аппараты, носящие общее наименование командоаппаратов. В число командоаппаратов входят командоконтроллеры, универсальные переключатели, конечные и аварийные выключатели.

Корпуса и крышки командоаппаратов обычно отлиты из чугуна или алюминиевого сплава. Наружу выведены рычаги или рукоятки, которые имеют фиксирующее устройство. Формы и размеры рычагов у рукояток зависят от типа и места установки аппарата. Например, командоконтроллеры КП-1400 и КП-1500 встраивают в кресло крановщика, поэтому у них удлиненная рукоятка с кулисным приводом; у конечных выключателей рычаги с самовозвратом или без самовозврата. На рис. 27 показан командоконтроллер. Контактная система командоконтроллера отличается от контактной системы силового контроллера тем, что выполнена в виде контактного мостика, размещенного на рычаге кулачкового элемента. На контактной поверхности мостика напаяны серебряные пластинки, стойкие к окислению и создающие надежный контакт даже при небольшом давлении пружины кулачкового элемента. Кулачковый элемент поворачивается под действием кулачковой шайбы, насаженной на вал с фиксирующим устройством. Так же как и силовые контроллеры, командоконтроллеры на электросхемах изображают в развернутом виде, где указывается, в каком фиксированном положении рукоятки кулачкового вала контактный мостик замыкает цепь.

Если командоконтроллеры имеют несколько контактных мостиков, то конечный выключатель обычно имеет один или два таких мостика. На кранах широко применяют конечный выключатель типа КУ, который обеспечивает различные схемы замыкания контакторов. Выключатель типа КУ имеет два контакта, которые могут быть размыкающими, замыкающими или один замыкающий, а другой — размыкающий. Механизм рычажного выключателя типа КУ размещен в штампованном стальном закрытом со всех сторон корпусе и имеет снаружи один рычаг, на который и воздействуют упоры, установленные в крайних положениях на пути следования перемещающегося механизма. На валу выключателя закреплены шайбы. При повороте вала изоляционный (из карболита) рычаг с контактными мостиками 6 замыкает (или размыкает) неподвижные контакты, установленные на изоляционной подставке. Рычаг под действием пружины с помощью ролика постоянно прижат к кулачковым шайбам. При этом контакты разомкнуты. Для того чтобы в исходном положении контакты были замкнуты, ролик рычага переставляют на ось, а пружину — в положение К. Изменение положения кулачковых шайб относительно оси производится их поворотом и фиксированием винтами. Необходимость изменения положения шайб возникает при перестановках приводного рычага, насаживаемого на конец вала, и при изменении схемы замыкания контактов. Фиксирующий храповичок и соединенная с ним собачка 8 с пружиной предназначены для возврата приводного рычага выключателя в исходное положение. Кроме рассмотренного выключателя на кранах применяется 52 шпиндельный выключатель типа ВУ-250А. Такие выключатели устанавливают для ограничения высоты подъема груза. В этом случае контакты замыкаются и размыкаются поворотом тихоходного вала червячного редуктора, имеющего передаточное отношение 1:50. При набегании замыкающего ролика на выступ контактного рычага последний медленно поворачивается, а затем запирается в замкнутом положении собачкой. Весь путь замыкания подвижного контакта соответствует 5/6 оборота вала с шайбами или 42 оборотам приводного вала. Выключатель возвращается в исходное положение после срабатываний при повороте приводного валика на 1,5 оборота.

Рис. 6. Командоконтроллер. 1 — корпус; 2 — вал кулачкового барабана; 3 — сектор зубчатый; 4 — рукоятка; 5 — кулачки, изменяющие число фиксирующих положений рукоятки; 6 — рычаг фиксирующего устройства; 7 — пружина фиксирующего устройства; 8 — шайба фиксатора; 9 — кулачковые элементы; 10 — кулачковые шайбы; 11 — рейка для крепления кулачковых элементов.

Рис. 7. Конечный выключатель типа КУ. а — принцип действия; б — общий вид со снятой крышкой.

Выключатель ВУ-250А имеет два мостика и может быть настроен на разрыв цепей в двух положениях, что позволяет ограничивать как верхнее, так и нижнее положение крюковой подвески. Выключатели ВУ-150А аналогичны по конструкции выключателю ВУ-250А, но могут разрывать только одну цепь. Допустимый длительный и разрываемый ток у них равен 20 А. Выключатели КУ-701 имеют одну цепь, их допустимый ток 10 А.

Универсальные переключатели набраны из отдельных контактных секций, изолированных одна от другой пластмассовыми стенками. Наиболее часто применяется универсальный переключатель УП-5311. Первые две цифры обозначают, что аппарат выполнен в открытом нерегулируемом исполнении, следующие две цифры — число секций (в данном случае 11).

Аварийные ручные выключатели ВУ-220 служат для мгновенного разрыва основных цепей управления при необходимости экстренной остановки всего крана; их выполняют с нормально замкнутыми контактами.

Защитные и реверсивные панели. Защитные панели предназначены для максимальной и нулевой защиты двигателей и применяются совместно с кулачковыми и магнитными контроллерами. Панель расположена в металлическом шкафу, в котором на изоляционной асбоцементной плите вмонтированы трехполюсный рубильник с наружной рукояткой и линейный контактор. Панель также снабжена максимальными реле, действующими на линейный контактор, предохранителями цепей управления, переключателем опробования, пусковой кнопкой к электромеханическим замком.

Электромеханический замок, собранный из серийно выпускаемых изделий для дверного замка и пакетного выключателя, изображен ча рис. 29. От дверного замка взят механизм. Из текстолита изготовлены корпус, муфта, крышка и металлическая упорная пластина, которая служит для ограничения поворота контактной шайбы на 90°. Через фигурное отверстие упорной металлической пластины проходит поводковая планка.

Рис. 8. Электромеханический замок.

Детали электрической части замка взяты от стандартного пакетного выключателя на ток 25 А.

Замок устанавливается в стенке шкафа защитной панели таким образом, что наружу выступает лишь торец механизма. Остальная часть замка помещается внутри панели, запираемой на замок. С помощью двух зажимов замок включается последовательно в цепь катушки главного контактора. Нормальное положение контактов замка разомкнутое. Чтобы включить контактор, необходимо вставить ключ в скважину механизма и, повернув его по часовой стрелке на 90°, замкнуть контакты.

Допускается вместо контактного замка устанавливать замок с индивидуальным ключом, запирающий рубильник, автомат или выключатель в отключенном положении. Ключ из замка должен выниматься только при отключенном и запертом в этом положении рубильнике, автомате или выключателе. Этому требованию отвечают защитные панели типа ПЗКБ-160 «ПЗКБ-400.

Рис. 9. Принцип действия контактора, а — переменного тока; б — постоянного тока.

Контакторы. Основным аппаратом крановых защитных и реверсивных панелей и магнитных контроллеров является контактор — прибор для включения и отключения электрического тока на расстоянии. На рис. 30 показан внешний вид контактора и виден принцип его действия. На изолированной оси 1 квадратного сечения, подшипники которой для простоты не показаны, установлены подвижные рабочие контакты, якорь электромагнита и траверса для блок-контактов.

На рис. 9, а показана упрощенная схема пуска и остановки короткозамкнутого асинхронного двигателя с кнопочным управлением при помощи контактора. Силовая цепь подключена непосредственно к двигателю и обозначена толстыми линиями. В цепи управления (тонкие линии) показаны две кнопки — включающая Пуск и отключающая Стоп. Пуск производится следующим образом. При замыкании кнопки Пуск ток проходит от провода IIX через обмотку электромагнита к проводу Л3. Образуется замкнутая цепь. Якорь притягивается и поворачивает ось, при этом одновременно замыкаются рабочие контакты и верхние блок-контакты. Последние шунтируют кнопку Пуск и позволяют отключить включающую кнопку. Для выключения двигателя достаточно разомкнуть цепь управления, нажав на кнопку Стоп. Контакты отпадут под действием собственной массы устройства.

Устройство контактора постоянного тока показано на рис. 9. При прохождении тока через обмотку катушки якорь (подвижная часть магнитопровода) притягивается к неподвижному сердечнику. При этом якорь, поворачиваясь вместе с укрепленным на нем супортом и подвижным контактом вокруг оси, вводит подвижный контакт в соприкосновении с неподвижным контактом. При этом контакты, соединяясь сначала своими верхними частями, приходят в дальнейшее соприкосновение и смещаются относительно друг друга, как бы притираясь. Гашение дуги происходит в искрогасительной камере. Последовательно с главными контактами включена дугогасительная катушка. Создаваемое этой катушкой магнитное поле направлено таким образом, что дуга (как проводник с током) выталкивается вверх по правилу правой руки. Ток от подвижного контакта отводится при помощи гибкого проводника. Контактор монтируется на плите.

С 1971 г. промышленность выпускает контакторы переменного тока серии КТ-6000. Допускаемая частота включения этих контакторов не менее 600 в час. Гашение дуги-электромагнитное, что позволяет осуществлять включение, реверсирование и отключение заторможенных двигателей, в том числе с короткозамкнутым ротором.

Блокировочные контакты контактора состоят из прессованного корпуса, неподвижных контактов и траверсы с подвижными контактами мостикового типа. Траверса перемещается в металлических направляющих под действием кулачка, укрепленного на валу контактора.

Реле. Для защиты электропривода от перегрузок и падения напряжения применяют промежуточные и тепловые реле, реле тока и напряжения, реле времени.

Промежуточные реле применяются в электрических цепях в тех случаях, когда количество блок-контактов основных аппаратов недостаточно для реализации электрической схемы управления краном. Изготовляют их с передним и задним присоединением проводов.

Для защиты от перегрева обмоток электродвигателей, Работающих в длительном режиме, применяют тепловые Реле типов ТРИ, ТРП. ТРТ. В ряде случаев такие реле входят в комплект электрических аппаратов, например магнитных пускателей.

Биметаллический элемент представляет собой двухслойную металлическую пластинку из двух металлов, имеющих различные коэффициенты линейного расширения. Проволочная спираль электронагревателя включается последовательно в электрическую цепь, х. е. в цепь защиты двигателя. Замыкание или размыкание этой цепи осуществляют контакты специального электромагнитного выключателя (на схеме не указан) В цепь катушки этого выключателя включен размыкающий контакт теплового реле. При длительной перегруз, ке двигателя, когда ток в нагревателе заметно возрастает, биметаллический элемент изгибается и освобождает защелку, которая под действием пружины поворачивается и размыкает контакты. Цепь катушки электромагнитного выключателя разрывается, его контакты размыкаются и двигатель отключается от сети После охлаждения элемента нажатием кнопки возвращают реле в исходное положение. Эти реле изготовляют с самовозвратом или ручным возвратом в исходное положение.

Рис. 10. Реле максимального тока.

В качестве максимальной токовой защиты в силовых цепях мостовых кранов применяют реле мгновенного действия РЭО-401 и РЭ-571Т.

Рис. 11. Тепловое реле. 1 — трубка; 2 — катушка; 3 — сердечник; 4 — регулировочный винт; 5 — шкала; 6 — коромысло; 7 — контакт.

Автоматические выключатели — автоматы предназначены для автоматического отключения тока при коротких замыканиях или перегрузках. На кранах наиболее распространены автоматические выключатели серий АП25, АП50, А63, АК63. Автоматические выключатели А63 и АК63 имеют электромагнитный расцепитель с гидравлическим замедлителем (А63-МГ и АК63-2МГ) или без замедлителя (А63-М, АК63-2М). Автоматические выключатели АП25 и АП50 оборудованы тепловым, электромагнитным или комбинированным расцепителем. При этом приняты следующие обозначения: МТ — электромагнитный и тепловой расцепитель, Т — тепловой М — электромагнитный, Н — расцепитель минимального напряжения, 0 — расцепитель минимального тока в нулевом проводе. Цифра перед символом указывает на количество таких расцепителей в автоматическом выключателе.

На рис. 12 приведены принципиальные схемы наиболее распространенных автоматических выключателей. При рассмотрении схем видно, что контакты отключаются при срабатывании теплового или электромагнитного расцепителей, освобождающих крюк подвижного контакта, который удерживается пружиной. Электромагнитные расцепители имеют указатель, позволяющий увеличить ток срабатывания примерно на 40% за счет сжатия пружины. Включаются автоматические выключатели вручную.

Магнитные пускатели. Для автоматического дистанционного включения и реверсирования электродвигателей наряду с контакторами применяют магнитные пускатели. Они имеют главные контакты (пальцевые или мастиковые) с системой дугогашения, электромагнитную

систему и блок-контакты, как правило, мостикового ти-па В реверсивных пускателях кроме электроблокировки иногда предусматривают и механическую блокировку. Для защиты от перегрузок на панели пускателя монтируют тепловое реле. Если тепловая защита в схеме выполнена отдельно, такие реле в пускателе отсутствуют.

В реверсивном магнитном пускателе есть два контактора: один для пуска двигателя Вперед, другой — для электрическая схема реверсивного пускателя.

Рис. 12. Принципиальная схема автоматического выключателя, а — с электромагнитным расцепителем; б — с тепловым расцепителем; 1 — отключающая пружина; 2 — контакт главной цепи; 3 — рычаг; 4- защелка; 5 приводной рычаг; 6 — катушка; 7 — электромагнитный сердечник; 8 — пружина; 9 — нагреватель теплового реле; 10 — биметаллический элемент; 11 — штифт.

Пускатель имеет две катушки (KB — катушка включения Вперед и КН — катушка включения Назад). Кнопочная станция имеет соответственно.три кнопки: Вперед, Назад и Стоп. Оба контактора пускателя имеют механическую и электрическую блокировку, с тем чтобы при включении одного из них не мог быть включен другой. Электрическая блокировка выполняется с помощью размыкающих контактов кнопок Вперед и Назад.

При нажатии, например, кнопки Вперед ток от одной фазы проходит через контакт кнопки Стоп, затем через размыкающий контакт кнопки Назад, катушку Вперед, далее через контакты тепловых реле TP на вторую фазу Включающая катушка KB возбуждается и замыкаются линейные контакты В. Одновременно включаются блок-контакты и шунтируют кнопку Вперед, которую можно теперь отпустить. Двигатель получает напряжение и начинает вращаться. Следует отметить, что когда нажата кнопка Вперед, ток проходит через размыкающий контакт кнопки Назад и наоборот. Тем самым осуществляется электрическая блокировка. Изменение направления вращения (реверсирование) происходит при включении контактора КН, который производит переключение двух фаз двигателя.

У электрических талей и кран-балок, управляемых с пола, шунтирования кнопок не допускается и работа механизма должна осуществляться при постоянно нажатой кнопке Вперед или Назад.

Тормозные гидротолкатели и электромагниты. В качестве привода тормозов применяют электрогидротолкатели и тормозные клапанные электромагниты однофазного тока. Электрогидравлический толкатель (рис. 35) состоит из электродвигателя, погруженного в рабочую жидкость, корпуса толкателя, центробежного насоса, закрепленного на валу электродвигателя, поршня со штоком, цилиндра, промежуточной крышки и верхней крышки с резиновым армированным уплотнением а штока. Для уплотнения корпусных деталей служат маслостойкие резиновые кольца. Концы обмоток электродвигателя выведены на панель зажимов. Кабель крепится при помощи штуцера 16. Колесо насоса имеет прямые радиальные лопатки, которые независимо от направления вращения колеса обеспечивают нормальную работу толкателя. При включении электродвигателя центробежное колесо нагнетает масло под поршень. Создается избыточное давление, которое поднимает поршень со штоком до верхнего положения. Рабочая жидкость, находящаяся над поршнем, выталкивается через каналы в корпусе к нижней части центробежного колеса. Поршень остается в верхнем положении все время пока работает насос. При выключении электродвигателя цен, тробежное колесо останавливается, поршень со штоком опускается в нижнее положение, выжимая рабочую жидкость в полость над поршнем. Электрогидротолкател ь допускает до 720 включений в час.

Однофазные электромагниты серии МО состоят из ярма с катушкой и якоря, закрепленного в щеках, которые имеют возможность поворачиваться вокруг неподвижной оси. На якоре во избежание гудения установлен короткозамкнутый виток. Рабочий ход этих магнитов составляет 2-3 мм. Электромагниты рассчитаны на 200-300 включений в час, нормальная их работа обеспечивается при колебании напряжения в пределах 85 — П0%. Недостатком тормозных магнитов переменного тока является то, что их катушки не могут выдерживать большой ток включения в течение длительного времени. В результате этого при заклинивании или плохой регулировке хода якоря катушки перегорают. Поэтому в новых кранах применяют в основном электрогидравлические тормоза.

Рис. 13. Электрогидравлический толкатель ТЭГ-25.

Плавкие предохранители. Для защиты силовых цепей, а также цепей управления от аварийных перегрузок во вводных ящиках, защитных панелях и других вводных устройствах устанавливаются плавкие предохранители: трубчатые типа ПР2 и пробочные типа Е-27. При токе 15-200 А применяют трубчатые предохранители, а при токе 4-60 А — пробочные.

Перегорание предохранителей наступает обычно при длительных перегрузках, более чем на 25-50% превышающих номинальное значение тока. От небольших перегрузок предохранители не защищают. Плавкие вставки предохранителей выбирают в зависимости от значения тока, допустимого для крановой проводки, и от продолжительности включения электропривода. Иногда возникает необходимость изготовления плавкой вставки из подручных материалов.

Рубильники и пакетные выключатели. Для нечастых замыканий электрической цепи применяются неавтоматические устройства — рубильники типов Р, РБ, РПЦ, РПБ и пакетные переключатели типов П, ППМ и ПВМ.

Рубильники серий РБ и РПБ с боковой рукояткой или рычагом и серии РПЦ с центральным рычажным устройством могут размыкать электрическую цепь под нагрузкой напряжением до 500 В. Рубильники серии Р с центральной рукояткой служат в качестве разъединителей для отключения предварительно разомкнутой цепи.

При размыкании цепи рубильником между его контактами образуется дуга. Чтобы понизить действие дуги, на ножах рубильника устраивают отрывные контакты. При отводе рычага нож остается в губках до тех пор, пока натяжение пружины, соединяющей его с рычагом, не станет больше силы сцепления контактов. При размыкании нож под действием пружины мгновенно отрывается, разрывая дугу.

Рубильники монтируют в защитном металлическом кожухе-ящике. На кранах устанавливают обычно ящики ЯВЗ-31 на 100 А и ЯВЗ-32 на 200 А. Пакетные выключатели (переключатели) используют преимущественно для эпизодического отключения и переключения вспомогательных силовых цепей напряжением 220 и 380 В. Выключатели набирают из отдельных пакетов по числу полюсов. Каждый пакет содержит неподвижные контакты с внешними зажимами и пружинный подвижный контакт. Пакеты скреплены между собой стяжными шпильками. Контакты вращаются с помощью снабженного рукояткой валика.

На мостовых кранах применяют открытые переключатели типа ППМ и выключатели типа ПВМ. Обозначение аппарата содержит, кроме наименования типа, число контактов и номинальное значение тока при напряжении 220 В. Наиболее распространены в двух- и трехполюсном исполнении аппараты III, V и VI величин на ток соответственно 25, 63, 100 А.

stroy-technics.ru

Фазный ротор электродвигателя

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.



 

Конструкция фазного ротора


 

Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.


Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.


Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.


Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.


  Проверка электродвигателя с фазным ротором


Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:


  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

www.ttaars.ru

Типы крановых электродвигателей и их особенности

Типы крановых электродвигателей

Крановые электродвигатели это агрегаты, которые приводят в движение механизм крана. В зависимости от условий, крановые двигатели подразделяются на двигатели с фазным и короткозамкнутым ротором. С фазным ротором двигатели МТН и МТКН с короткозамкнутым.

Эти агрегаты выполняют следующие функции:

  1. Перемещение крана по рельсам
  2. Перемещение тележки механизма перпендикулярно рельсам
  3. Непосредственно подъем груза

Конструкция и характеристики

У них простая конструкция: щеточный механизм, держатель, встроенный механизм нажатия, который служит для запуска электродвигателя. Так же этот механизм снижает вероятность несчастного случая на производстве. Щеткодержатель гарантирует безопасность при эксплуатации  двигателя, и дополнительно служит его тормозом. Более всего, распространены электродвигатели с фазным ротором. Это объясняется тем, что по условиям работы кранового механизма, в большинстве случаев присутствует сопротивление при запуске электродвигателя. Особенностью эксплуатации крановых двигателей является необходимость регулировать обороты в процессе работы механизма.

Крановые фазные электродвигатели МТН

Преимуществом двигателей с фазным ротором МТН (MTF) является высокий стартовый крутящий момент и низкий пусковой ток. Особенностью фазного ротора является его строение, в фазный ротор добавлены обмотки трех фаз, соединенных в звезду и концы этих обмоток выведены на контактные кольца. По кольцам скользят щетки, которые подсоединяют обмотки с питающей электрической цепи. Плавный разгон электродвигателя с фазным ротором обеспечивается специальным устройством, контакторы которого включаются последовательно через фиксированный временной промежуток, формируемый реле времени. Для перемещения моста крана часто используют два электродвигателя по обоим концам моста, при этом они работают синхронно и их характеристики и параметры идентичны.

Монтажные крепления крановых двигателей МТН и МТКН

Монтажные крепления этих агрегатов имеют отличия от стандартных креплений общепромышленных асинхронных электродвигателей. Они заключаются в исполнении вала агрегата, они бывают или цилиндрическими или коническими, при чем, у мощных двигателей идет конический вал. Так же широко распространены двигатели с двумя выходными валами, и такое исполнение является основным в отличие от основных монтажных креплений общепромышленных двигателей.

Режимы работы агрегатов МТН и МТКН

Крановые двигатели в своем большинстве работают в повторно-кратковременном режиме работы с разными условиями включений. В основном это режим работы S3, процессы включения которого: ПВ 15, 25, 40 и 60%. Подробнее про режимы работы электродвигателей читайте в этой статье.

 

www.uesk.org

0 comments on “Крановый двигатель с фазным ротором – Крановые электродвигатели с фазным и короткозамкнутым ротором

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *