Мощность тока измеряется в – Электрическая мощность — Википедия

Ватт — Википедия

О типе морских побережий см. Ватты

Ватт (русское обозначение: Вт, международное: W) — единица измерения мощности, а также теплового потока, потока звуковой энергии, мощности постоянного электрического тока, активной и полной мощности переменного электрического тока, потока излучения и потока энергии ионизирующего излучения в Международной системе единиц (СИ)[1]. Единица названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта (Ватта), создателя универсальной паровой машины.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы ватт пишется со строчной буквы, а её обозначение — с заглавной. Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием ватта. Например, обозначение единицы измерения энергетической яркости «ватт на стерадиан-квадратный метр» записывается как Вт/(ср·м2

).

Ватт как единица измерения мощности был впервые принят на Втором Конгрессе Британской Научной ассоциации в 1882 году. До этого при большинстве расчётов использовались введённые Джеймсом Уаттом лошадиные силы, а также фут-фунты в минуту. В Международную систему единиц (СИ) ватт введён решением XI Генеральной конференцией по мерам и весам в 1960 году одновременно с принятием системы СИ в целом[2].

Одной из основных характеристик всех электроприборов является потребляемая мощность, поэтому на любом электроприборе (или в инструкции к нему) можно найти информацию об этой мощности, выраженной в ваттах.

1 ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль[3]. Таким образом, ватт является производной единицей измерения и связан с основными единицами СИ соотношением:

Вт = кг·м²/с³.

Через другие единицы СИ ватт можно выразить следующим образом:

Вт = Дж / с
Вт = H·м/с
Вт = В·А.

Кроме механической (определение которой приведено выше), различают ещё тепловую и электрическую мощность.

Перевод в другие единицы измерения мощности[править | править код]

Ватт связан с другими, не входящими в систему СИ единицами измерения мощности, следующими соотношениями:

1 Вт = 107эрг/с
1 Вт ≈ 0,102 кгс·м/с
1 Вт ≈ 1,36⋅10−3л. с.
1 Вт = 859,8452279 кал/ч

Для расчётов, связанных с мощностью, не всегда удобно использовать ватт сам по себе. Иногда, когда измеряемые величины очень большие или очень маленькие, гораздо удобнее пользоваться единицей измерения со стандартными приставками, что позволяет избежать постоянных вычислений порядка значения. Так, при проектировании и расчёте радаров и радиоприёмников чаще всего используют пВт или нВт, для медицинских приборов, таких как ЭЭГ и ЭКГ, используют мкВт. В производстве электричества, а также при проектировании железнодорожных локомотивов, пользуются мегаваттами (МВт) и гигаваттами (ГВт).

Стандартные приставки СИ для ватта приведены в следующей таблице.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
101 ВтдекаваттдаВтdaW10−1 ВтдециваттдВтdW
102 ВтгектоваттгВтhW10−2 ВтсантиваттсВтcW
103 ВткиловатткВтkW10−3 ВтмилливаттмВтmW
106 ВтмегаваттМВтMW10−6 ВтмикроваттмкВтµW
10
9
Вт
гигаваттГВтGW10−9 ВтнановаттнВтnW
1012 ВттераваттТВтTW10−12 ВтпиковаттпВтpW
1015 ВтпетаваттПВтPW10−15 ВтфемтоваттфВтfW
1018 ВтэксаваттЭВтEW10−18 ВтаттоваттаВтaW
1021 ВтзеттаваттЗВтZW10−21 ВтзептоваттзВтzW
1024 ВтиоттаваттИВтYW10−24 ВтиоктоваттиВтyW
     применять не рекомендуется
Обозначения в Юникоде.[4]
СимволНазваниеНомер Юникода
Пиковатт (Square PW)U+33BA
Нановатт (Square NW)U+33BB
Микроватт (Square Mu W)U+33BC
Милливатт (Square MW)U+33BD
Киловатт (Square KW)U+33BE
Мегаватт (Square MW MEGA)U+33BF
ВеличинаОписание
10−9 ваттИзлучение мощностью примерно в 1 нВт падает на участок поверхности Земли площадью 1 м² от звезды яркостью в +1,4 звёздной величины.
5⋅10−3 ваттТакую мощность (или близкую к ней) имеет излучение обычных лазерных указок, сравнительно безопасное для человеческого зрения.
1 ваттПримерная мощность передатчика обычного мобильного телефона.
1⋅103 ваттНебольшой обогреватель. Примерная мощность излучения, падающего на 1 м2 поверхности Земли от Солнца, находящегося в зените. Средняя годовая мощность, потребляемая одним домашним хозяйством в США (среднее потребление энергии — примерно 8900 кВт•ч/год)[5].
6⋅104 ваттЛегковой автомобиль с двигателем в 80 лошадиных сил.
1,2⋅107 ваттЭлектропоезд Eurostar.
8,212⋅109 ваттМощность при пиковых нагрузках крупнейшей в мире АЭС Касивадзаки-Карива (Касивадзаки, Япония).
2,24⋅1010 ваттПроектная мощность крупнейшей в мире ГЭС «Три ущелья» (Санься, Китай).
1012 ваттПиковая мощность среднего удара молнии.
1,9⋅10
12
ватт
Средняя оценочная электрическая мощность, потреблявшаяся человечеством в 2007 году[6].
1,5⋅1015 ваттРекордная мощность импульсного лазерного излучения, достигнутая на установке Nova в 1999 году[7]. Энергия в импульсе составляла 660 Дж, длительность импульса — 440⋅10−15 с.
1,74⋅1017 ваттИсходя из среднего значения облучённости на поверхности Земли в 1,366 кВт/м²[8] общий поток солнечного излучения на поверхности Земли составляет примерно 174 ПВт. Если бы Земля не переизлучала эту энергию в пространство, она становилась бы массивнее на 1,94 кг каждую секунду.
3,828⋅1026 ваттПолная мощность излучения Солнца оценивается учёными в 382,8 ИВт, что более чем в два миллиарда раз больше, чем мощность излучения, падающего на поверхность Земли. Другими словами, вследствие термоядерных реакций в центре Солнца наше светило ежесекундно теряет массу в размере 4 260 000 тонн
[9]
.

Разница между понятиями киловатт и киловатт-час[править | править код]

Из-за схожих названий киловатт и киловатт-час часто путают в повседневном употреблении, особенно когда это относится к бытовым электроприборам. Следует, однако, учитывать, что это две различных единицы измерения, относящиеся к различным физическим величинам. В ваттах и киловаттах измеряется мощность — скорость изменения (передачи, преобразования, потребления) энергии. В то же время ватт-час и киловатт-час являются единицами измерения самой энергии (работы). В ватт-часах и киловатт-часах выражается энергия, произведённая (переданная, преобразованная, потреблённая) за определённое время. Если мощность прибора постоянна, то произведённая (переданная, преобразованная, потреблённая) прибором энергия равна произведению мощности прибора на время работы прибора.

Например, если лампочка мощностью 100 Вт работала на протяжении 1 часа, то она потребила (входящая энергия) и выделила в виде света и тепла (исходящая энергия) 100 Вт·ч или 0,1 кВт·ч. 40-ваттная лампочка потребит (выделит) такое же количество энергии за 2,5 часа. Сказанное справедливо и для производимой электроэнергии. Так, мощность электростанции измеряется в киловаттах (мегаваттах), но количество поставленной потребителям в течение некоторого времени электроэнергии равно произведению мощности электростанции на упомянутое время и выражается в киловатт-часах (мегаватт-часах).

Сказанное справедливо для любого вида энергии: электрической, тепловой, механической, электромагнитной и так далее.

ru.wikipedia.org

обозначение и аббревиатура, правильное написание и отличие от кВтч

Электрический ток необходим человечеству. Он существенно облегчает жизнь и подчиняется определенным физическим законам. У его характеристик есть единицы измерения. Кроме того, некоторые из них используются для учета расхода электроэнергии. Киловатт — производная единица измерения мощности электрической энергии.

Общие сведения

Название единицы измерения мощности электрического тока произошло от фамилии шотландского инженера-изобретателя Джеймса Уатта (1736−1819 гг.), который известен всему миру. Он изобрел паровую машину. Мощность электрического тока измеряется в ваттах (Вт).

Каждый электрический прибор обладает определенной мощностью и потребляет какое-то количество электрической энергии. Ее величина измеряется в ваттах, а для мощных потребителей — в киловаттах. Однако некоторые люди не понимают, что киловатт и киловатт-час являются двумя различными единицами измерения. В этом случае нужно рассмотреть физический смысл основных физических величин, определяющих их: силу тока, напряжение (разность потенциалов), сопротивление (электропроводимость), время работы электрооборудования.

Сила тока

Сила тока — количество электрического заряда, проходящего через проводник за единицу времени. Обозначается величина литерой «I» и измеряется в амперах. Она находится расчетным методом или измеряется при помощи электронно-измерительного прибора, который называется амперметром. Он подключается последовательно к нагрузке. Физический смысл силы тока в 1 А следующий: прохождение количества электрического заряда Qз, равное 1 кулону, через площадь поперечного сечения за 1 секунду. 1 Кл примерно равен 6,241*10 18 отрицательно заряженных частиц (электронов). Формула зависимости силы тока от Qз и времени (t) следующая: I = Qз / t.

Производные единицы измерения: 1 мА (0,001 А) и 1 кА (1000 А). Для удобства расчетов применяются сокращенные названия или аббревиатуры. Ток классифицируется на постоянный и переменный. Постоянный ток не изменяет направление протекания через проводник, но его амплитуда и величина могут меняться. Переменный ток изменяет направление и амплитуду по определенному закону. Его основной характеристикой является частота.

Согласно закону, происходит разделение на синусоидальный и несинусоидальный виды. В первом случае графиком является синусоида, которая зависит от амплитудного значения (Iмакс) и угловой частоты (w). Закон изменения тока с течением времени (t) записывается таким образом: i = Iмакс * sin (w * t). Параметр угловой частоты зависит от частоты тока (f): w = 2 * Пи * f. В этом соотношении величина Пи является значением, приблизительно равным 3,141592653589793238462643.

К току, изменяемому по несинусоидальному закону, относятся любые законы, в которых отсутствует функция синуса (sin). Очень часто в проектировании преобразователей можно встретить ток трапецеидальной и прямоугольной форм. Определить закон изменения электротока можно с помощью осциллографа, дающего его графическое представление. Необходимо учитывать, что ток является векторной величиной, поскольку имеет направление.

Разность потенциалов

Любое вещество состоит из атомов. Каждый атом обладает нейтральным зарядом и содержит элементарные или субатомные частицы: протоны, электроны и нейтроны. Суммарный положительный заряд протонов (Qp) и отрицательный заряд всех электронов (Qe) компенсируют друг друга (Qp = Qe). При воздействии на вещество внешних сил возможны случаи «захвата» атомом другого электрона, находящегося в составе другого атома. В результате чего атом, «захвативший» «чужой электрон», обладает отрицательным зарядом, поскольку в нем количество электронов преобладает над численным показателем числа протонов (Qe>Qp).

Атом, «потерявший» отрицательно заряженную субатомную частицу, называется положительным ионом, поскольку он обладает положительным зарядом (Qp>Qe). Пытаясь восстановить «потерю», он притягивает к себе отрицательную элементарную частицу соседнего атома. Физический процесс обмена частицами продолжается до тех пор, пока значение внешней силы не будет стремиться к 0 (она будет недостаточной для «вырывания» электрона).

При потере или притяжении частицы образуется электромагнитное поле. Его составляющая зависит от заряда иона и бывает положительной или отрицательной. Разность между составляющими разноименных зарядов называется разностью потенциалов или напряжением. Чем больше разность, тем больше величина напряжения. Оно измеряется в вольтах (В, V) и обозначается буквой U. Замерять его значение можно с помощью вольтметра или осциллографа.

Вольтметр подключается параллельно к участку, на котором следует произвести измерение. Кроме того, U рассчитывается по формулам. Электрическое напряжение — работа электромагнитного поля, выполняемая при перемещении точечного заряда из одной точки в другую. Напряжение, равное 1 В — разность потенциалов между двумя точечными положительным и отрицательным зарядами в 1 Кл, на перемещение которых затрачивается энергия электромагнитного поля в 1 Дж. Производными единицами являются следующие: 1 kV = 1000 V, 1 MV = 1000000 V, 1 mV = 0,001 V.

Электрическая проводимость материала

Электрическое сопротивление зависит от электронной конфигурации вещества. Информацию о ней можно получить из периодической таблицы Д. И. Менделеева. По электронной конфигурации вещества можно классифицировать на следующие типы:

  1. Проводники.
  2. Полупроводники.
  3. Диэлектрики (изоляторы).

К проводникам относятся все металлы, электролитические растворы и ионизированные газы. Высокая проводимость обусловлена наличием свободных носителей заряда. В металлах их роль выполняют свободные электроны. Носителями заряда в электролитических растворах являются анионы и катионы. Первые обладают положительным, а вторые — отрицательным зарядами. Во время протекания электротока через раствор (электролиз) анионы притягиваются отрицательно заряженным катодом, а катионы — анодом, обладающим положительным зарядом. В ионизированном газе носителями заряда являются свободные электроны и положительно заряженные ионы.

Взаимодействие атомов между собой происходит при росте температуры. Происходит разрушение кристаллической решетки проводника, вследствие которого появляются дополнительные свободные электроны. Заряженные частицы, протекающие по проводнику, взаимодействуют с ними и замедляют свое движение.

Если электромагнитное поле действует постоянно, то частицы снова возобновляют свое движение. Они снова взаимодействуют с узлами кристаллической решетки. Этот процесс называется электрической проводимостью или сопротивлением вещества. При повышении температуры его величина возрастает.

К полупроводникам относятся вещества, проводящие электроток только при определенных условиях. При внешнем воздействии происходит уменьшение кулоновской силы притяжения субатомных частиц ядром. Электрон «отрывается» и становится свободным, а на его месте образуется дырка. В результате этого происходит образование положительного электромагнитного поля, которое притягивает соседний электрон, а на его месте образуется дырка. Процесс повторяется, и, в результате этого происходит движение электронов и дырок. Величина электропроводимости материала зависит не только от температуры, но и от других показателей:

  1. Геометрических параметров.
  2. Тип материала.
  3. Параметры электротока (напряжение, сила и тип тока).

Геометрическими параметрами проводника или полупроводника являются следующие: длина и площадь поперечного сечения. Некоторые вещества вообще не проводят электричество, они называются изоляторами или диэлектриками. В них вообще отсутствуют свободные носители заряда. Принятое обозначение сопротивления литерой «R» и измерение в Омах (сокращение — Ом), а также в таких производных единицах: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом. Измеряется при помощи омметра или вычисляется расчетным методом.

Мощность электричества

Количество работы, совершаемой электрическим током за единицу времени, называется мощностью. Она преобразуется в различные виды энергий: механическую, тепловую и т. д. В цепях с постоянным и переменным токами она вычисляется различными способами. В большинстве случаев ее рассчитывать нет необходимости, поскольку она указывается на электрооборудовании (на корпусе и в документации). Расчет необходим только при проектировании устройств.

Основные соотношения

В цепи постоянного тока формула мощности записывается таким образом: P = I * U. Существуют и другие соотношения, получаемые из закона Ома (I = U / R):

  1. Для участка цепи: P = sqr (I) * R = sqr (U) / R.
  2. Для полной цепи (с учетом ЭДС — e) равенство записывается следующим образом: P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. P = I * (e + (I * Rвн)).

Во втором случае формулу нужно применять при условии, что в цепи присутствует электрический двигатель или выполняется зарядка аккумулятора, т. е. происходит потребление электроэнергии. При наличии в электроцепи генератора или гальванического элемента, поскольку происходит отдача энергии, следует применять последнюю формулу. Эти соотношения невозможно применять для цепей, которые потребляют переменный ток. Основная причина — его характеристики, которые меняются с течением времени по определенному закону.

В физике существуют три вида мощностей, которые зависят от элементов: активная (резистор), реактивная (емкость и индуктивность) и полная. Активная мощность вычисляется при помощи следующей формулы: Pа = I * U * cos (a). В соотношении учитываются значения U и I, которые являются среднеквадратичными, а также косинус угла сдвига фаз между ними. Реактивная мощность находится аналогично, только вместо косинуса следует использовать синус: Qр = I * U * sin (a). При индуктивной нагрузке в цепи значение Qp>0, а при емкостной Qp<0. Единицей измерения мощности в международной системе исчислений (СИ) является ватт (сокращенно Вт).

Физический смысл ватта

Физический смысл ватта следующий: расход электроэнергии за определенное время. Следовательно, 1 Вт — расход 1 джоуля (Дж) электрической энергии за 1 секунду. Иными словами, киловаттный чайник потребляет 1000 Дж электрической энергии за единицу времени. Для удобства выполнения расчетов используются специальные приставки: милливатт (мВт, mwatt), киловатт (кВт или kwatt), мегаватт (МВт, Mwatt), гигаватт (ГВт, Gwatt) и т. д.

Ватт связан следующим равенством с другими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr (c)) = 1 Н * м / с = 746 л. с. Последнее значение является электрической лошадиной силой. Численные значения приставок можно найти в технических справочниках, а также в интернете. Например, 1 кВт равен 1000 Вт. Приставка «к» обозначает, что следует число, стоящее перед ней, умножить на 1000. Для того чтобы перевести 1 МВт, следует умножить число на значение приставки: 1 * 1000000 = 1000000 Вт = 1000 кВатт. Если необходимо перевести Вт в кВт, то нужно количество ватт разделить на 1000.

Для учета расхода количества электроэнергии принята единица, которая называется ватт-час (Втч). Величины Втч и Вт отличаются. Ватт — мощность, а Ватт-час расшифровывается, как количество электроэнергии, потребляемое за единицу времени. Очень важно правильно писать и расшифровывать последнюю величину Вт*ч (умножение, а не деление). Разницу между Вт и ВТч возможно определить и расчетным методом. Например, необходимо рассчитать потребление электроэнергии за 30 минут электроприбором мощностью 2,5 кВт. Порядок вычисления следующий:

  1. Следует перевести время в часы: 30/60 = 0,5 (ч).
  2. Выполнить расчет по формуле: Pч = P * t = 2,5 * 0,5 = 1,25 (киловатт-час пишется — кВт*ч).

Расшифровка результата вычисления значит, что за 30 минут прибор потребит 1,25 кВт*ч или 1250 Вт (1,25 * 1000 = 1250). Если нужно рассчитать количество потребляемой мощности лампой накаливания мощностью в 100 Вт за 20 часов, то нужно подставить значения в формулу: 100 * 20 = 2 кВт*ч.

Таким образом, мощность и количество потребляемой электрической энергии являются различными физическими величинами, которые довольно просто рассчитываются. Вычисления помогают определить количество электроэнергии и помогают в экономии денежных средств.

rusenergetics.ru

Определение мощности электрического тока

Мощность электрического тока – один из основных параметров, определяющих работу электроцепи, наряду с напряжением и силой тока. Этот показатель всегда присутствует в технических характеристиках двигателей, трансформаторов, генераторов.

Генератор на электростанции

Определение

Чтобы понять, что такое мощность тока, надо определить его работу, так как они неразрывно связаны. Работа электротока заключается в энергопреобразовании из электрического вида в тепловой, кинетический и т. д. Мерилом этой энергии является работа. А мощность электрического тока – это скорость, с которой происходят преобразования. Формулой можно выразить:

P = A/t.

В чем измеряется мощность тока, проистекает из формулы, – Дж/с. Получилась единица измерения, называемая ватт (Вт). Другая единица измерения мощности, часто применяемая в энергетике, – следствие из другой формулы:

P = U*I.

Это вольтампер (ВА) и производные от нее кВА, мВА.

Важно! Благодаря последней формуле, можно заметить, что идентичную мощность электрического тока возможно получить при повышенном напряжении и маленьком токе либо при перемене местами количественного значения этих показателей. Так как при большом токе потери выше, эту зависимость используют, передавая электроэнергию по высоковольтным ЛЭП на значительные дистанции.

В электроцепях на постоянном токе существует один вид мощности, измеряемый в ваттах. Электрическая мощность, используемая при расчетах электросетей переменного тока, может быть:

  • активная;
  • реактивная;
  • полная;
  • комплексная.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

P = U*I cos φ,

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Реактивная

Реактивная мощность электрического тока применяется для оценки количественного показателя емкостной и индуктивной нагрузки на сеть.

Формула расчета:

Q = U*I sin φ.

Для реактивной мощности электрического тока применяют единицу измерения вольтампер реактивный (ВАр, кВАр, мВАр).

Реактивная часть появляется при расчете мощности в электрической цепи, к которой подключена индуктивность или емкость:

  1. Индуктивность – это любая катушка: трансформаторная, реакторная, обмотки электродвигателя и т. д. Из-за происходящих процессов самоиндукции электрическая энергия не вся преобразовывается в другой вид, а определенное количество возвращается в сеть. Так как вектор ее смещен по фазе, сеть работает с перегрузкой;
  2. Конденсатор, представляющий собой емкость, работает аналогичным образом, но смещение вектора возвращаемой энергии находится в противофазе по сравнению с индуктивным.

Важно! Для повышения качества электроэнергии и более эффективной работы электросетей свойство индуктивности и емкости работать в противофазе используется для компенсации реактивной энергии (применение конденсаторных батарей).

Конденсаторные батареи

Полная

Зная активную и реактивную составляющую, можно определить, чему равна полная мощность электрического тока. Хотя она не характеризует потребление энергии по факту, расчеты необходимы для определения нагрузки на компоненты электросетей: воздушные и кабельные линии, коммутационные аппараты, трансформаторы.

Формула расчета:

S = U*I, результат измеряется в вольтамперах.

Если использовать для расчета активную и реактивную составляющую, то полное мощностное значение определяется извлечением квадратного корня из суммы их квадратов.

Как измеряется

Количественный мощностной показатель измеряется несколькими способами с помощью разных приборов:

  • ваттметры, варметры для прямых замеров;
  • амперметры и вольтметры для косвенных замеров;
  • фазометр, позволяющий оценить влияние реактивной составляющей.

Прямые замеры

Служат для прямого измерения активного и реактивного мощностного показателя. Все ваттметры и варметры делятся на:

  1. Аналоговые. Существуют стрелочные приборы и с самопишущими устройствами. На них отображается активная мощностная величина. Состоят из неподвижной катушки, включенной в цепь последовательно, и подвижной с параллельным подключением. Стрелка отклоняется от взаимного влияния создаваемых магнитных полей;
  2. Цифровые. Содержат микропроцессоры, вычисляющие значения активной и реактивной составляющих на основе измерений тока и напряжения.

Цифровой варметр

Существуют трехфазные и однофазные приборы, многофункциональные ваттметры для замеров других параметров: частоты, силы тока, напряжения.

Косвенные замеры

При косвенных замерах в цепь подключается амперметр и вольтметр, снимаются их показания, затем, подставляя их в формулическое выражение, вычисляется количественный мощностной показатель.

Фазометры

Замерить коэффициент, на который умножается активная мощность, cos φ, можно с помощью фазометра, что позволяет оценить влияние реактивного компонента.

Аналоговое устройство работает по тому же принципу, что и идентичный ваттметр. Только шкала проградуирована в значениях cos φ. Подключение прибора производится к одним клеммам последовательно, к другим –параллельно, чтобы измерять напряжение и электроток. В трехфазных устройствах надо подсоединить все фазы.

Высокоточные цифровые приборы содержат детекторы, непосредственно сравнивающие фазы, и микропроцессоры, обрабатывающие информацию.

Фазометры нашли широкое применение при регулировании работы генераторов и синхронных электродвигателей:

  1. У синхронного электродвигателя cos φ зависит от возбуждающего тока. При регулировании его функционирования в режиме отдачи реактивной составляющей, чтобы уменьшить ее негативное влияние, используют фазометр;
  2. В генераторах применяется ручное регулирование cos φ с целью поддержания стабильности его параметров в пусковых режимах. Если нагрузка индуктивная, и cos φ в индуктивной зоне шкалы снижается, возможен опасный нагрев статорной обмотки. При нахождении cos φ в емкостной зоне генератор работает на потребление тока, что недопустимо.

Фазометр

Регулирование cos φ

Если cos φ понижается, то в сети увеличиваются потери, а полезная часть работы по преобразованию электроэнергии уменьшается. Соответственно, растет потребление из сети. При этом напряжение падает.

Важно! Для обеспечения наилучшего соотношения параметров электросети необходимо поддерживать cos φ на уровне 0,95 в индуктивной части шкалы фазометра.

Для компенсации индуктивной нагрузки, уменьшающей cos φ, на электрических подстанциях устанавливают конденсаторные батареи. Когда индуктивная составляющая падает значительно, батареи отключаются. Иногда это реализуется в автоматическом режиме. Отслеживание cos φ производится по фазометру.

Расчеты разных видов мощности показывают, насколько работа сети надежна и эффективна, позволяют оценить потери в количественном выражении.

Видео

Оцените статью:

jelectro.ru

Мощность электрического тока — что это, единица измерения и характеристика

Давно известно, что на белом свете существуют Крохи, которые спрашивают своих пап не только о том, что такое хорошо и что такое плохо, но и о чем угодно. Поэтому очень может быть, что Кроха постарше может поинтересоваться, почему на обогревателе написано 2000 W. Умеющие читать Крохи, их папы, да и многие другие читатели, которые подзабыли азы физики, найдут далее информацию, освежающую их память. В частности, напомним, в чем измеряется мощность и как называется единица измерения мощности электричества.

Мощность вокруг нас

Теперь повсюду, где живут люди, есть электроприборы. На каждом из них указана потребляемая мощность. В техническом паспорте или руководстве по эксплуатации встречаются уточняющие слова — электрическая мощность. Это определение воспринимается как-то абстрактно и не жизненно, обезличенно. Ведь если в жизни случаются какие-либо проявления энергии и, соответственно, мощности, для которой чаще используется слово «мощь», всегда понятно, с кем или с чем все это связано.

Самые известные электроприборы с большой мощностью электротока

Например, с гор сошел селевой поток, который всей своей мощью обрушился на такой-то городок. Сразу понятно — селевой поток мощный, обладает разрушительной силой, и понятие мощности связано именно с ним, с его движением, с тем, из чего он состоит. А вот электрическая мощность с кем или с чем связана? Поскольку мы все с детства знаем про опасность электрической розетки, в первую очередь обращаешь внимание на напряжение. И действительно: раз для работы электроприборов необходимо напряжение в розетке, значит, можно сказать, что мощность электричества — это мощность напряжения.

Но если около розетки стоит обогреватель, и его штепсель не в ней, он не дает тепла. Однако напряжение в розетке все же есть. И ничего при этом не происходит. Значит, определение «мощность напряжения» неправильное. Выделение тепла и другие проявления электрической мощности всегда связаны с появлением между точками с различными электрическими потенциалами какого-либо проводника и токовыми процессами в нем. Их интенсивность напрямую связана с выделением тепла и света, которое имеет своим наглядным примером молнию и гром.

Следовательно, электрическая мощность — это мощность тока, а не напряжения. И неспроста в электричество ввели такое определение, как электроток. Несмотря на то, что невозможно увидеть внешний вид электротока, в отличие от потока жидкости, между ними много сходства. Так же, как и у селевого потока, существует сила тока. Но ее природа иная. Эта сила не обладает прямым механическим воздействием. Однако, как демонстрируют разные электрические машины и электроприборы, сила тока способна на многое.

Это «многое» можно обозначить тремя основными результатами, которые дает мощность электрического тока:

  • тепло;
  • свет;
  • электромагнитные поля.

Чтобы выполнять расчеты, а также измерения мощности электрического тока, были приняты единицы измерения мощности тока. Их назвали именем английского физика Джеймса Уатта в 1882 году. Этот ученый занимался изучением процессов, которые связаны с выполнением различных видов работы как физической величины. С тех пор в ходу 1 ватт, который в сокращении обозначается как Вт и W. Если кто-то подзабыл, что к чему относится в физике, напоминаем: мощность равна работе, выполненной за единицу времени.

Как в электричестве связана работа и мощность

А чтобы не напрягаться написанием большого числа нулей для больших значений электрической мощности, перед Вт пишут:

  • кило, в сокращении кВт — вместо трех нулей;
  • мега, соответственно, мВт — вместо шести нулей;
  • гига, гВт — вместо девяти нулей.

И так далее в соответствии с используемыми множителями и словами-аналогами числа нулей.

Мощность тока Измеряем мощность электротока

Такая многоликая мощность…

Во времена Уатта электротехника только начинала свое развитие, и по этой причине физика была заметно проще, чем сегодня. Постоянный электроток был изучен в значительно большей мере, чем переменный. Для вычислений при постоянном электротоке была обоснована формула:

p=u*i,

в которой присутствуют мощность p, напряжение u и электроток i. Но существует и переменный электроток. Исследования показали, что мощность p из формулы для постоянного тока не соответствует реальности. На переменном токе проявляются совершенно иные новые свойства мощности тока. Их результат невидим и не ощутим без специальных измерений и приборов. На переменном токе появляется мощность, связанная с созданием электромагнитных полей в катушках индуктивности, а также электростатических полей в конденсаторах.

В этом и была причина несоответствия выражению мощности p=u*i. Пришлось вводить отдельный ее учет на переменном токе. Для нее была принята единица — вар (если сокращенно). По аналогии с постоянным током это означает вольт – ампер реактивный (полное название).

Более подробное изложение относительно переменного тока выходит за рамки текущего повествования. Да и Крохи, скорее всего, будут уже крепко спать примерно на половине нашей статьи. Перегрузка информацией действует как снотворное. Поэтому мощность переменного тока — это уже совсем другая история…

Похожие статьи:

domelectrik.ru

Основные электрические величины и единицы их измерения

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

ВеличинаЕдиница измерения в СИНазвание электрической величины
qКл — кулонзаряд
RОм – омсопротивление
UВ – вольтнапряжение
IА – амперСила тока (электрический ток)
CФ – фарадЕмкость
LГн — генриИндуктивность
sigmaСм — сименсУдельная электрическая проводимость
e08,85418781762039*10-12 Ф/мЭлектрическая постоянная
φВ – вольтПотенциал точки электрического поля
PВт – ваттМощность активная
QВар – вольт-ампер-реактивныйМощность реактивная
SВа – вольт-амперМощность полная
fГц — герцЧастота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множительПроизношениеОбозначение (русское/международное)
10-30куэктоq
10-27ронтоr
10-24иоктои/y
10-21зептоз/z
10-18аттоa
10-15фемтоф/f
10-12пикоп/p
10-9нанон/n
10-6микромк/μ
10-3миллим/m
10-2сантиc
10-1децид/d
101декада/da
102гектог/h
103килок/k
106мегаM
109гигаГ/G
1012тераT
1015петаП/P
1018экзаЭ/E
1021зетаЗ/Z
1024йоттаИ/Y
1027роннаR
1030куэккаQ

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

1кА = 1000А

1мА = 0,001А

1мкА = 0,000001А

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

1В=1Вт/1А.

В практике встречаются

1кВ = 1000В

1мВ = 0,001В

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

I=U/R

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф = 1Кл/1В

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

1пФ = 0,000000000001Ф

1нФ = 0,000000001Ф

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн = (В*с)/А

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

1мГн = 0, 001Гн

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Электропроводность измеряется в сименсах.

1См = Ом-1

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Электрический ток — Википедия

У этого термина существуют и другие значения, см. Ток.

Электри́ческий ток — направленное (упорядоченное) движение частиц или квазичастиц — носителей электрического заряда[1][2][3].

Такими носителями могут являться: в металлах — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определённых условиях — электроны, в полупроводниках — электроны или дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля[4].

Электрический ток имеет следующие проявления:

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический ток проводимости. Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют конвекционным[3].

Различают постоянный и переменный электрические токи, а также всевозможные разновидности переменного тока. В таких понятиях часто слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени.
  • Переменный ток — электрический ток, изменяющийся во времени[5]. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности[5].
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени[5]. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону[6]. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — «относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов» (БСЭ)[7]. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.[7] Электромагнитные возмущения распространяются по электрической цепи со скоростью света, поэтому для периодически изменяющихся токов условие квазистационарности имеет вид: τ=lc≪T{\displaystyle \tau ={\frac {l}{c}}\ll T}, где l{\displaystyle l} — характерные размеры электрической цепи, c{\displaystyle c} — скорость света, T{\displaystyle T} — период изменений. Например, ток промышленной частоты 50 Гц квазистационарен для цепей протяженностью до 100 км.[8]
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля[5].
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления[5].

Вихревые токи[править | править код]

Вихревые токи (токи Фуко) — «замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока»[10], поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.[2].

Дрейфовая скорость электронов[править | править код]

Скорость (дрейфовая) направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм[11] — в 20 раз меньше скорости улитки[источник не указан 1089 дней]. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока[править | править код]

Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.

Сила тока — физическая величина, равная отношению количества заряда ΔQ{\displaystyle \Delta Q}, прошедшего за некоторое время Δt{\displaystyle \Delta t} через поперечное сечение проводника, к величине этого промежутка времени.

I=ΔQΔt.{\displaystyle I={\frac {\Delta Q}{\Delta t}}.}

Сила тока в Международной системе единиц (СИ) измеряется в амперах (русское обозначение: А; международное: A).

По закону Ома сила тока I{\displaystyle I} на участке цепи прямо пропорциональна напряжению U{\displaystyle U}, приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению R{\displaystyle R}:

I=UR.{\displaystyle I={\frac {U}{R}}.}

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна. Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.[12]

Плотность тока — вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде j→{\displaystyle {\vec {j}}} пропорциональна напряжённости электрического поля E→{\displaystyle {\vec {E}}} и проводимости среды  σ{\displaystyle \ \sigma }:

j→=σE→.{\displaystyle {\vec {j}}=\sigma {\vec {E}}.}

Мощность[править | править код]

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление — сопротивление теплообразованию;
  • реактивное сопротивление — «сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно)» (БСЭ)[13].

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

P=IU=I2R=U2R{\displaystyle P=IU=I^{2}R={\frac {U^{2}}{R}}}

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь p{\displaystyle p} определяется скалярным произведением вектора плотности тока j→{\displaystyle {\vec {j}}} и вектора напряжённости электрического поля E→{\displaystyle {\vec {E}}} в данной точке:

p=(j→E→)=σE2=j2σ{\displaystyle p=\left({\vec {j}}{\vec {E}}\right)=\sigma E^{2}={\frac {j^{2}}{\sigma }}}

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны λ{\displaystyle \lambda }, зависимость сопротивления от длины волны и проводника относительно проста:

R=3200(Lλ){\displaystyle R=3200\left({\frac {L}{\lambda }}\right)}

Наиболее применяемому электрическому току со стандартной частотой 50 Гц соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота[править | править код]

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются[12]. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения[править | править код]

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения jD→{\displaystyle {\vec {j_{D}}}} — векторная величина, пропорциональная скорости изменения электрического поля E→{\displaystyle {\vec {E}}} во времени:

jD→=ε0∂E→∂t{\displaystyle {\vec {j_{D}}}=\varepsilon _{0}{\frac {\partial {\vec {E}}}{\partial t}}}

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения ID{\displaystyle I_{D}} в конденсаторе определяется по формуле:

ID=dQdt=−CdUdt{\displaystyle I_{D}={\frac {{\rm {d}}Q}{{\rm {d}}t}}=-C{\frac {{\rm {d}}U}{{\rm {d}}t}}},

где Q{\displaystyle Q} — заряд на обкладках конденсатора, U{\displaystyle U} — разность потенциалов между обкладками, C{\displaystyle C} — ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока»[14]. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.[3]

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин[15]. В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю[16]. Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10−12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А[17].

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии[править | править код]

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине[править |

ru.wikipedia.org

В чем измеряется механическая мощность, разновидность единиц измерения

Ещё в 18 веке мощность стали считать в лошадиных силах. До сих пор эта физическая величина употребляется для обозначения силы двигателей. Рядом с показателем мощности двигателя внутреннего сгорания в ваттах продолжают писать значение в л.с.

Данные о силе двигателя

Мощность как физическая величина, формула мощности

Значение, показывающее, как быстро происходят преобразование, трансляция или потребление энергии в какой-либо системе, – мощность. Для характеристик энергетических условий важно, насколько быстро выполняется процесс. Работа, реализуемая в единицу времени, именуется мощностью:

P = А/t,

где:

  • А – работа;
  • t – время.

Можно учитывать отдельно мощность в механике и электрическую мощность.

Чтобы получить ответ на вопрос: в чем измеряется механическая мощность, рассматривают действие силы на движущееся тело. Сила проделывает работу, мощность в таком случае определяется по формуле:

N = F*v,

где:

  • F – сила;
  • v – скорость.

При вращательном движении эту величину определяют с учётом момента силы и частоты вращения, «об./мин.».

Зависимость между электрическим током и мощностью

В электротехнике работой будет U – напряжение, которое перемещает 1 кулон, количество перемещаемых в единицу времени кулонов – это ток (I). Мощность электротока или электрическую мощность P получают, умножив ток на напряжение:

P = U*I.

Это полная работа, выполненная за 1 секунду.  Зависимость здесь прямая. Изменяя ток или напряжение, изменяют мощность, расходуемую устройством.

Одинакового значения Р добиваются, варьируя одну из двух величин.

Определение единицы измерения мощности тока

Единица измерения мощности тока носит имя Джеймса Ватта, шотландского инженера-механика. 1 Вт – это мощность, которую вырабатывает ток 1 А при разности потенциалов 1 В.

К примеру, источник при напряжении 3,5 В создаёт в цепи ток 0,2 А, тогда мощность тока получится:

P = U*I = 3,5*0,2 = 0,7 Вт.

Внимание! В механике мощность принято изображать буквой N, в электротехнике – буквой P. В чем измеряется n и P? Независимо от обозначения, это одна величина, и измеряется она в ваттах «Вт».

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность?  Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила».  В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Формула взаимосвязи между мощностью, напряжением и силой тока

В электротехнике работу рассматривают как некоторое количество энергии, отдаваемое источником питания на действие электроприбора в период времени. Поэтому электрическая мощность есть величина, описывающая быстроту трансформации или передачи электроэнергии. Её формула для постоянного тока выглядит так:

P = U*I,

где:

  • U – напряжение, В;
  • I – сила тока, А.

Для некоторых случаев, пользуясь формулой закона Ома, мощность можно вычислить, подставив значение сопротивления:

P = I*2*R, где:

  • I – сила тока, А;
  • R – сопротивление, Ом.

В случае расчётов мощности цепей переменного тока придётся столкнуться с тремя видами:

  • активная её формула: P = U*I*cos ϕ, где – коэффициент угла сдвига фаз;
  • реактивная рассчитывается: Q = U*I*sin ϕ ;
  • полная представлена в виде: S = √P2 + Q2, гдe P – aктивная, а Q2 – реактивная.

Расчёты для однофазной и трёхфазной цепей переменного тока выполняются по разным формулам.

Важно! Потребители электроэнергии на предприятиях в большинстве асинхронные двигатели, трансформаторы и другие индуктивные приёмники. При работе они используют реактивную мощность, а та, протекая по линиям электропередач, приводит ЛЭП к дополнительной нагрузке. Чтобы повысить качество энергии, используют компенсацию реактивной энергии в виде конденсаторных установок.

Приборы для измерения электрической мощности

Провести измерения мощности позволяет ваттметр. У него две обмотки. Одна включается в цепь последовательно, как амперметр, вторая параллельно, как вольтметр. В установках электроэнергетики ваттметры определяют значения в киловатт-час «кВт*час». В измерениях нуждается не только электрическая, а также лазерная энергия. Приборы, способные измерять этот показатель, изготавливаются как стационарного, так и переносного исполнения. С их помощью оценивают уровень  лазерных излучений оборудования, применяющего этот вид энергии. Один из портативных измерителей – LP1, японского производителя. LP1 разрешает напрямую определять значения силы светового излучения, к примеру, в визуальном пятне оптических устройств проигрывателей DVD.

Прибор для измерения электрической мощности

Мощность в бытовых электрических приборах

Для нагрева металла нити накаливания лампочки, увеличения температуры рабочей поверхности утюга или иного бытового прибора, тратится определённое количество электроэнергии. Её величину, отбираемую нагрузкой за час, считают потребляемой мощностью этого аппарата.

Внимание! Если на лампочке написано «40 W, 230 V», это значит, что за 1 час она потребляет из сети переменного тока 40 Вт. Зная количество лампочек и параметры, подсчитывают, сколько энергии тратится на освещение комнат в месяц.

Как перевести ватты

Так как ватт величина маленькая, в быту оперируют киловаттами, пользуются системой перевода величин:

  • 1 Вт = 0,001 кВт;
  • 10 Вт = 0,01 кВт;
  • 100 Вт = 0,1 кВт;
  • 1000 Вт = 1 кВт.

Мощность некоторых электрических приборов, Вт

Средние значения потребления электроэнергии бытовых устройств:

  • плиты – 110006000 Вт;
  • холодильники – 150-600 Вт;
  • стиральные машины – 1000-3000 Вт;
  • пылесосы – 1300-4000 Вт;
  • электрочайники – 2000-3000 Вт.

Электрические параметры, указанные на бытовом приборе

Параметры каждого бытового прибора указываются в паспорте, а также обозначаются на корпусе. Там определены точные значения для информации потребителя.

Видео

amperof.ru

0 comments on “Мощность тока измеряется в – Электрическая мощность — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *