Напряженность магнитного поля в чем измеряется: Напряжённость магнитного поля — Википедия

Напряжённость магнитного поля — Википедия

Материал из Википедии — свободной энциклопедии

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно обозначается символом Н.

В Международной системе единиц (СИ):

H = 1 μ 0 B − M , {\displaystyle \mathbf {H} ={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} ,}

где μ 0 {\displaystyle \mu _{0}}  — магнитная постоянная.

В системе СГС:

H = B − 4 π M . {\displaystyle \mathbf {H} =\mathbf {B} -4\pi \mathbf {M} .}

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот, намагниченность M зависит линейно от приложенного магнитного поля с индукцией B:

M = α B . {\displaystyle \mathbf {M} =\alpha \mathbf {B} .}

Однако исторически принято эту линейную зависимость описывать не коэффициентом α {\displaystyle \alpha } , а используя связанные величины, магнитную восприимчивость χ {\displaystyle \chi } или магнитную проницаемость μ {\displaystyle \mu } :

M = χ 1 + 4 π χ B = μ − 1 4 π μ B . {\displaystyle \mathbf {M} ={\frac {\chi }{1+4\pi \chi }}\mathbf {B} ={\frac {\mu -1}{4\pi \mu }}\mathbf {B} .}

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля

(Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ 0 {\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля

[1]. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Примечания

  1. ↑ Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде w s u b s t {\displaystyle w_{subst}} для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля M = χ H . {\displaystyle \mathbf {M} =\chi \mathbf {H} .} Тогда w s u b s t = 1 2 H ⋅ B {\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} } (используем здесь СИ) раскрывается как
    1 2 ( 1 μ 0 B − M ) ⋅ B = 1 2 μ 0 B 2 − 1 2 M ⋅ B , {\displaystyle {\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}
    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Литература

  • Иродов И. Е. Основные законы электромагнетизма. — 2-е, стереотипное. — Москва: Высшая школа, 1991.

Ссылки


Напряжённость магнитного поля — это… Что такое Напряжённость магнитного поля?

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: где  — магнитная постоянная.

В СГС:

  • В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и H просто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля совпадает с вектором магнитной индукции с точностью до коэффициента, равного 1 в СГС и μ0 в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как например в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальное B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

См. также

Примечания

  1. Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля Тогда (используем здесь СИ) раскрывается как
    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Напряжённость магнитного поля — Википедия

Материал из Википедии — свободной энциклопедии

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно обозначается символом Н.

В Международной системе единиц (СИ):

H = 1 μ 0 B − M , {\displaystyle \mathbf {H} ={\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} ,}

где μ 0 {\displaystyle \mu _{0}}  — магнитная постоянная.

В системе СГС:

H = B − 4 π M . {\displaystyle \mathbf {H} =\mathbf {B} -4\pi \mathbf {M} .}

В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот, намагниченность M зависит линейно от приложенного магнитного поля с индукцией B:

M = α B . {\displaystyle \mathbf {M} =\alpha \mathbf {B} .}

Однако исторически принято эту линейную зависимость описывать не коэффициентом α {\displaystyle \alpha } , а используя связанные величины, магнитную восприимчивость χ {\displaystyle \chi } или магнитную проницаемость μ {\displaystyle \mu } :

M = χ 1 + 4 π χ B = μ − 1 4 π μ B . {\displaystyle \mathbf {M} ={\frac {\chi }{1+4\pi \chi }}\mathbf {B} ={\frac {\mu -1}{4\pi \mu }}\mathbf {B} .}

В системе СГС напряжённость магнитного поля измеряется в эрстедах (Э), в системе СИ — в амперах на метр (А/м). В технике эрстед постепенно вытесняется единицей СИ — ампером на метр.

1 Э = 1000/(4π) А/м ≈ 79,5775 А/м.

1 А/м = 4π/1000 Э ≈ 0,01256637 Э.

Физический смысл

В вакууме (или в отсутствие среды, способной к магнитной поляризации, а также в случаях, когда последняя пренебрежима) напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, равного 1 в СГС и μ 0 {\displaystyle \mu _{0}} в СИ.

В магнетиках (магнитных средах) напряжённость магнитного поля имеет физический смысл «внешнего» поля, то есть совпадает (быть может, в зависимости от принятых единиц измерения, с точностью до постоянного коэффициента, как, например, в системе СИ, что общего смысла не меняет) с таким вектором магнитной индукции, какой «был бы, если магнетика не было».

Например, если поле создаётся катушкой с током, в которую вставлен железный сердечник, то напряжённость магнитного поля H внутри сердечника совпадает (в СГС точно, а в СИ — с точностью до постоянного размерного коэффициента) с вектором B0, который был бы создан этой катушкой при отсутствии сердечника и который в принципе может быть рассчитан исходя из геометрии катушки и тока в ней, без всякой дополнительной информации о материале сердечника и его магнитных свойствах.

При этом надо иметь в виду, что более фундаментальной характеристикой магнитного поля является вектор магнитной индукции B. Именно он определяет силу действия магнитного поля на движущиеся заряженные частицы и токи, а также может быть непосредственно измерен, в то время как напряжённость магнитного поля H можно рассматривать скорее как вспомогательную величину (хотя рассчитать её, по крайней мере, в статическом случае, проще, в чём и состоит её ценность: ведь

H создают так называемые свободные токи, которые сравнительно легко непосредственно измерить, а трудно измеримые связанные токи — то есть токи молекулярные и т. п. — учитывать не надо).

Правда, в обычно используемое выражение для энергии магнитного поля (в среде) B и H входят почти равноправно, но надо иметь в виду, что в эту энергию включена и энергия, затраченная на поляризацию среды, а не только энергия собственно поля[1]. Энергия магнитного поля как такового выражается только через фундаментальную величину B. Тем не менее видно, что величина H феноменологически и тут весьма удобна.

Примечания

  1. ↑ Действительно, для иллюстрации рассмотрим выражение для так называемой плотности энергии поля в среде w s u b s t {\displaystyle w_{subst}} для сравнительно простого случая линейной связи намагниченности напряженности магнитного поля M = χ H . {\displaystyle \mathbf {M} =\chi \mathbf {H} .} Тогда w s u b s t = 1 2 H ⋅ B {\displaystyle w_{subst}={\frac {1}{2}}\mathbf {H} \cdot \mathbf {B} } (используем здесь СИ) раскрывается как
    1 2 ( 1 μ 0 B − M ) ⋅ B = 1 2 μ 0 B 2 − 1 2 M ⋅ B , {\displaystyle {\frac {1}{2}}({\frac {1}{\mu _{0}}}\mathbf {B} -\mathbf {M} )\cdot \mathbf {B} ={\frac {1}{2\mu _{0}}}\mathbf {B} ^{2}-{\frac {1}{2}}\mathbf {M} \cdot \mathbf {B} ,}
    где первый член — энергия магнитного поля в чистом виде, поскольку второй — совершенно очевидно энергия взаимодействия поля со средой — например с магнитными диполями парамагнетика.

Литература

  • Иродов И. Е. Основные законы электромагнетизма. — 2-е, стереотипное. — Москва: Высшая школа, 1991.

Ссылки


Единицы измерения магнитных величин

      Закон Ампера используется для установления единицы силы тока – ампер.

      Ампер – сила тока неизменного по величине, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого сечения, расположенным на расстоянии один метр, один от другого в вакууме, вызывает между этими проводниками силу в .

  ,  (2.4.1)  

Здесь ; ; ;

      Определим отсюда размерность и величину  в  СИ.

       , следовательно

,  или    .

      Из закона Био–Савара–Лапласа, для прямолинейного проводника с током , тоже можно найти размерность индукции магнитного поля:

      Тесла – единица измерения индукции в  СИ.    .

      Гаусс – единица измерения в Гауссовой системе единиц (СГС).

      1 Тл равен магнитной индукции однородного магнитного поля, в котором на плоский контур с током, имеющим магнитный момент , действует вращающий момент .

Тесла Никола (1856–1943) – сербский ученый в области электротехники и радиотехники. Имел огромное количество изобретений. Изобрел электрический счетчик, частотомер и др. Разработал ряд конструкций многофазных генераторов, электродвигателей и трансформаторов. Сконструировал ряд радиоуправляемых самоходных механизмов. Изучал физиологическое действие токов высокой частоты. Построил в 1899 г. радиостанцию на 200 кВт в Колорадо и радиоантенну высотой 57,6 м в Лонг-Айленде (башня Ворденклиф). Вместе с Эйнштейном и Опенгеймером в 1943 г. участвовал в секретном проекте по достижению невидимости американских кораблей (Филадельфийский эксперимент). Современники говорили о Тесле как о мистике, ясновидце, пророке, способном заглянуть в разумный космос и мир мертвых. Он верил, что с помощью электромагнитного поля можно перемещаться в пространстве и управлять временем.

      Другое определение: 1 Тл равен магнитной индукции, при которой магнитный поток сквозь площадку 1 м2, перпендикулярную направлению поля, равен 1 Вб.

      Единица измерения магнитного потока Вб, получила свое название в честь немецкого физика Вильгельма Вебера (1804–1891) – профессора университетов в Галле, Геттингене, Лейпциге.

      Как мы уже говорили, магнитный поток Ф через поверхность S – одна из характеристик магнитного поля (рис. 2.5):

    

Рис. 2.5

      Единица измерения магнитного потока в СИ:

. , а так как , то .

      Здесь Максвелл (Мкс) – единица измерения магнитного потока в СГС названая в честь знаменитого английского ученого Джеймса Максвелла (1831–1879), создателя теории электромагнитного поля.

      Напряженность магнитного поля Н измеряется в .

,      .

      Сведем в одну таблицу основные характеристики магнитного поля.

Таблица 2.1

Наименование

Обозначение

СИ

СГС

СИ/СГС

Магнитная индукция

В

Гс

Напряженность магнитного поля

Н

А/м

Э

Магнитная постоянная

μ0

1

Поток магнитной индукции

ФB

Вб ( )

Мкс


Магнитное поле | Самое простое объяснение для чайников

Магнитное поле играет очень большую роль в электротехнике и электронике. Без магнитного поля не функционировали бы герконы, электромагнитные реле, соленоиды, катушки индуктивности, дроссели, трансформаторы, двигатели, динамики, генераторы электрической энергии да и вообще много чего.

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

магнетит

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  – на ЮГ.

магнетит на воде

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

китайский древний компас

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

древний компас со стрелкой

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец – южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм “Южный парк”, он же Сауз (South) парк).

сауз парк

 

Магнитные линии и магнитный поток

Вокруг магнита экспериментальным путем были обнаружены магнитные силовые линии. Эти магнитные линии создают так называемое магнитное поле.

линии магнитного поля

Как вы могли заметить на рисунке, концентрация магнитных силовых линий на самых краях магнита намного больше, чем в его середине. Это говорит о том, что магнитное поле является более сильным именно на краях магнита, а в его середине практически равна нулю. Направлением магнитных силовых линий считается направление от севера к югу.

Ошибочно считать, что магнитные силовые линии начинают свое движение от северного полюса и заканчивают свой век на южном. Это не так. Магнитные линии – они замкнуты и непрерывны. В магните это будет выглядеть примерно так.

замкнутые магнитные линии

Если приблизить два разноименных полюса, то произойдет притягивание магнитов

взаимодействие разноименных магнитных полей

Если же приблизить одноименными полюсами, то произойдет их отталкивание

взаимодействие одноименных полюсов магнита

Итак, ниже важные свойства магнитных силовых линий.

  • Магнитные линии не поддаются гравитации.
  • Никогда не пересекаются между собой.
  • Всегда образуют замкнутые петли.
  • Имеют определенное направление с севера на юг.
  • Чем больше концентрация силовых линий, тем сильнее магнитное поле.
  • Слабая концентрация силовых линий указывает на слабое магнитное поле.

Магнитные силовые линии, которые образуют магнитное поле, называют также магнитным потоком.

Итак, давайте рассмотрим два рисунка и ответим себе на вопрос, где плотность магнитного потока будет больше? На рисунке “а” или на рисунке “б”?

плотность магнитного потока

Видим, что на рисунке “а” мало силовых магнитных линий, а на рисунке “б” их концентрация намного больше. Отсюда можно сделать вывод, что плотность магнитного потока на рисунке “б” больше, чем на рисунке “а”.

В физике формула магнитного потока записывается как

формула магнитного потока

где

Ф – магнитный поток, Вебер

В – плотность магнитного потока, Тесла

а – угол между перпендикуляром n (чаще его зовут нормалью) и плоскостью S, в градусах

S – площадь, через которую проходит магнитный поток, м2

магнитный поток

Что же такое 1 Вебер? Один вебер – это магнитный поток, который создается полем индукцией 1 Тесла через площадку 1м2 расположенной перпендикулярно направлению магнитного поля.

Напряженность магнитного поля

Формула напряженности

Слышали ли вы когда-нибудь такое выражение: “напряженность между ними все росла и росла”. То есть по сути напряженность – это что-то невидимое, какая-то сдерживающая сила, энергия. Здесь почти все то же самое. Напряженностью магнитного поля также часто называют силой магнитного поля. Напряженность магнитного поля напрямую зависит от плотности магнитного потока и выражается формулой

напряженность магнитного поля формула

где

H – напряженность магнитного поля, Ампер/метр

B – плотность магнитного потока, Тесла

μ0   – магнитная постоянная = 4π × 10-7 Генри/метр или если написать по человечески 1,2566 × 10-6 Генри/метр.

PS.

Эта формула работает только тогда, когда между витками катушки находится воздух, либо вакуум. Более крутая формула выглядит вот так.

напряженность магнитного поля в веществе формула

где

μ – это относительная магнитная проницаемость.

У разных веществ она разная

магнитная проницаемость веществ

Напряженность магнитного поля проводника с током

Итак, имеем какой-либо проводник, по которому течет электрический ток.

напряженность проводника с током

Для того, чтобы вычислить напряженность магнитного поля на каком-то расстоянии от проводника при условии, что проводник находится в воздушном пространстве либо в вакууме, достаточно воспользоваться формулой

напряженность магнитного поля проводника с током

где

H – напряженность магнитного поля, Ампер/метр

I – сила тока, текущая через проводник, Ампер

r – расстояние до точки, в которой измеряется напряженность, метр

Магнитное поле проводника с током

Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.

правило буравчика

Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.

саморез

Ввинчиваем по часовой стрелке – саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.

Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам – кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.

направление электрического тока

 

Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?

суммирование магнитного поля

Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.

сумма магнитных полей

Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.

Соленоид

А что если сделать много-много таких петелек? Взять какую-нибудь круглую бобину, намотать на нее провод и потом убрать бобину.  У нас должно получится что-то типа этого.

Если подать постоянное напряжение на такую катушку, магнитные силовые линии будут выглядеть вот так.

плотность магнитного потока в соленоиде

Вы только посмотрите, какая бешеная плотность магнитного потока внутри такой катушки! Получается, что от каждой петельки магнитное поле суммируется, что в итоге дает такую плотность магнитного потока. Такую катушку также называют катушкой индуктивности или соленоидом.

Вот также схема, показывающая как магнитные силовые линии складываются в соленоиде.

принцип работы соленоида

Плотность магнитного потока зависит от того, какая сила тока проходит через соленоид. Чтобы увеличить плотность магнитного потока, достаточно поверх витков намотать еще больше витков и вставить сердечник из специального материала – феррита.

многообмоточная катушка

Если в электрических цепях есть такое понятие, как ЭДС – электродвижущая сила, то и в магнитных цепях есть свой аналог  – МДС – магнитодвижущая сила. Магнитодвижущая сила выражается в виде тока, протекающего через катушку из N витков и выражается в Амперах-витках.

многообмоточная катушка

где

I – это сила тока в катушке, Амперы

N – количество витков катушки, штуки)

Также советую посмотреть очень простое и интересное видео про магнитное поле.

 

Похожие статьи по теме “магнитное поле”

Катушка индуктивности

Трансформатор

Электромагнитное реле

 

Напряженность магнитного поля | Формулы и расчеты онлайн

Напряженность магнитного поля можно определить с помощью силы, которая действует на помещенный в поле пробный магнит. Так как магнитные полюсы не существуют по отдельности, на северный и южный полюсы пробного магнита действуют противоположно направленные силы, и возникает момент пары сил. Этот момент характеризует величину напряженности поля в данном месте.

В магнитном поле цилиндрической катушки он прямо пропорционален числу витков и силе тока и обратно пропорционален длине катушки. Направление вектора напряженности магнитного поля в каждой точке совпадает с направлением силовых линий. Внутри катушки (магнита) он направлен от южного полюса к северному, вне катушки — от северного к южному.

Единица СИ напряженности магнитного поля

Единица СИ напряженности магнитного поля:

\[ [H] = \frac{Ампер}{Метр} \]

Эрстед — Единица напряженности магнитного поля

Единица напряженности магнитного поля Эрстед не принадлежит к системе СИ.

\[ 1 Эрстед = \frac{1000}{4π} \frac{Ампер}{метр} \]

\[ 1 \frac{Ампер}{метр} = \frac{4π}{1000} Эрстед \]

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Напряженность магнитного поля в цилиндрической катушке

Если

Hнапряженность магнитного поля внутри цилиндрической катушки,Ампер/метр
Iсила тока в катушке,Ампер
nчисло витков,Ампер
lдлина катушки (т. е. силовых линий в области однородного поля),метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I·n}{l} \]

Напряженность магнитного поля вокруг прямолинейного проводника

Напряженность Н магнитного поля прямолинейного проводника постоянна вдоль круговой силовой линии.

Если

Hнапряженность магнитного поля прямолинейного проводника,Ампер/метр
Iсила тока в проводнике,Ампер
rрасстояние от проводника в плоскости, перпендикулярной проводнику,метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I}{2πr} \]

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Напряженность магнитного поля в центре витка с током

Если

Hнапряженность магнитного поля в центре витка с током,Ампер/метр
Iсила тока в витке,Ампер
rрадиус витка,метр

то напряженность магнитного поля определяется формулой

\[ H = \frac{I}{2r} \]

В помощь студенту

Напряженность магнитного поля
стр. 643

Напряженность магнитного поля

      Итак, мы с вами выяснили, что магнитное поле – это одна из форм проявления электромагнитного поля, особенностью которого является то, что это поле действует только на движущиеся частицы и тела, обладающие электрическим зарядом, а также на намагниченные тела.

      Магнитное поле создается проводниками с током, движущимися электрическими заряженными частицами и телами, а также переменными электрическими полями.

      Силовой характеристикой магнитного поля служит вектор магнитной индукции  поля созданного одним зарядом в вакууме:

.

      Еще одной характеристикой магнитного поля является напряженность.

      Напряженностью магнитного поля называют векторную величину , характеризующую магнитное поле и определяемую следующим образом:

  ,  (1.4.1)  

      Напряженность магнитного поля заряда q, движущегося в вакууме равна:

  ,  (1.4.2)  

      Это выражение показывает закон Био–Савара–Лапласа для .

      Напряженность магнитного поля  является, как бы, аналогом вектора электрического смещения  в электростатике.

       Другие аудио-видео демонстрации по теме или смежным темам:
       1. Силовые линии магнитов.   2. Линии магнитной индукции.  
       3. Намагниченность.   4. Электромагниты.   5. Компас.

Как измеряется сила магнита? (с картинками)

Магнит — это любой объект, который создает свое собственное магнитное поле. Сила магнита этих объектов может варьироваться от незаметно слабых полей до невероятно сильных полей, в зависимости от ряда характеристик. Магниты можно разделить на две группы: постоянные магниты и электромагниты, а немагниты можно определить как ферромагнитные, парамагнитные или диамагнитные.Ферромагнитные материалы, такие как железо, сильно притягиваются к магнитам, парамагнитные материалы, такие как алюминий, лишь незначительно притягиваются к магнитам, а диамагнитные материалы, такие как углерод, слабо отталкиваются магнитами.

A horseshoe magnet with north and south poles labeled. Подковообразный магнит с маркировкой северного и южного полюсов.

Постоянные магниты — это те объекты, которые намагничены и останутся намагниченными навсегда. Можно создать постоянный магнит, взяв твердое ферромагнитное вещество, такое как твердое железо, магний, кобальт и ряд редкоземельных металлов, и сильно намагничивая его. Мягкие ферромагнитные вещества могут приобретать временное магнитное поле, но имеют тенденцию терять его довольно быстро.Электромагниты, с другой стороны, состоят из катушек с проволокой, которые приобретают магнитное поле при прохождении через него электричества, но теряют его сразу же после прекращения подачи электричества.

A bar magnet. Барный магнит.

Вы можете измерить либо общую магнитную силу материала, известную как его магнитный момент, либо его локальную силу, известную просто как его намагниченность. Магнитный момент может быть рассчитан для вещества в зависимости от того, содержит ли оно свойственный магнетизм или магнетизм, вызванный электрическим током.Если магнетизм присущ, можно измерить величину каждой элементарной частицы в материале и определить суммарный момент. Если вызвано электрическим током, нужно отслеживать магнетизм электронов, протекающих через объект.

Сила магнита обычно маркируется на коммерческих магнитах как показание, приведенное в терминах его оценки по Гауссу, и может быть измерено с помощью магнитометра., Существует два основных типа магнитометров: один, который смотрит на чистый магнетизм объекта, известный как скалярные устройства, и другой, который может отслеживать векторы магнетизма, давая силу магнитного поля в определенном направлении, известном как векторные устройства. , Разные магнитометры работают по-разному. Обычные векторные магнитометры включают в себя сверхпроводящие квантовые интерференционные устройства, атомные СЕРФ и флюсгейты. Обычные скалярные устройства включают магнитометры с эффектом Холла, протонные прецессионные магнитометры и магнитометры с вращающейся катушкой.

Важно отметить, что часто рейтинг Гаусса, данный для магнита, фактически не отражает поверхностный магнетизм объекта. Как правило, сила магнита, рассчитанная для коммерческого магнита, будет отражать прочность сердечника магнита, которая может быть значительно выше, чем поверхностная прочность, и будет падать, когда вы уходите.Например, магнит, который мог бы измерять 3000 гауссов непосредственно от поверхности магнита, будет измерять 2500 гаусс, когда вы отойдете от магнита хоть немного. По этой причине некоторые производители предлагают альтернативные меры прочности магнита, которые помогают людям лучше понять, что они получают.

В последние годы, когда редкоземельные магниты стали популярны для домашнего использования, сила магнита стала просто указываться в терминах силы натяжения, относящейся к тому, какой вес магнит может тянуть, измеряемый испытателем на натяжение.Следует также отметить, что на прочность магнита могут влиять многие условия, включая электричество, тепло, а в некоторых случаях влажность. Сила магнита также уменьшается экспоненциально, когда вы удаляетесь от поверхности, поэтому очень сильный магнит прямо против него не будет тянуть, когда вы отступите.

An electromagnet. Magnetic field strength is measured in teslas. Электромагнит.Напряженность магнитного поля измеряется в тесла. ,
Магнитное поле — Простая английская Википедия, бесплатная энциклопедия

Магнитное поле — это область вокруг магнита, в которой действует магнитная сила. Движущиеся электрические заряды могут создавать магнитные поля. Магнитные поля могут быть проиллюстрированы линиями магнитного потока. Направление магнитного поля всегда указывается направлением линий магнитного потока. Сила магнита связана с промежутками между линиями магнитного потока. Чем ближе линии потока друг к другу, тем сильнее магнит.Чем дальше они, тем слабее. Линии потока можно увидеть, разместив железные опилки над магнитом. Железные опилки движутся и распределяются по линиям. Магнитные поля дают энергию другим частицам, которые касаются магнитного поля.

В физике магнитное поле — это поле, которое проходит через пространство и заставляет магнитную силу перемещать электрические заряды и магнитные диполи. Магнитные поля находятся вокруг электрических токов, магнитных диполей и изменяющихся электрических полей.

При нахождении в магнитном поле магнитные диполи находятся на одной линии, а их оси параллельны силовым линиям, что видно, когда железные опилки находятся в присутствии магнита.Магнитные поля также имеют свою собственную энергию и импульс, причем плотность энергии пропорциональна квадрату напряженности поля. Магнитное поле измеряется в единицах тесла (единицы СИ) или в гауссах (единицы измерения в сгс).

Есть несколько заметных видов магнитного поля. Для физики магнитных материалов, см. Магнетизм и магнит, а точнее, диамагнетизм. Для магнитных полей, создаваемых изменением электрических полей, см. Электромагнетизм.

Электрическое поле и магнитное поле являются компонентами электромагнитного поля.

Закон электромагнетизма был основан Майклом Фарадеем.

Модель магнитного полюса : два противоположных полюса, Север (+) и Юг (-), разделенные расстоянием d, образуют поле H (линии).

Физики могут сказать, что сила и моменты между двумя магнитами вызваны магнитным полюсом, отталкивающим или притягивающим друг друга. Это похоже на кулоновскую силу, отражающую одинаковые электрические заряды или притягивающую противоположные электрические заряды. В этой модели магнитное H-поле создается магнитными зарядами , которые «размазываются» вокруг каждого полюса.Таким образом, H-поле похоже на электрическое поле E , которое начинается с положительного электрического заряда и заканчивается отрицательным электрическим зарядом. Вблизи северного полюса все линии Н-поля направлены в сторону от северного полюса (внутри магнита или снаружи), а вблизи южного полюса (внутри магнита или снаружи) все линии Н-поля направлены в сторону южного полюса. Таким образом, северный полюс ощущает силу в направлении Н-поля, в то время как сила на южном полюсе противоположна Н-полю.

В модели с магнитным полюсом элементарный магнитный диполь м образован двумя противоположными магнитными полюсами с силой полюса q м , разделенными очень малым расстоянием d, так что m = q m d ,

К сожалению, магнитные полюса не могут существовать отдельно друг от друга. Все магниты имеют пары север / юг, которые не могут быть разделены без создания двух магнитов, каждый из которых имеет пару север / юг. Кроме того, магнитные полюса не учитывают магнетизм, который создается электрическими токами, ни силу, которую магнитное поле оказывает на движущиеся электрические заряды.

H — полевые и магнитные материалы Edit

Поле H определяется как:

ЧАС ≡ В μ 0 — M , {\ displaystyle \ mathbf {H} \ \ экв \ {\ frac {\ mathbf {B}} {\ mu _ {0}}} — \ mathbf {M},} (определение H в единицах СИ)

При таком определении закон Ампера становится:

∮ ⁡ ЧАС ⋅ d ℓ знак равно ∮ ⁡ ( В μ 0 — M ) ⋅ d ℓ знак равно я T о T — я б знак равно я е {\ displaystyle \ oint \ mathbf {H} \ cdot d {\ boldsymbol {\ ell}} = \ oint \ left ({\ frac {\ mathbf {B}} {\ mu _ {0}}} — \ mathbf { M} \ right) \ cdot d {\ boldsymbol {\ ell}} = I _ {\ mathrm {tot}} -I _ {\ mathrm {b}} = I _ {\ mathrm {f}}}

, где I f представляет «свободный ток», заключенный в контур, так что интеграл от H вообще не зависит от связанных токов. [1] Дифференциальный эквивалент этого уравнения см. В уравнениях Максвелла. Закон Ампера приводит к граничному условию:

ЧАС 1 , ∥ — ЧАС 2 , ∥ знак равно К е , {\ displaystyle H_ {1, \ параллельный} -H_ {2, \ параллельный} = \ mathbf {K} _ {\ text {f}},}

, где K f — плотность свободного тока на поверхности. [2]

Аналогично, поверхностный интеграл H по любой замкнутой поверхности не зависит от свободных токов и выделяет «магнитные заряды» внутри этой замкнутой поверхности:

∮ S ⁡ μ 0 ЧАС ⋅ d знак равно ∮ S ⁡ ( В — μ 0 M ) ⋅ d знак равно ( 0 — ( — Q M ) ) знак равно Q M , {\ displaystyle \ oint _ {S} \ mu _ {0} \ mathbf {H} \ cdot \ mathrm {d} \ mathbf {A} = \ oint _ {S} (\ mathbf {B} — \ mu _ { 0} \ mathbf {M}) \ cdot \ mathrm {d} \ mathbf {A} = (0 — (- q_ {M})) = q_ {M},}

, который не зависит от свободных токов.

Поле H , следовательно, может быть разделено на две [3] независимых частей:

ЧАС знак равно ЧАС 0 + ЧАС d , {\ displaystyle \ mathbf {H} = \ mathbf {H} _ {0} + \ mathbf {H} _ {d}, \,}

, где H 0 — приложенное магнитное поле, вызванное только свободными токами, а H d — размагничивающее поле, вызванное только связанными токами.

Магнитное поле H , следовательно, повторно учитывает связанный ток в терминах «магнитных зарядов». Линии поля H зацикливаются только вокруг «свободного тока» и, в отличие от магнитного поля B , начинаются и заканчиваются также вблизи магнитных полюсов.

Связанные страницы

Рекомендации Редактировать

  1. Джон Кларк Слейтер, Натаниэль Херман Франк (1969). Электромагнетизм (впервые опубликован в 1947 изд.). Курьер Довер Публикации.п. 69. ISBN 0486622630 .
  2. Дэвид Гриффитс. Введение в электродинамику (3-е издание 1999 г.). п. 332.
  3. third Третий член необходим для изменения электрических полей и токов поляризации; этот член тока смещения покрыт уравнениями Максвелла.
,

геомагнитное поле | Определение, сила и факты

Представление поля

Электрические и магнитные поля создаются фундаментальным свойством материи, электрическим зарядом. Электрические поля создаются зарядами в состоянии покоя относительно наблюдателя, тогда как магнитные поля создаются движущимися зарядами. Эти два поля являются различными аспектами электромагнитного поля, которое является силой, которая заставляет электрические заряды взаимодействовать. Электрическое поле E в любой точке вокруг распределения заряда определяется как сила на единицу заряда, когда положительный испытательный заряд помещается в эту точку.Для точечных зарядов электрическое поле направлено радиально от положительного заряда к отрицательному заряду.

Магнитное поле создается движущимися зарядами, то есть электрическим током. Магнитная индукция, B, может быть определена аналогично E как пропорциональная силе на единицу силы полюса, когда испытательный магнитный полюс приближается к источнику намагниченности. Однако более распространенным является определение его с помощью уравнения силы Лоренца. Это уравнение утверждает, что сила, ощущаемая зарядом q , движущимся со скоростью v , определяется как F = q ( против x B ).

В этом уравнении жирные символы обозначают векторы (величины, которые имеют величину и направление), а жирные символы обозначают скалярные величины, такие как B , длина вектора B . x обозначает перекрестное произведение (то есть вектор под прямым углом как к v , так и к B , с длиной v B sin θ). Тета — это угол между векторами v и B . (B обычно называют магнитным полем, несмотря на тот факт, что это название зарезервировано для величины H, которая также используется в исследованиях магнитных полей.) Для простой линии тока поле является цилиндрическим вокруг тока. Чувство поля зависит от направления тока, который определяется как направление движения положительных зарядов. Правило правой руки определяет направление B , утверждая, что оно указывает в направлении пальцев правой руки, когда большой палец указывает в направлении тока.

В Международной системе единиц (СИ) электрическое поле измеряется в терминах скорости изменения потенциала, вольт на метр (В / м).Магнитные поля измеряются в единицах тесла (Т). Тесла является большой единицей для геофизических наблюдений, и обычно используется меньшая единица, нанотела (нТл; одна нанотела равна 10 тесла). Нанотела эквивалентна одной гамме, единице, первоначально определенной как 10 -5004600 гаусс, которая является единицей магнитного поля в системе сантиметр-грамм-секунда. Как гаусс, так и гамма до сих пор часто используются в литературе по геомагнетизму, хотя они больше не являются стандартными единицами.

Электрические и магнитные поля описываются векторами, которые могут быть представлены в различных системах координат, таких как декартова, полярная и сферическая. В декартовой системе вектор разлагается на три составляющие, соответствующие проекциям вектора на три взаимно ортогональных оси, которые обычно обозначаются x , y , z . В полярных координатах вектор обычно описывается длиной вектора в плоскости x y , его азимутальным углом в этой плоскости относительно оси x и третьей декартовой компонентой z .В сферических координатах поле описывается длиной вектора полного поля, полярным углом этого вектора от оси z и азимутальным углом проекции вектора в плоскости x y . В исследованиях магнитного поля Земли широко используются все три системы.

Номенклатура, используемая при изучении геомагнетизма для различных компонентов векторного поля, обобщена на рисунке. B — векторное магнитное поле, а F — величина или длина B . X , Y и Z — это три декартовы компоненты поля, обычно измеряемые относительно географической системы координат. X севернее, Y восточнее, и, завершив правую систему, Z вертикально вниз к центру Земли. Величина поля, спроецированного в горизонтальной плоскости, называется H . Эта проекция составляет угол D (для склонения), измеренный положительным с севера на восток.Угол наклона, I (для наклона), это угол, который вектор полного поля составляет относительно горизонтальной плоскости и положительный для векторов ниже плоскости. Это дополнение к обычному полярному углу сферических координат. (Географический и магнитный север совпадают вдоль «агонической линии».)

Компоненты вектора магнитной индукции B показаны в трех системах координат: декартовой, полярной и сферической. Encyclopædia Britannica, Inc.
Магнитное поле — определение, история, иллюстрация, происхождение, часто задаваемые вопросы
    • Классы
      • Класс 1 — 3
      • Класс 4 — 5
      • Класс 6 — 10
      • Класс 11 — 12
    • КОНКУРСЫ
      • BBS
      • 000000000000 Книги
        • NCERT Книги для 5 класса
        • NCERT Книги Класс 6
        • NCERT Книги для 7 класса
        • NCERT Книги для 8 класса
        • NCERT Книги для 9 класса 9
        • NCERT Книги для 10 класса
        • NCERT Книги для 11 класса
        • NCERT Книги для 12-го класса
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • NCERT Exemplar Class 12
        • 9000al Aggar Agard Agard Agard Agard Agulis Class 12
          • RS Решения Aggarwal класса 10
          • RS Решения Aggarwal класса 11
          • RS Решения Aggarwal класса 10
          • 90 003 Решения RS Aggarwal класса 9
          • Решения RS Aggarwal класса 8
          • Решения RS Aggarwal класса 7
          • Решения RS Aggarwal класса 6
        • Решения RD Sharma
          • Решения класса RD Sharma
          • Решения класса 9 Шарма 7 Решения RD Sharma Class 8
          • Решения RD Sharma Class 9
          • Решения RD Sharma Class 10
          • Решения RD Sharma Class 11
          • Решения RD Sharma Class 12
        • ФИЗИКА
          • Механика
          • 000000 Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • МАТС
          • Теорема Пифагора
          • Отношения и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Делительные дроби
        • 000 ФОРМУЛЫ
          • Математические формулы
          • Алгебровые формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • S000
          • S0003
          • Pегипс Класс 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 11
          • Образец образца CBSE pers for Class 12
        • CBSE Предыдущий год Вопросник
          • CBSE Предыдущий год Вопросники Класс 10
          • CBSE Предыдущий год Вопросник класс 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Class 12 Physics
        • Решения Lakhmir Singh
          • Решения Lakhmir Singh Class 9
          • Решения Lakhmir Singh Class 10
          • Решения Lakhmir Singh Class 8
        • Примечания
        • CBSE
        • Notes
            CBSE Класс 7 Примечания CBSE
          • Класс 8 Примечания CBSE
          • Класс 9 Примечания CBSE
          • Класс 10 Примечания CBSE
          • Класс 11 Примечания CBSE
          • Класс 12 Примечания CBSE
        • Примечания пересмотра
        • CBSE Редакция
        • CBSE
        • CBSE Class 10 Примечания к пересмотру
        • CBSE Class 11 Примечания к пересмотру 9000 4
        • Замечания по пересмотру CBSE класса 12
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы CBSE 8 класса
        • Дополнительные вопросы CBSE 8 по естественным наукам
        • CBSE 9 класса Дополнительные вопросы
        • CBSE 9 дополнительных вопросов по науке CBSE
        • 9000 Класс 10 Дополнительные вопросы по математике
        • CBSE Класс 10 Дополнительные вопросы по науке
      • Класс CBSE
        • Класс 3
        • Класс 4
        • Класс 5
        • Класс 6
        • Класс 7
        • Класс 8
        • Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Решения для учебников
    • Решения NCERT
      • Решения NCERT для класса 11
          Решения NCERT для физики класса 11
        • Решения NCERT для класса 11 Химия
        • Решения для класса 11 Биология
        • NCERT Решения для класса 11 Математика
        • 9 0003 NCERT Solutions Class 11 Бухгалтерия
        • NCERT Solutions Class 11 Бизнес исследования
        • NCERT Solutions Class 11 Экономика
        • NCERT Solutions Class 11 Статистика
        • NCERT Solutions Class 11 Коммерция
      • NCERT Solutions для класса 12
        • NCERT Solutions для Класс 12 Физика
        • Решения NCERT для 12 класса Химия
        • Решения NCERT для 12 класса Биология
        • Решения NCERT для 12 класса Математика
        • Решения NCERT Класс 12 Бухгалтерский учет
        • Решения NCERT Класс 12 Бизнес исследования
        • Решения NCERT Класс 12 Экономика
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 1
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 2
        • NCERT Solutions Class 12 Микроэкономика
        • NCERT Solutions Class 12 Коммерция
        • NCERT Solutions Class 12 Макроэкономика
      • NCERT Solutions Для Класс 4
        • Решения NCERT для класса 4 Maths
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для класса 6 Математика
        • Решения NCERT для класса 6 Наука
        • Решения NCERT для класса 6 Общественные науки
        • Решения NCERT для класса 6 Английский
      • Решения NCERT для класса 7
        • Решения NCERT для класса 7 Математика
        • Решения NCERT для 7 класса Science
        • Решения NCERT для 7 класса Общественные науки
        • Решения NCERT для 7 класса Английский
      • Решения NCERT для 8 класса Математические решения
        • для 8 класса Математика
        • Решения NCERT для класса 8 Science
        • Решения NCERT для класса 8 Общественные науки
        • NCERT Solutio ns для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 Общественные науки
      • Решения NCERT для класса 9 Математика
        • Решения NCERT для класса 9 Математика Глава 1
        • Решения NCERT Для класса 9 Математика 9 класса Глава 2
        • Решения NCERT для математики 9 класса Глава 3
        • Решения NCERT для математики 9 класса Глава 4
        • Решения NCERT для математики 9 класса Глава 5
        • Решения NCERT для математики 9 класса Глава 6
        • Решения NCERT для Математика 9 класса Глава 7
        • Решения NCERT для математики 9 класса Глава 8
        • Решения NCERT для математики 9 класса Глава 9
        • Решения NCERT для математики 9 класса Глава 10
        • Решения NCERT для математики 9 класса Глава 11
        • Решения NCERT для Математика 9 класса Глава 12
        • Решения NCERT для математики 9 класса Глава 13
        • Решения NCERT для математики 9 класса Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки 9 класса
        • Решения NCERT для науки 9 класса Глава 1
        • Решения NCERT для науки 9 класса Глава 2
        • Решения NCERT для класса 9 Наука Глава 3
        • Решения NCERT для 9 класса Наука Глава 4
        • Решения NCERT для 9 класса Наука Глава 5
        • Решения NCERT для 9 класса Наука Глава 6
        • Решения NCERT для 9 класса Наука Глава 7
        • Решения NCERT для 9 класса Научная глава 8
        • Решения NCERT для 9 класса Научная глава
        • Научные решения NCERT для 9 класса Научная глава 10
        • Научные решения NCERT для 9 класса Научная глава 12
        • Научные решения NCERT для 9 класса Научная глава 11
        • Решения NCERT для 9 класса Научная глава 13
        • Решения NCERT для 9 класса Научная глава 14
        • Решения NCERT для класса 9 Science Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 Общественные науки
      • Решения NCERT для математики класса 10
        • Решения NCERT для математики класса 10 Глава 1
        • Решения NCERT для математики класса 10 Глава 2
        • решения NCERT для математики класса 10 глава 3
        • решения NCERT для математики класса 10 глава 4
        • решения NCERT для математики класса 10 глава 5
        • решения NCERT для математики класса 10 глава 6
        • решения NCERT для математики класса 10 Глава 7
        • решения NCERT для математики класса 10 глава 8
        • решения NCERT для математики класса 10 глава 9
        • решения NCERT для математики класса 10 глава 10
        • решения NCERT для математики класса 10 глава 11
        • решения NCERT для математики класса 10, глава 12
        • Решения NCERT для математики класса 10, глава 13
        • соль NCERT Решения для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки 10 класса
        • Решения NCERT для науки 10 класса Глава 1
        • Решения NCERT для науки 10 класса Глава 2
        • Решения NCERT для науки 10 класса, глава 3
        • Решения NCERT для науки 10 класса, глава 4
        • Решения NCERT для науки 10 класса, глава 5
        • Решения NCERT для науки 10 класса, глава 6
        • Решения NCERT для науки 10 класса, глава 7
        • Решения NCERT для науки 10 класса, глава 8
        • Решения NCERT для науки 10 класса, глава 9
        • Решения NCERT для науки 10 класса, глава 10
        • Решения NCERT для науки 10 класса, глава 11
        • Решения NCERT для науки 10 класса, глава 12
        • Решения NCERT для 10 класса Science Глава 9
        • Решения NCERT для 10 класса Science Глава 14
        • Решения NCERT для науки 10 класса Глава 15
        • Решения NCERT для науки 10 класса Глава 16
      • Программа NCERT
      • NCERT
    • Коммерция
      • Класс 11 Коммерческая программа Syllabus
      • Учебный курс по бизнес-классу 11000
      • Учебная программа по экономическому классу
    • Учебная программа по коммерческому классу
      • Учебная программа по 12 классу
      • Учебная программа по 12 классам
      • Учебная записка по 12-му классу
          000000000000
        • Образцы коммерческих документов класса 11
        • Образцы коммерческих документов класса 12
      • Решения TS Grewal
        • Решения TS Grewal Класс 12 Бухгалтерский учет
        • Решения TS Grewal Класс 11 Бухгалтерский учет
      • Отчет о движении денежных средств
      • eurship
      • Защита потребителей
      • Что такое фиксированный актив
      • Что такое баланс
      • Формат баланса
      • Что такое акции
      • Разница между продажами и маркетингом
    • P000S Документы ICSE
    • ML Решения Aggarwal
      • ML Решения Aggarwal Class 10 Maths
      • ML Решения Aggarwal Class 9 Математика
      • ML Решения Aggarwal Class 8 Maths
      • ML Решения Aggarwal Class 7 Математические решения
      • ML 6 0004
      • ML 6
    • Selina Solutions
      • Selina Solution для 8 класса
      • Selina Solutions для 10 класса
      • Selina Solution для 9 класса 9
    • Frank Solutions
      • Frank Solutions для класса 10 Maths
      • Frank Solutions для класса 9 Maths
    • ICSE Class 9000 2
    • ICSE Class 6
    • ICSE Class 7
    • ICSE Class 8
    • ICSE Class 9
    • ICSE Class 10
    • ISC Class 11
    • ISC Class 12
  • IAS
  • Сервисный экзамен
  • UPSC Syllabus
  • Бесплатно IAS Prep
  • Текущая информация
  • Список статей IAS
  • IAS 2019 Mock Test
    • IAS 2019 Mock Test 1
    • IAS 2019 Mock Test 2
    • KPSC KAS экзамен
    • UPPSC PCS экзамен
    • MPSC экзамен
    • RPSC RAS ​​экзамен
    • TNPSC группа 1
    • APPSC группа 1
    • BPSC экзамен
    • экзамен
    • экзамен
    • WPSS
    • экзамен
    • WPSS
    • экзамен
    • JPS
    • экзамен
    • экзамен
    • PMS
    • экзамен
    • PMS
    • экзамен
    • экзамен
    • экзамен
    • 9000
  • Вопросник UPSC 2019
    • Ключ ответа UPSC 2019
  • Коучинг IAS
    • IA S Коучинг Бангалор
    • IAS Коучинг Дели
    • IAS Коучинг Ченнаи
    • IAS Коучинг Хайдарабад
    • IAS Коучинг Мумбаи
  • JEE
    • Бумага
    • JEE JEE 9000
    • JEE
    • JEE-код
    • JEE
    • J0003 S0004000
    • JEE Вопрос бумаги
    • бином
    • JEE Статьи
    • Квадратное уравнение
  • NEET
    • BYJU’S NEET Программа
    • NEET 2020
    • NEET КРИТЕРИИ 2020
    • NEET Примеры Papers
    • NEET Подготовка
    • NEET Программа курса
    • Поддержка
      • Жалоба Разрешение
      • Customer Care
      • Поддержка центр
  • Государственные платы
    • GSEB
      • GSEB Силабус
      • GSEB Вопрос бумаги
      • GSEB образец бумаги
      • GSEB Книги
      90 004
    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы документов
      • MSBSHSE Вопросные записки
    • AP Board
      • -й год APSERT
      • -й год SBSUS
      • -й год
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS SUBSUS SUBSUS SUBSUS SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS SUBSUS
      • SUBSUS
      • Всеобщая справка
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board Учебники
      • Sample Board Paperss Sample3 P0003 BSEB
        • Бихарская доска Syllabus
        • Бихарская доска Учебники
        • Бихарская доска Вопросные бумаги
        • Бихарская модель Бумажные макеты
      • БСЭ Одиша
        • доска
        • Sislabus
        • Совет 9408 S0008
        • Sisplus
        • S0008
        • Sample P000S
        • Sample
        • S000S PSEB Syllabus
        • учебники PSEB
        • учебные материалы PSEB
      • RBSE
        • учебное пособие Раджастхан Syllabus
        • учебники RBSE
        • учебные вопросы RBSE
      • HPE
      • HPE HPE
      • JKBOSE
        • JKBOSE Программа курса
        • JKBOSE Примеры Papers
        • JKBOSE экзамен Pattern
      • TN Board
        • TN Совет Силабус
        • TN Совет вопрос Papers
        • TN Board Примеры Papers
        • Samacheer Kalvi Книги
      • JAC
        • JAC Силабус
        • JAC учебники
        • JAC Вопрос Papers
      • Telangana Совет
        • Telangana Совет Силабус
        • Telangana совет учебники
        • Telangana Совет Вопрос Papers
        • KSEEB KSEEB Силабус
        • KSEEB Модель Вопрос Papers
      • KBPE
        • KBPE Силабус
        • KBPE Учебники
        • KBPE Вопрос Papers
      • UPMSP
        • UP Совет Силабус
        • UP Совет Книги
        • UP Совет Вопрос Papers
      • Западная Бенгалия Совет
        • Западная Бенгалия Совет Силабус
        • Западная Бенгалия Совет учебниками
        • West Bengal совет Вопрос документы
      • UBSE
      • TBSE
      • Goa Board
      • NbSe
      • CGBSE
      • MBSE
      • Meghalaya Совет
      • Manipur Совет
      • Харьяны Совет
    • Государственные экзамены
      • Банк экзаменов
        • SBI Exams
        • PIL, Exams
        • RBI Exams
        • PIL, РРБ экзамен
      • SSC Exams
        • SSC JE
        • SSC GD
        • SSC CPO 900 04
        • SSC CHSL
        • SSC CGL
      • RRB экзаменов
        • RRB JE
        • RRB NTPC
        • RRB ALP
      • L0003000000 L0003000000000000 UPSC CAPF
      • Список государственных экзаменов Статьи
    • Дети учатся
      • Класс 1
      • Класс 2
      • Класс 3
    • Академические вопросы
      • Физические вопросы
      • Вопросы химии
      • Химические вопросы
      • Химические вопросы
      • Вопросы химии
      • Химические науки
      • Вопросы химии
      • Вопросы
  • ,

    0 comments on “Напряженность магнитного поля в чем измеряется: Напряжённость магнитного поля — Википедия

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *