Параллельное соединение конденсаторов | Практическая электроника
Достаточно часто в электронных схемах применяют параллельное соединение конденсаторов в основном для получения большей общей емкости.
При параллельном соединении емкости складываются и результирующая емкость будет равна сумме емкостей объединенных конденсаторов.
Важно помнить, что максимальное напряжение которое выдержит эта сборка конденсаторов будет равно значению напряжения у самого низковольтного конденсатора.
Из того что было
Чаще всего параллелят конденсаторы на одинаковое напряжение, но от недостатка нужных компонентов под рукой можно изготовить и «икебану» подобрав разнородные конденсаторы на разные напряжения, емкость и род тока.
Главное помнить, что полярные конденсаторы можно использовать только на постоянном токе, причем нужно обязательно соблюдать полярность: чтобы на положительной обкладке конденсатора всегда был «+», а на отрицательной «-» . А вот неполярные конденсаторы можно применять как в цепях с переменным током, так и в цепях с постоянным.
Параллельно соединяем конденсаторы для борьбы с помехами

Чаще всего конденсатор используется для сглаживания и фильтрации напряжения в электронных схемах. Помехи с которыми должен бороться конденсатор могут иметь разные частоты.
Конденсаторы с маленькими значениями емкости (это обычно керамические и пленочные конденсаторы) лучше подавляют высокочастотные помехи, а конденсаторы с большими значениям емкости (танталовые, электролитические) низкочастотные помехи.
Казалось, бы ставь максимальную емкость и она отфильтрует коротенькие импульсы и достаточно длинные. Вот только в силу конструктивных особенностей конденсаторы с большими значениями емкости, имеют длинные выводы, длинные обкладки конденсаторов, все это создает распределенные индуктивности, которые в свою очередь мешают конденсатору фильтровать высокочастотные помехи.
Таким образом если нужно сгладить и отфильтровать сигнал, то нужно для сглаживания применять конденсатор с большим значением емкости, а для фильтрации помех — в параллель первому ставить второй высокочастотный.
hardelectronics.ru
1.4. Способы соединения конденсаторов
Возможны параллельное и последовательное соединения конденсаторов.
Припараллельном соединении (рис. 1.9) все конденсаторы находятся под
одним напряжением U, а
заряд, который они получают от источника
энергии, равен сумме зарядов отдельных
конденсаторов
гдеп —
число конденсаторов;
к — порядковый номер конденсатора.
Следовательно, общая емкость параллельно соединенных конденсаторов по (1.9)равна сумме емкостей отдельных конденсаторов.
Припоследовательном соединении конденсаторов (рис. 1.10) общее напряжение равно сумме напряжений на отдельных конденсаторах
где п — число конденсаторов;
к — порядковый номер конденсатора.
Но
заряд от источника энергии получают
лишь внешние электроды двух крайних
конденсаторов. На остальных попарно
электрически
соединенных электродах заряды создаются
переносом положительного заряда на
один электрод и отрицательного — на
второй, которые равны между собой. Таким
образом, при
последовательном соединении конденсаторов их заряды одинаковы.
Так как заряд конденсатора равен произведению его емкости на приложенное к нему напряжение
то напряжения на конденсаторах равны
а общая емкость последовательно соединенных конденсаторов — Собщ
Если последовательно соединены n одинаковых конденсаторов каждый емкостью С0, то их общая емкость будет равна
1.5. Зарядка и разрядка конденсатора
Чтобы изменить скачком энергию конденсатора, необходим источник бесконечной мощности что невозможно.
Поэтому при зарядке и разрядке конденсатора его энергия, а следовательно, и напряжение на нем Uс не могут изменяться скачком. Это условие называется первым законом коммутации и записывается в виде
(1.16)
где и— моменты времени, непосредственно предшествующий моменту времении непосредственно следующий за моментом времени
Зарядка конденсатора.
Рассмотрим процесс зарядки конденсатора от источника постоянного напряжения Е=U (см. подразд. 2.7) через резистор сопротивлением R (см. подразд. 2.4) при замыкании в момент времени t=0 ключа К (рис. 1.11, а).
Напряжение источника равно сумме напряжений на резисторе и конденсаторе
или с учетом (2.1) и (1.13)
(1.17)
Разделим переменные в (1.17)
(1.18)
и проинтегрируем (1.18)
(1.19)
где неизвестная постоянная интегрирования записана в виде In А.
Умножив обе части равенства (1.19) на (-1) и заменив разность логарифмов логарифмом частного, после потенцирования получим
или
(1.20)
Для определения постоянной А в (1.20) обратимся к закону коммутации для емкостного элемента (1.16). Примем, что емкостный элемент до замыкания ключа, т. е. и в момент времени /= 0_, не был заряжен. Поэтому
ис(0_) = 0 = ис(0+)
Подставив значение постоянной А в (1.20), найдем напряжение на емкостном элементе во время его зарядки (рис. 1.11, б):
(1.21)
где τ = RC имеет размерность времени (Ом • Ф = Ом • А • с/В = с) и называется постоянной времени цепи. Она определяет скорость переходного процесса.
Напряжение на емкостном элементе (1.21) определяет зависимости от времени тока зарядки и напряжения на резисторе (рис. 1.11,5):
тогда
В первый момент после замыкания ключа t=0+ ток заряда в цепи скачком возрастает
от нуля i (0_) = 0
до i (0+) = E/R.
При малом сопротивлении R в цепи может наблюдаться значительный скачок тока.
Процесс зарядки можно считать практически закончившимся через интервал времени Зτ, (при этом uc=0,95 E) который может быть достаточно большим, что используется, например, в реле времени — устройствах, срабатывающих по истечении определенного времени.
Разрядка конденсатора.
В электрическом поле заряженного емкостного элемента сосредоточена энергия (1.15), за счет которой емкостный элемент в течение некоторого времени сам может служить источником энергии. После подключения емкостного элемента, предварительно заряженного до напряжения ис= Е, к резистивному элементу сопротивлением R (рис. 1.12, а) ток в цепи будет обусловлен изменением заряда q емкостного элемента (1.13):
(1.22)
где знак минус указывает на то, что ток i — это ток разрядки в контуре цепи, обозначенном на рисунке штриховой линией, направленный навстречу напряжению на емкостном элементе.
Разделим переменные в (1.22)
и проинтегрируем (1.23)
(1.24)
где неизвестная постоянная интегрирования записана в виде (-In А).
После потенцирования (1.24) получим
(1.25)
Для определения постоянной А в (1.25) обратимся к закону коммутации для емкостного элемента (1.16). Так как до коммутации, т.е. и в момент времени t=0_, емкостный элемент был заряжен до напряжения источника, то
ис (0_) = Е=ис (0+)=А.
Подставив значение постоянной А в (1.25), получим зависимость изменения напряжения на емкостном элементе при его разрядке (рис. 1.12, б):
(1.26)
где τ = RC — постоянная времени цепи.
Ток разрядки скачком возрастает от нуля
i(0_) = 0 до i(0+) = E/R, а затем убывает экспоненциально (см. рис. 1.12, б).
Зарядка конденсатора при малых значениях тока и больших значениях ЭДС Ев цепи на рис. 1.12, а позволяет накопить в нем большую энергию, которая может использоваться при разрядке большим током в импульсных источниках.
ЗАДАЧИ И ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ
1.1. Конденсатор емкостью С = 1 Ф, имеющий заряд q = 1 Кл, в момент времени t= 0 начинает разряжаться через резистор сопротивлением R= 1 Ом (см. рис. 1.12). Определите ток в резисторе в момент времени i=0,5 с.
Ответ: 0,6065 А.
1.2. Сохранив условия задачи 1.1, определите энергию конденсатора в момент времени t=0,5 с.
Ответ: 0,183 Дж.
1.3. Сохранив условия задачи 1.1, определите, какое количество энергии выделится в виде тепла в резисторе к моменту времени t= 0,5 с.
Ответ: 0,317 Дж.
1.4. Плоский конденсатор (см. рис. 1.7, а) состоит из двух листов фольги каждый площадью 20 см2, разделенных слоем парафина (см. табл. 1.1) толщиной 0,05 мм с относительной диэлектрической проницаемостью εr = 2,1. Определите емкость конденсатора.
Ответ: 0,745 нФ.
Дайте определения электрического потенциала и разности электрических потенциалов.
Дайте определения линейных и нелинейных емкостных элементов.
Определите общую емкость двух конденсаторов, включенных параллельно, емкостью 1 мкФ каждый (см. рис. 1.9).
Ответ: 2 мкФ.
1.8. Определите общую емкость двух конденсаторов, включенных последовательно, емкостью 2 мкФ каждый (см. рис. 1.10).
Ответ: 1 мкФ.
3
studfile.net
Последовательное и параллельное соединение конденсаторов

Последовательное и параллельное соединение конденсаторов применяют в зависимости от поставленной цели. При последовательном соединении конденсаторов уменьшается общая емкость и увеличивается общее напряжение конденсаторов.
Емкость набора при последовательном соединении конденсаторов будет вычисляться по формуле:
1 | = | 1 | + | 1 | + | 1 | + … | |
C | C1 | C2 | C3 |
А общее напряжение будет равняться сумме напряжений всех конденсаторов.
Например: мы имеем три конденсатора по 30 мкФ x 100 В каждый. При их последовательном соединении общий конденсатор будет иметь следующие данные: 10 мкФ x 300 В.
При параллельном соединении общая емкость конденсаторов складывается, а допустимое напряжение всего набора будет равно напряжению конденсатора, имеющего самое низкое значение допустимого напряжения из всего набора.
C = C1 + C2 + C3 + C4 + …Например: мы имеем три конденсатора 30 мкФ x 100 В, соединённые параллельно. Параметры всего набора конденсаторов в этом случае будут следующие: 90 мкФ x 100 В.
Соединение более двух конденсаторов последовательно редко встречается в реальных схемах. Хотя для увеличения общего напряжения такой набор может встретиться в высоковольтных источниках питания. А вот в низковольтных источниках довольно часто встречается параллельное соединение нескольких конденсаторов для сглаживания пульсаций после выпрямления при больших токах потребления.
Обратите внимание, формулы вычисления емкости последовательного и параллельного соединения конденсаторов в точности обратны формулам вычисления сопротивления при последовательном и параллельном соединении резисторов.
katod-anod.ru
Схемы соединения конденсаторов
При проектировании и построении различных электрических цепей широко используются конденсаторы (емкости). В разрабатываемых схемах они могут соединяться как с другими электронными компонентами, так и между собой. Во втором случае такие соединения подразделяются на последовательные, параллельные, и последовательно-параллельные. Нужно еще отметить, что последовательно-параллельные соединения конденсаторов иначе называются смешанными.
Последовательное соединение конденсаторовЭто способ соединения конденсаторов ( электрических емкостей ) используется тогда, когда то напряжение, которое к ним подводится, выше чем то, на которое они рассчитаны. Используется оно в подавляющем большинстве случаев для того, чтобы избежать пробоев этих элементов устанавливаемых в электронных схемах.
Конденсаторы, соединенные между собой последовательно – это, по сути дела, цепочка. В ней вторая обкладка первого элемента соединяется с первой обкладкой второго; первая обкладка третьего – со второй второго и так далее.

Последовательное соединение конденсаторов
Напряжение на конденсаторах обратно пропорционально ёмкостям конденсаторов.
Cобщ = | C1 × C2 × C3 C1 + C2 + C3 |
Наибольшее напряжение будет на конденсаторе с наименьшей ёмкостью.
Параллельное соединение конденсаторовЭтот способ соединения конденсаторов используется тогда, когда необходимо существенно увеличить их общую емкость. Суть такого наращивания состоит в том, что значительно возрастает общая площадь пластин по сравнению с той, которую имеет каждый конденсатор в отдельности. Что касается общей емкости всех конденсаторов, соединенных друг с другом параллельно, то она равняется сумме емкостей каждого из них.

Параллельное соединение конденсаторов
Cобщ = C1 + C2 + C3
Uобщ = U1 = U2 = U3
qобщ = q1 + q2 + q3
Как нетрудно догадаться из самого названия, этот тип соединения конденсаторов представляет собой ни что иное, как некую комбинацию описанных выше. То есть, смешанное соединение конденсаторов – это сочетание их соединения параллельного и последовательного.
На практике в большинстве случаев оно используется тогда, когда отдельные элементы по таким характеристикам, как емкость и рабочее напряжение, не соответствуют тем параметрам, которые нужны для функционирования электротехнической установки. Когда конденсаторы соединяются между собой именно по такой схеме, то в первую очередь определяются те эквивалентные емкости, которые имеют их параллельные группы, а затем та емкость, которую имеет соединение последовательное.

Смешанное соединение конденсаторов
C2;3 = C2 + C3
Cобщ = | C1 × C1 + |
selectelement.ru