Переменный ток картинки – » :

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. На горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

Рис. 1. Графическое изображение постоянного и переменного тока

На рис. 1 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

 Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 1 графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Перейдем теперь к изучению графика переменной ЭДС. На рис. 2 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Рис. 2. Построение графика переменной ЭДС

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными. Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т (рис. 3) и измеряется в секундах.

Все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em
и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Как видно из графика, кроме амплитудного значения, существует бесчисленное множество промежуточных значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Единицей измерения частоты переменного тока является 1 Герц.

Величина действующего значения переменного синусоидального тока I = 0,707 Im

hron.com.ua

Вопрос 1. Переменный ток, его графическое изображение. Получение переменного тока.

  Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению.Такие источники называются генераторами переменного тока. На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока. Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).
Рисунок 1. Схема простейшего генератора переменного тока
Убедимся в том, что такое устройство действительно является источником переменной ЭДС. Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС. Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС. В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой. В этом нетрудно убедиться, если использовать для определения направления ЭДС известное намправило правой руки. Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки. Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита. Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется. Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению. ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи. Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток. Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.
Графическое изображение постоянного и переменного токов Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени. Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока). На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным. Рисунок 2. Графическое изображение постоянного и переменного тока Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток. Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА. Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика. То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика. Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА. Построение графика переменной ЭДС Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС. Рисунок 3. Построение графика переменной ЭДС Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки. В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1. При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2). По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой. Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3). При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки. График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5) На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки. Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения. Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС. Полученная нами волнообразная кривая называется синусоидой, а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными. Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом. Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток. Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока. Период, амплитуда и частота — параметры переменного тока Переменный ток характеризуется двумя параметрами — периодом и амплитудой, зная которые мы можем судить, какой это переменный ток, и построить график тока. Рисунок 4. Кривая синусоидального тока Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах. Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом.Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой. Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения. Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока. Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения. Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного. Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением. i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения. Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение. Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т. Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи. Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f. Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды, необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f Частота переменного тока измеряется единицей, называемой герцем. Если мы имеем переменный ток, частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу. Итак, мы определили параметры переменного тока — период, амплитуду и частоту, — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики. При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту. Круговая частота обозначается буквой ω и связана с частотой f соотношениемω = 2πf Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью. Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна ω = 360°f. Итак, мы пришли к выводу, что ω = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2π радиан, где π=3,14. Таким образом, окончательно получим ω = 2πf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

cyberpedia.su

Однофазный переменный ток

Однофазный переменный ток

Подробности
Категория: Электротехника

Однофазный переменный ток

Практически в домашних условиях применяют однофазный переменный ток, который получают с помощью генераторов переменного тока. Устройство и принцип действия этих генераторов основывается на явлении электромагнитной индукции — возникновение электрического тока в замкнутом проводнике при изменении магнитного потока, проходящего через него. Это явление было открыто английским ученым М.Фарадеем (1791-1867) в 1831 г.
Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:

                                                                        i = Im · sin(2·π·f·t),
где  i— мгновенное значение тока;
       Im   — амплитудное (наибольшее) значение тока; 
        f — частота переменного тока;
        t — время.

  

 

На рис. справа представлен график переменного тока и указаны амплитудные и мгновенное значения переменного тока в момент времени t

 


Частота измеряется в герцах (Гц) в честь немецкого ученого Г. Герца (1857-1894). В сети переменного тока она равна 50 Гц. Частота переменного тока характеризует быстроту периодических процессов, число колебаний, совершаемых в единицу времени. Она измеряется с помощью специальных приборов — частотомеров.
Величина, обратная частоте, называется периодом колебания Т. Он равен для сети переменного тока 0,02 секунды.
Частота переменного тока зависит от частоты вращения ротора генератора и числа пар полюсов индуктора. Она определяется по формуле:                    

                                 

где  p — число пар полюсов индуктора;
       n — частота вращения ротора в минуту.
Если генератор имеет одну пару полюсов, то ротор такого генератора совершает 3000 об/мин для получения переменного тока частотой 50 Гц.
Переменный ток так же, как и постоянный ток, может производить тепловое действие. Накаливание волоска лампочки осуществляется как переменным, так и постоянным током. Поэтому, сравнивая тепловые эффекты постоянного и переменного токов (Q= = Q_), получают соотношение между действующим (эффективным) и максимальным токами:                                                         

 

I =

Im

≈ 0,7· Im

 

 

√2

 

 

или напряжениями:  

 

Um

Um

≈ 0,7· Um

 

 

√2

 

                                                                
где   I, U — действующие значения тока и напряжения; 
Im, Um— максимальные значения тока и напряжения.

Измерительные приборы, включенные в цепь переменного тока, показывают действующие значения тока или напряжения.

Переменный ток одного напряжения, в отличие от постоянного, легко преобразовать в переменный ток другого напряжения с помощью трансформатора.

Трансформатором называется электромагнитный аппарат, который служит для преобразования переменного тока одного напряжения в переменный ток другого напряжения при неизменной частоте тока. Трансформаторы широко используются при передаче и распределении электрической энергии переменного тока. Они бывают однофазные и трехфазные.

Однофазный трансформатор состоит из сердечника и двух обмоток изолированного провода. Сердечник трансформатора делается из листов электротехнической стали и служит магнитопроводом. Листы стали изолируются лаком для уменьшения потери энергии в сердечнике. Обмотка, подключенная в сеть, называется первичной, а обмотка, с которой снимается напряжение, — вторичной. Трансформаторы, в которых вторичная обмотка имеет большее число витков, чем первичная, являются повышающими, а трансформаторы, в которых вторичная обмотка имеет меньшее число витков, чем первичная, являются понижающими. Отношение числа витков W1 и W2 обеих обмоток трансформатора равно отношению напряжений U1 и U2 на зажимах обмоток и называется коэффициентом трансформации К, т. е. 

 

 

 

При малых потерях энергии в трансформаторе (1-3%) можно принять, что мощность во вторичной цепи трансформатора приблизительно равна мощности в первичной. Тогда  Р2 ≈ Р1  или I2 . U2 I1 . U1 , откуда  

 

 

I2

=

U1

=

W1

= K

 

I1

U2

W2

 

 

Следовательно, токи в обмотках трансформатора обратно пропорциональны напряжениям, а значит и числу витков обмоток. Это означает, что в повышающем трансформаторе сила тока во вторичной обмотке меньше, чем в первичной, и поэтому вторичная обмотка может быть выполнена из более тонкой проволоки; в понижающем же трансформаторе, наоборот, вторичная обмотка имеет большее сечение провода обмотки, чем первичная.

 Для изменения напряжений в небольших пределах применяют трансформаторы с одной обмоткой — автотрансформаторы, которые представляют как бы трансформатор с последовательным соединением обмоток.

technologys.info

Конспект урока по теме «Переменный ток. Параметры, характеризующие переменный ток. Графическое изображение переменного тока»

Тип урока – формирование новых знаний.

Оборудование:

  • таблица “Принцип работы генератора переменного тока”,
  • видеофрагмент “Переменный ток против постоянного”,
  • модель генератора переменного тока.

Цель урока:

  • изучить устройство и принцип работы генератора переменного тока, определение переменного тока, параметры, характеризующие ток  (амплитуда, период, частота, фаза), сформировать умение аналитическим и графическим методом определять параметры переменного тока;
  • развивать умение анализировать и классифицировать полученную информацию, пользоваться справочной литературой.

Ход урока

1. Организационный момент.

2. Актуализация опорных знаний. (Слайды 1,2)

1. Проводник находится в электрическом поле. Как движутся в нём свободные электрические заряды?

А. Совершают колебательное движение
Б. Хаотично
В. Упорядоченно

2. Что принято за направление электрического тока?

А. Направление упорядоченного движения положительно заряженных частиц.
Б. Направление упорядоченного движения отрицательно заряженных частиц.
В. Определённого ответа дать нельзя.

3. Какова роль источника тока в электрической цепи?

А. Порождает заряженные частицы.
Б. Создаёт и поддерживает разность потенциалов в электрической цепи.
В. Разделяет положительные и отрицательные заряды.

4. В проводнике отсутствуют электрическое поле. Как движутся в нём свободные электрические заряды?

А. Совершают колебательное движение.
Б. Хаотично.
В. Упорядоченно.

5. Какие силы вызывают разделение зарядов в источнике тока?

А. Кулоновские силы отталкивания.
Б. Сторонние (неэлектрические) силы.
В. Кулоновские силы отталкивания и сторонние (неэлектрические) силы.

3. Сообщение цели и плана урока.

Мы повторили материал о постоянном электрическом токе, а теперь изучим переменный электрический ток. (Слайды 3,4)

знать:

  • определение переменного тока
  • параметры переменного тока (амплитуда, период, частота, фаза)
  • способ получения переменного тока

уметь:

  • определять параметры переменного тока
  • строить по данным таблицы и читать график переменного тока

4. Изучение нового материала.

До конца XIX века использовались только источники постоянного тока – химические элементы и генераторы. Это ограничивало возможности передачи электрической энергии на большие расстояния. Проблема была решена при использовании переменного тока и трансформаторов.

(Слайды 5,6)

Переменный ток – это ток, изменение которого по величине и направлению повторяется периодически через равные промежутки времени и который характеризуется амплитудой, периодом, частотой, фазой.

Амплитуда – максимальное значение физической величины.(обозначают прописными буквами с индексом m: Im, Um, Em

Период – время, в течение которого переменный ток совершает полный цикл своих изменений. Т – период, с.

Частота – это число периодов в секунду . f – частота, Гц.

f = 50Гц– промышленная частота переменного тока в России.

Это интересно. (Слайд 7).

(Сообщение студента о выборе промышленной частоты в других странах).

Рассмотрим примеры параметров переменного тока. (Слайд 8)

Получение (генерирование) переменного тока.

(Слайды 9,10)

Честь создания генераторов переменного тока, совершивших революцию в электротехнике, принадлежит сербу Н. Тесле и русскому инженеру М.О. Доливо-Добровольскому.

Работа генератора переменного тока основана на явлении электромагнитной индукции (ЭМИ).

Устройство генератора переменного тока. (Слайд 11)

  1. Обмотка статора с большим числом витков, размещенных в его пазах. В ней наводится ЭДС.
  2. Станина, внутри которой размещены статор и ротор.
  3. Ротор (вращающаяся часть генератора) создаёт магнитное поле от электромашины постоянного тока.
  4. Статор состоит из отдельных пластин для уменьшения нагрева от вихревых токов. Пластины – из электротехнической стали.
  5. Клеммный щиток на корпусе станины для снятия напряжения.

При равномерном вращении ротора в обмотках статора наводится ЭДС:

е = E sin t = BSN sin 2nt,

где e = BSN – максимальное значение ЭДС; n – число оборотов ротора в секунду; N – число витков обмотки статора.

Вырабатываемое напряжение в промышленных генераторах -В.

При вращении рамки в магнитном поле меняется магнитный поток. В рамке наводится переменная ЭДС индукции. Если цепь замкнута, то возникает индуктивный ток, который непрерывно меняется по модулю, а через 1/2 Т – по направлению.

Вынужденные электрические колебания, возникшие в цепях под действием напряжения, осуществляются по синусоидальному закону u =sint или u =cost.

Построение графика синусоидального тока по данным таблицы.

t, c

0

0.1

0,2

0.3

0.4

0.5

0.6

I, А

50

0

-50

0

50

0

-50

(Слайд 13,14)

Задание по графику.

Определить по графику: *T – период, f – частоту, Im – амплитуду силы тока.

5. Закрепление изученного материала – решение задач.

1). Сила тока в цепи изменяется по закону i = 3cos (100t + /3) A. Определите амплитуду, круговую частоту и начальную фазу колебаний силы тока.

Ответ: Im = 3A, = 100 рад/с, o= /2 рад/c  

2).Напряжение меняется с течением времени по закону u = 5cos(8t + 3/2) B. Определите амплитуду, круговую частоту и начальную фазу напряжения.

Ответ: Um = 5B, = 8 рад/с, o = 3/2 рад/с

3). Сила тока меняется с течением времени по закону I = 2sin(3t + /2) A. Определите амплитуду, круговую частоту и начальную фазу силы тока.

Ответ:Im = 2A, = 3 рад/c, o= —/2 рад/c

6. Домашнее задание

Составить сравнительную таблицу “Преимущества и недостатки постоянного и переменного тока”.

7. Подведение итога урока

.

Презентация

urok.1sept.ru

Понятие о переменном токе — Основы электроники

До сих пор мы рассматривали электрический ток, направ­ление и сила которого оставались постоянными, т. е. не изме­нялись с течением времени. Такой ток мы называли постоян­ным. При постоянном токе электроны движутся по проводнику все время в одном и том же направлении (если не считать хаотического теплового движения электронов), причем количе­ство движущихся электронов и скорость, их движения все время остаются постоянными.

Условное графическое изображение постоянного тока при­ведено на рисунке 1.

Рисунок 1. График переменного тока.

Переменный ток отличается от постоянного тем, что он периодически изменяет свое направление, т. е. течет по про­воднику то в одну, то в другую сторону.

Переменный ток можно получить при помощи очень про­стой схемы, изображенной на рисунке 2а. При каждом передви­жении переключателя изменяется лишь направление тока в цепи, сила же тока при этом остается все время неизменной.

Рисунок 2. Простейший способ получения переменного тока а) и его график б).

Графическое изображение переменного тока, полученного таким способом, приведено на рисунке 2б, где ток, протекающий по проводнику в одном направлении, отложен над горизонтальной осью времени, а ток обратного направления — под осью времени.

Рассмотрим другой, белее распространенный случай пере­менного тока, когда изменяется не только направление тока, но и его сила.

Представим себе проводник, согнутый в виде рамки и вра­щающийся в равномерном магнитном поле (рисунок 3).

Рисунок 3. Рамка вращающаяся в равномерном магнитном поле.

При вращении рамки магнитный поток, охватываемый ею, будет изменяться, следовательно, в рамке возникнет ЭДС индук­ции. В этом случае форма ЭДС индукции возникающей в рамке, а при подключению нагрузки к ней и форма переменного электрического тока текущего по цепи будет иметь вид показанный на рисунке 4, то есть изменение переменного тока будет осуществляться по закону синиуса.

Рисунок 4. График синусоидального переменного тока.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

www.sxemotehnika.ru

Переменный электрический ток

В данной статье расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. Переменный электрический ток — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока. В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют осциллограф. Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Синусоидальная форма переменного тока

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

Uср = 2 * Umax / π = 0,636 Umax

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Осциллограмма полуволны

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

Umax = Uизм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток. Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Трехфазный электрический ток

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Генератор трехфазного электрического тока

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

схема питания по независимым линиям

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

схема питания по общим линиям

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

схема питания по треугольнику

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

meanders.ru

Переменный ток: основные понятия

Господа, мы обсудили основные моменты, касающиеся постоянного тока. Теперь пришло время поговорить про переменный ток. Эта тема немного сложнее постоянного тока и одновременно с этим гораздо интереснее. Сегодня мы коротенечко рассмотрим вопросы, касающиеся переменного тока: что он из себя представляет, как выглядит, чем характеризуется и все в таком духе.

Для начала, призвав на помощь нами всеми любимого капитана Очевидность, введем определение. Как он подсказывает нам, переменный ток – это такой ток, который изменяется во времени. Изменяться он может по величине, направлению или по тому и другому вместе. Когда мы рассматривали постоянный ток, мы полагали, что в течении всего времени его величина постоянна: если сейчас течет 10 Ампер, то и полчаса назад текло 10 Ампер и через час будет течь 10 Ампер. Если же величина тока меняется (сейчас 10 Ампер в одну сторону, а через некоторое время 5 Ампер в другую сторону), то мы уже имеем дело с током переменным. То есть переменный ток можно рассматривать как некоторую зависимость (функцию) тока от времени: I(t). В каждые моменты времени tмгн имеет место быть конкретное значение Iмгн=I(tмгн).

Переменный ток неразрывно связан с переменным напряжением. И если при постоянном токе они были просто связаны между собой через закон Ома, то здесь в общем случае все чуточку сложнее. Как именно сложнее – будем выяснять по ходу новых статей. Нет-нет, не переживайте, если дело касается обычных резисторов, закон Ома все так же продолжает выполняться . Для определенности мы будем в данной статье использовать термин «переменный ток», но все, что здесь сказано, применимо так же и для переменного напряжения: просто меняем I(t) на U(t) и все останется верным.

Переменный ток может быть периодическим и непериодическим. Периодический – это такой, который через некоторое время, называемое периодом, полностью повторяет свою форму. Ниже на картинках это будет наглядно видно. Непериодический соответственно колбасится как ему вздумается и мы не можем в нем выделить какой бы то ни было период по крайней мере на протяжении времени наблюдения.

На рисунка 1-4 приведены различные виды переменных сигналов. С некоторыми из них позднее мы подробно познакомимся.

Рисунок 1 – Синусоидальный ток

Рисунок 2 – Прямоугольный ток

Рисунок 3 – Треугольный ток

Рисунок 4 – Шум

На всех этих картинках по оси Х у нас время, а по оси Y – величина тока в Амперах.

На рисунке 2 изображен ток, форма которого называется синусом. Такая форма тока является одной из самых важных и мы будем его подробно рассматривать в дальнейшем. А начнем его изучать прямо в этой статье.

На рисунке 3 изображен прямоугольный ток. Он тоже весьма важен и его тоже мы будем потом подробно рассматривать.

На рисунке 4 изображен треугольный ток. И такая форма тока встречается не редко.

На рисунке 5 я изобразил ток хаотичной формы (шумовой). С ним постоянно приходится иметь дело в радиотехнике. В ближайшее время его касаться не планирую, но со временем – вполне возможно.

Это лишь часть возможных форм токов, каждый из которых можно считать переменным. Безусловно, существуют и другие формы, главное, чтобы этот ток менялся во времени.

Знакомство с переменным током мы начнем с синусоидального тока. В общем виде закон изменения этого тока можно описать вот таким вот хитрым выражением

Давайте разберемся что здесь есть что. Для этого взглянем на рисунок 5. Там наглядно все прорисовано.

Рисунок 5 – Синусоидальный ток

Аm называется амплитудой тока. Она показывает, какую максимальную величину имеет синусоидальный ток, а именно величину того «пика», которого достигает синус. Это становится возможным благодаря тому, что чистый «математический» синус без какого бы то ни было множителя Аm достигает в пике единички. Ясно, что если мы на единичку умножим наше число Аm то получим в пике как раз это самое число Аm. Очевидно, что чем больше Аm, тем большего значения достигает ток.

Величины ω на рисунке 5 нет. Зато на рисунке 5 есть величина f и T. Что же это такое?

Т – это период тока. Это время в секундах, за которое сигнал совершает полный цикл своих изменений. Взглянете на рисунок 5. В точке А ток пересекает ось времени, начинает расти, идет вверх до точки B, где прекращает расти и начинает убывать, снова пересекает ось времени в точке С, идет в отрицательную полуплоскость до точки D, там перестает расти и начинает убывать и становится равным нулю в точке E. Видно, что начиная с точки Е характер изменения тока будет точно таким же, как если бы он начинался с точки А. Посему время, за которое ток изменяется от точки А до точки Е и есть период Т.

Частота f – величина, обратная периоду:

Она показывает сколько периодов (по рисунку 5 – изменений от точки А до точки Е) умещается в одной секунде времени. Соответсвенно чем больше частота, тем меньше пириод и наоборот.

Изменяется частота в герцах. Если частота 1 Гц – это значит, что время изменения тока от точки А до точки Е равно 1 секунда. Если частота, например, 50 Гц (как в наших с вами розетках), это значит, что за 1 секунду успевает произойти 50 полных циклов изменения тока от точки А до точки Е. Если частота 2,4 ГГц (как в некоторых процессорах, и, кроме того, на такой частоте работает всеми нами любимый Wi-Fi), это значит, что за 1 секунду сигнал претерпевает аж 2,4 миллиарда итераций от точки А до точки Е!

С периодом Т (и, соответственно, с частотой f) плотно связана другая величина – как раз та самая ω, которая стоит в нашей формуле под синусом. Называется она круговая частота и связана она следующим образом

 

Ох ты ж блин. Чем дальше – тем хуже. Какие-то π откуда-то повылазили. Откуда они тут вообще и что забыли?! Давайте разберемся.

Господа, надеюсь, вы помните из курса математики, что синус – сама по себе функция периодическая и период синуса как раз равен 2·π радиан. Ну или 360°, что тоже самое, однако я предпочитаю обычно вести расчет в радианах. То есть для простого классического математического синуса расстояние от точки А до точки Е равно 2·π=6,28 радиан. Как же теперь увязать эти радианы со временем и с нашим периодом? Ведь в нашем графике тока у нас по оси Х именно время, а не радианы. Очень просто. Полагаем, что 2·π радианам соответствует наш период Т. Для того же, чтобы посчитать скольки радианам соответствует произвольное время t1 надо выполнить следующее преобразование: . Знаю, звучит запутанно, поэтому давайте разберем на примере. Давайте запишем зависимость тока от времени для периода Т=4 секунды. Как будет выглядеть преобразованная формула синуса для этого случая? Как-то так

 

Изображаем это на рисунке 6.

Рисунок 6 – Синусоидальный ток с периодом 4 секунды

Видите, все честно, на графике наглядно видно, что период синуса равен, как мы и хотели, четырем секундам.

Итак, с амплитудой разобрались, с круговой частотой вроде тоже. Осталось последнее – φ0 – начальная фаза. Что же это такое? Все просто, господа. Фаза здесь – это просто сдвиг графика тока по временной оси. То есть график тока будет стартовать не с нуля, а с какого-то другого значения. Действительно, если мы в нашу формулу для зависимости тока от времени подставим время, равное нулю, то получим

Из этого выражения очевидно еще и то, что фаза измеряется в градусах или радианах: только градусы или радианы имеют право стоять под синусом.

Давайте возьмем наш график тока с периодом Т=4 секунды и положим, что начальная фаза равна 30° или, что тоже самое, 0,52 радина. Имеем

Построим график для данного случая на рисунке 7.


Рисунок 7 – Синусоидальный ток с периодом 4 секунды и начальной фазой 30°

Внимательный читатель, посмотрев попристальнее на график, изображенный на рисунке 7, скажет: так фаза вообще какая-то скользкая штука. Она ж зависит от того, где мы поставим нолик, то есть когда начнем наблюдать сигнал. И вообще может быть чуть ли не любой. Господа, замечание абсолютно верно! Сама по себе как таковая фаза достаточно редко когда интересна. Гораздо интереснее разность фаз между несколькими сигналами. Взгляните на рисунок 9. На нем изображены два графика: один зеленый имеет начальную фазу в φ0_зелен=90°, а второй синий – φ0_син=90°. Разность фаз между ними

 

Рисунок 8 – Два сигнала, сдвинутые по фазе

И заметьте, господа, эта разность фаз одна и таже всегда для любой точки этих графиков. Без привязки к нулю и к началу. Вот это уже гораздо интереснее и может много где пригодиться.

Вообще фаза такая штука, что как-то традиционно на нее обращается не очень много внимания, между тем, как на самом деле это очень важная величина. Фазовая модуляция, трехфазные цепи, фазированные антенные решетки, фазовые системы автоподстройки частоты, когерентная обработка сигналов – вот лишь малая область систем, где фаза сигнала является одним из главнейших факторов. Поэтому, господа, постарайтесь с ней подружиться .

На сегоня заканчиваем, господа. Сегодня была вводная статья в мир переменного тока. Дальше будем разбираться в нем более подробно. Всем вам большой удачи, и пока!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


myelectronix.ru

0 comments on “Переменный ток картинки – » :

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *