Подбор трансформаторов тока для счетчиков – Как выбрать трансформатор тока для счетчика: таблица и формулы

Как выбрать трансформатор тока для счетчика: таблица и формулы

При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1 (Глава 1.5).

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  1. Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  2. Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  3. Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  4. Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  5. При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  6. Расчет параметров ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:

Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

samelectrik.ru

Выбор трансформаторов тока для электросчетчика 0,4кВ

Учет электроэнергии с потребляемым током более 100А выполняется счетчиками трансформаторного включения, которые подключаются к измеряемой нагрузке через измерительные трансформаторы. Рассмотрим основные характеристики трансформаторов тока.

1 Номинальное напряжение трансформатора тока. 

В нашем случае измерительный трансформатор должен быть на 0,66кВ.

2 Класс точности.

Класс точности измерительных трансформаторов тока определяется назначением электросчетчика. Для коммерческого учета класс точности должен быть 0,5S, для технического учета допускается – 1,0.

3 Номинальный ток вторичной обмотки.

Обычно 5А.

4 Номинальный ток первичной обмотки.

Вот этот параметр для проектировщиков наиболее важен. Сейчас рассмотрим требования по выбору номинального тока первичной обмотки измерительного трансформатора. Номинальный ток первичной обмотки определяет коэффициент трансформации.

Коэффициент трансформации измерительного трансформатора – отношение номинального тока первичной обмотки к номинальному току вторичной обмотки.

Коэффициент трансформации следует выбирать по расчетной нагрузке с учетом работы в аварийном режиме. Согласно ПУЭ допускается применение трансформаторов тока с завышенным коэффициентом трансформации:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

В литературе можно встретить еще требования по выбору трансформаторов тока. Так завышенным по коэффициенту трансформации нужно считать тот трансформатор тока, у которого при 25%-ной расчетной присоединяемой нагрузке (в нормальном режиме) ток во вторичной обмотке будет менее 10% номинального тока счетчика.

А сейчас вспомним математику и рассмотрим на примере данные требования.

Пусть электроустановка потребляет ток 140А (минимальная нагрузка 14А). Выберем измерительный трансформатор тока для счетчика.

Выполним проверку измерительного трансформатора Т-066  200/5. Коэффициент трансформации у него 40.

140/40=3,5А – ток вторичной обмотки при номинальном токе.

5*40/100=2А – минимальный ток вторичной обмотки при номинальной нагрузке.

Как видим 3,5А>2А – требование выполнено.

14/40=0,35А – ток вторичной обмотки при минимальном токе.

5*5/100=0,25А – минимальный ток вторичной обмотки при минимальной нагрузке.

Как видим 0,35А>0,25А – требование выполнено.

140*25/100 – 35А ток при 25%-ной нагрузке.

35/40=0,875 – ток во вторичной нагрузке при 25%-ной нагрузке.

5*10/100=0,5А – минимальный ток вторичной обмотки при 25%-ной нагрузке.

Как видим 0,875А>0,5А – требование выполнено.

Вывод: измерительный трансформатор Т-066  200/5 для нагрузки 140А выбран правильно.

По трансформаторам тока есть еще ГОСТ 7746—2001 (Трансформаторы тока. Общие технические условия), где можно найти классификацию, основные параметры и технические требования.

При выборе трансформаторов тока можно руководствоваться  данными таблицы:

Выбор трансформаторов тока по нагрузке

Обращаю ваше внимание, там есть опечатки

Советую почитать:

220blog.ru

Выбор трансформаторов тока для присоединения расчетных счетчиков

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

где:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВАНапряжение
380 В10,5 кВ
Нагрузка, АКоэффициент трансформации, АНагрузка, АКоэффициент трансформации, А
101620/5
152330/5
203030/5
253840/5
304650/5
355350/5 (75/5)
406175/5
507775/5 (100/5)
6091100/5
70106100/5 (150/5)
80122150/5
90137150/5
100152150/5610/5
125190200/5
150228300/5
160242300/5910/5
1801010/5 (15/5)
200304300/5
240365400/51315/5
2501415/5
300456600/5
320487600/51920/5
400609600/52330/5
5608531000/53240/5
6309601000/53640/5
75011401500/54350/5
10001520

raschet.info

Подбор трансформатора тока — ГОСТ, ПУЭ, таблицы, формулы

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

В таблице выше:

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не более 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

расчет по нагрузке и назначение

Содержание статьи:

Технические решения современных домов изобилуют приборами, которые создают нагрузку на сеть. Электрические варочные панели, духовки, котлы и бойлеры лидируют в потреблении. Запросы современных индукционных плит доходят до 11000 ВА, а учётная аппаратура не подключается напрямую при 100+ А. Альтернативный выбор — использовать трансформаторы тока (ТТ) для электросчётчиков.

Устройство ТТ

Трансформатор тока

Трансформаторы преобразовывают измеряемую величину из большей в меньшую или наоборот. Действуют они с помощью электромагнитной индукции. В основе прибора находится магнитный сердечник, собранный из прямоугольных стальных рамок, а на нём закреплены витки изолированных проводов — обмотки. Входная катушка подключена к источнику и у ТТ представлена всего одним витком. В зависимости от модели трансформатора место первичной обмотки может занимать:

  • намотка на сердечнике;
  • зафиксированная шина с соединительным винтом, которая проходит через корпус;
  • отверстие ступенчатой или прямоугольной формы, чтобы пропустить и закрепить шину при монтаже;
  • круглое окно под жилу кабеля для бесконтактных соединений (бытовые реле со встроенными трансформаторами).

Конструкция ТТ

Отличие измерительных трансформаторов от силовых в том, что ток вторичной цепи остаётся постоянным вне зависимости от сопротивления потребителя — меняется напряжение. У включённого в сеть трансформатора тока нельзя размыкать вторичную обмотку. Она всегда должна быть замкнута на измерительное устройство, при его отсутствии — перемычками накоротко. Если продуцируемый ток исчезнет, напряжение достигнет значения в киловольты. Скачок спровоцирует выход из строя аппаратуры (особенно чувствительны полупроводниковые приборы), повреждение изоляции и возгорание, витковое замыкание, травмирование обслуживающего персонала. В целях безопасности заземление каждой обмотки в одной точке является обязательным.

Ключевые параметры измерительных трансформаторов

Принцип действия трансформатора тока

Номинальное напряжение определяет цепи, в которых трансформатор может функционировать. Существуют две большие группы: до 1кВ и выше. В быту распространены преобразователи класса 0,66 кВ.

Коэффициент трансформации — отношение номинального первичного и вторичного токов. На входе значения варьируются в зависимости от параметров питающей сети: 1, 2, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000. На выходе оно унифицировано под шкалу измерительных приборов 1, 2, 5. Маркировка с обозначением выглядит как дробь (50/5, 100/5, 200/5 и т. д.).

Класс точности указывает на максимальную допустимую погрешность в учёте энергии в процентах. Наиболее точные приборы используются в коммерческих целях:


Символ s указывает на то, что учёт возможен в пределах минимального деления. Для других моделей это слепая зона.

В измерительных цепях разной направленности:

Релейная защита: 10Р.

Если количество обмоток больше одной, для каждой класс точности определяется отдельно. До 1000 В принято соединять простые ТТ последовательно, а выше 1000 В это накладно, поэтому устанавливается один преобразователь с несколькими обмотками. Например, первая может быть на цепь защиты — 10Р, вторая 0,5, третья — 0,5s.

При несоблюдении номинальной мощности нагрузки, указанной в характеристиках трансформатора (5 ВА, 10 ВА, 15 ВА, 30 ВА и т. д.) класс точности падает относительно заявленного.

Оборудование учётного узла

Вводной автоматический выключатель

Для учётного шкафа узла свыше 100 А определен минимальный комплект оборудования.

Вводной автоматический выключатель, через который силовая линия заходит во внутреннюю сеть. От его нижней части до трансформаторов доступ для неквалифицированного персонала закрыт по нормам. Простой вариант защиты представлен оргстеклом, зафиксированным опломбированными шпильками.

Трансформаторы тока. Коэффициент трансформации зависит от мощности, которая выделена пользователю сети. Расчёт производят сотрудники Энергосбыта и предоставляют ТУ (технические условия).

Однофазный счётчик не предполагает использование преобразователей. В трёхфазных сетях распределение нагрузки может быть неравномерно, поэтому учёт ведётся по каждой фазе отдельно. Выбирать все 3 ТТ необходимо от одного производителя, с одинаковым набором свойств.


Технические паспорта нужно сохранить до регистрации узла. Проверяющий не примет трансформатор, после выпуска которого прошло больше года. Для пломбы на корпусе устройства присутствует специальная заглушка с винтом. Под ней может находиться вторая пара клемм для заземления и крепление для сети напряжения.

Испытательная коробка переходная

Колодка клеммная измерительная ККИ (испытательная панель) состоит из 2 секторов. Токовый имеет 7 пар клемм. 1 — заземление. К 6 остальным подходят провода от вторичных обмоток ТТ. Между ними можно установить попарные перемычки для замыкания сети перед отключением учётного устройства. В сектор напряжения заходят кабеля фаз A, B, C и нулевой проводник N. Ползунковые перемычки позволяют размыкать цепь при помощи отвёртки.

Счётчики могут быть электромеханические (дисковые), электронные (с ЖК дисплеем, дистанционным управлением), комбинированные. Энергосбыт предписывает требования к прибору в ТУ индивидуально. Схема подключения каждой модели находится на крышке или в прилагаемом паспорте.

Счетчики электроэнергии

Универсальный счётчик имеет 10 клемм, сгруппированных по 3 на каждую фазу, последняя — ноль. Первая, третья клемма — выход с вторичной обмотки трансформатора И1, И2; вторая — фазный провод.

Производители выпускают похожие счётчики прямого и нет подключения. При подборе нужно внимательно изучить маркировку. На фазном счётчике вместо максимально допустимого значения тока указан коэффициент трансформации (например: 5(7,5), 3X150/5 А)

Провода используют жёсткие, сечение 2,5+ мм2, формируя кольца для подключения. Возможны мягкие с изолированными наконечниками. В счётчике жила зажимается двумя винтами.

Патрон с электролампой через клавишный выключатель от конденсата в щитах наружной установки.

Бокс с окошками под табло учётного прибора и рычаги автоматов.

Комплектация дополняется защитной автоматикой в соответствии с проектом электросети.

Чтобы подобрать трансформатор для трёхфазного счётчика, следует составить желаемый план разводки электросети, утвердить его с региональным представителем Энергосбыта и получить технические условия. Выбирать модель следует строго по указанным в документе характеристикам.

strojdvor.ru

Указания по расчету нагрузок трансформаторов тока

Содержание

1. Общая часть

Всем доброго времени суток! Представляю Вашему вниманию типовую работу «Указания по расчету нагрузок трансформаторов тока» №48082-э «Теплоэлектропроект».

Вторичная нагрузка на трансформаторы тока (ТТ) складывается из:

  • а) сопротивления проводов — rпр;
  • б) полного сопротивления реле и измерительных приборов — Zр и Zп;
  • в) переходного сопротивления принимаемого равным — rпер = 0,05 Ом.

Согласно ГОСТ трансформаторы тока должны соответствовать одному из следующих классов точности: 0,5; 1; 3; 5Р; 10Р.

Класс точности 0,5 должен обеспечиваться при питании от трансформатора тока расчетных счетчиков. При питании щитовых измерительных приборов класс точности трансформаторов тока должен быть не ниже 3. При необходимости для измерения иметь более высокий класс точности трансформаторы тока должны выбираться по классу точности на ступень выше, чем соответствующий измерительный прибор.

Например: для приборов класса 1 трансформаторов тока должен обеспечивать класс 0,5; для приборов — 1,5 трансформаторов тока должен обеспечивать класс точности 1,0.

Требования к трансформаторам тока для релейной защиты рассмотрены ниже.

При расчете нагрузки на ТТ в целях упрощения допускается сопротивления элементов вторичной цепи ТТ складывать арифметически, что создает некоторый расчетный запас.

Потребление токовых обмоток релейной и измерительной аппаратуры приведено в разделе «7. Справочные данные по потреблению релейной аппаратуры». Для удобства и упрощения расчета в указанных приложениях потребление дано в Омах. Для тех приборов и реле, для которых в каталогах указано их потребление в ВА, сопротивление в Омах определяется по выражению

где:
S – потребляемая мощность по токовым цепям, ВА;
I – ток, при котором задана потребляемая мощность, А.

При расчете сопротивления проводов (кабеля) во вторичных цепях ТТ используется:

где:

  • rпр — активное сопротивление проводов (жилы кабеля) от трансформатора тока до прибора или реле, Ом;
  • l – длина провода (кабеля) от трансформатора тока до места установки измерительных приборов или релейной аппаратуры, м;
  • S – сечение провода или жилы кабеля, мм2;
  • γ –удельная проводимость, м/Ом.мм2(для меди γ = 57, для алюминия γ =34,5).

2. Определение нагрузки на трансформаторы тока для измерительных приборов

Нагрузка на ТТ для измерительных приборов складывается из сопротивлений последовательно включенных измерительной аппаратуры, соединительных проводов и переходных сопротивлений в контактных соединениях.

Величина расчетной нагрузки Zн зависит также от схемы соединения ТТ.

При расчете определяется нагрузка для наиболее загруженной фазы ТТ.

В случае включения релейной аппаратуры последовательно с измерительной в расчетную нагрузку вводится также сопротивление реле. При этом расчетная нагрузка не должна превосходить допустимую в требуемом классе точности данного ТТ для измерительных приборов.

При соединении трансформаторов тока в звезду.

При соединении трансформаторов тока в неполную звезду.

При соединении ТТ в треугольник и включении измерительных приборов последовательно с реле во всех линейных проводах.

где:

raschet.info

Пример выбора трансформатора тока 10 кВ

Теория теорией, а практика совсем другое. В этой статье я поделюсь своим опытом выбора трансформатора тока 10 кВ. Думаю, многие из вас узнают для себя что-то новенькое, т.к. в каталогах данной информации я не встречал, и приходилось общаться с производителями трансформаторов тока.

По трансформаторам тока у меня имеется несколько статьей:

Эта статья далась мне очень тяжело. Я ее несколько раз переписывал, находил ошибки перед самой публикацией, даже были мысли не публиковать на блоге. Но, все-таки решил написать про особенности ТТ с разными коэффициентами трансформации, поскольку найти что-нибудь по этой теме очень трудно.

В одном из последних проектов мне нужно было запроектировать трансформаторную подстанцию на 160 кВА и подвести к ней питающую линию 10 кВ. В ячейке КРУ на РП 10 кВ нужно было выбрать трансформаторы тока.

Изначально я думал, что коммерческий учет будет все-таки на стороне 0,4 кВ, но в энергосбыте сказали, что граница разграничения ответственности будет по линии 10 кВ. В связи с этим, трансформаторы тока следует выбирать как для коммерческого учета.

Основная сложность заключается в том,  что при такой мощности силового трансформатора ток в линии очень маленький, всего около 10 А.

Если следовать требованиям  ПУЭ, то для учета нужно ставить ТТ с обмоткой 20/5:

1.5.17. Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Сперва у меня был заложен трехобмоточный ТОЛ с обмотками 400/5, т.к. на другие ячейки поставлялись ТТ с такими обмотками. Как оказалось, обмотки ТТ могут иметь разные коэффициенты трансформации. В каталогах об этом не пишут.

Я запросил информацию у нескольких производителей и торгашей по поводу возможных коэффициентов трансформации у ТТ. Большинство ответило, что соотношение обмоток защитная/измерительная  должно быть 2. Т.е. если защитная обмотка 400А, то измерительная – 200А.

Затем я узнал, кто будет поставлять ТТ в мое КРУ. Им оказался ООО «Невский трансформаторный завод «Волхов». Связался с заводом, предоставил свои исходные данные и мне предложили несколько вариантов:

Один из вариантов: ТОЛ-НТЗ-11-11А-0,5SFs10/0,5Fs10/10Р10-10/10/15-75/5-300/5-300/5 31,5кА УХЛ2.

Пример условного обозначения опорного трансформатора тока

Соотношение обмоток – 300/75=4.

Данный трансформатор не совсем удовлетворяет моим требованиям. Тем не менее, мне его согласовали.

Иногда надо уметь признавать свои ошибки. В программу по расчету ТТ высокого напряжения я ввел неправильные исходные данные: вместо кратности токов термической и электродинамеческой стойкости я записал токи. В итоге мой расчет завысил характеристики ТТ.

Сейчас в программу расчета ТТ высокого напряжения внесены изменения.

Здесь еще следует понимать, что у всех обмоток трансформатора тока будет одинаковая термическая и электродинамическая стойкость и чем меньше номинальный ток обмотки, тем меньше данные показатели.

Из руководства по эксплуатации трансформатора тока ТОЛ НТЗ:

Номинальный первичный ток, АОдносекундный ток термической стойкости, кАТок электродинамической стойкости, кА
50,5…11,25…2,5
101…22,5…5
151,6…3,24…8
202…85…20
303…127,5…30
404…1610…40
505…2012,5…50
75,808…31,518,8…78,8
10010…4025…100
15016…4037,5…100
20020…4050…100
30031,5…4078,8…100
400-150040100

Выбранный ТТ я проверял на термическую и электродинамическую стойкость при помощи своей программы, однако, достаточно было бы взять ТТ и с более низкими значениями термической и электродинамической стойкости:

Расчет ТТ 75/5

Теоретически с такими характеристиками может быть выполнена обмотка 20/5. Буду очень признателен, если вдруг увидите ошибки в данном расчете.

Кстати, в ПУЭ имеется еще очень интересная особенность: измерительную обмотку ТТ по режиму КЗ можно не проверять?

1.4.3. По режиму КЗ при напряжении выше 1 кВ не проверяются:

5 Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов (например, расчетных счетчиков), при этом на стороне вьющего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета рекомендуется присоединять к трансформаторам тока на стороне низшего напряжения.

Что будет с измерительной обмоткой, если в цепи возникнет ток КЗ, а она не проходит проверку по режиму КЗ? По всей видимости трансформатор тока не успеет «сгореть». Наверное это актуально только для  однообмоточных трансформаторов, т.к. у многообмоточных трансформаторов характеристики всех обмоток одинаковые.

В моей старой программе по проверке ТТ высокого напряжения был заложен трехсекундный ток термической стойкости, но в каталогах в основном пишут односекундный ток термической стойкости.

Чтобы перевести односекундный ток в трехсекундный нужно воспользоваться формулой:

I3с=I1с/1,732

Если вам нужен трансформатор тока с разными коэффициентами трансформации, то советую всегда консультироваться с производителями ТТ, т.к. только они знают, какие возможны варианты изготовления.

Кстати, при помощи этой программы очень быстро можно проверить различные варианты трансформаторов тока.

В ближайшее время будет рассылка обновленной версии программы и запишу видео с подробным описанием всех переменных. Жду ваших комментариев, возможно найдете ошибки.

А что вы знаете про ТТ с разными кф трансформации, какое их назначение?

Советую почитать:

220blog.ru

0 comments on “Подбор трансформаторов тока для счетчиков – Как выбрать трансформатор тока для счетчика: таблица и формулы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *