Постоянное и переменное напряжение: Переменное напряжение тока — что это?

Переменное напряжение тока — что это?

Напряжение – это физическая величина, характеризующая работу эффективного электрического поля, совершающего перенос заряда из одной точки проводника в другую. Оно есть везде, где есть токовая сила и пропорционально зависит от него, как и сопротивление. Каждый знает, что в его домашней розетке 220 В, но мало кто догадывается, какой именно это вид величины. Стоит подробнее разобраться с постоянным и переменным напряжением, в чем их различия, и какие виды переменного напряжения существуют.

Напряжение переменного тока

Как известно еще с уроков физики, ток – это движение заряженных частиц, которое возникает под воздействием на них электромагнитного поля, разности потенциалов и напряженности. Основная характеристика любого напряжения – это зависимость от времени. Исходя из этого, различают постоянную и переменную величины. Значение постоянного с течением времени практически не изменяется, а переменного – изменяется.

Закон Ома

В свою очередь переменная характеристика бывает периодической и непериодической. Периодическое – это напряжение, значения которого повторяются через одинаковые интервалы времени. Непериодическое же способно изменяться в любой отрезок времени.

Схема описания физического смысла

Напряженность в переменной цепи – это такой параметр, который изменяет свою величину с течением времени. Для упрощения разъяснений в дальнейшем будет рассматриваться синусоидальное гармоническое переменное напряжение.

Минимальное время, в течение которого переменная величина повторяется, называется периодом. Абсолютно любую периодическую величину можно записать зависимостью от какой-либо функции. Если время – это t, то зависимость будет обозначаться F(t). Таким образом, любой период во времени имеет вид: F(t+-T) = F(t), где T – период.

Физическая величина, которая является обратной периоду, называется частотой. Она равна 1/T. Единицей ее измерения является герц, в то время как единицей измерения периода стала секунда.

f = 1/T, 1 Гц = 1/с = с в минус первой степени.

Формулы колебаний

Важно! Чаще всего встречается функциональная зависимость переменной сети в виде синусоиды. Именно поэтому она была взята за основу этого материала.

Из математики известно, что синусоида – это простейшая периодическая функция, и с ее помощью из нескольких синусоид с кратными частотами можно представить любые другие периодические функции.

Синусоидальная напряженность в абсолютно любой промежуток времени может описать моментальная характеристика: u = U * sin(ωt + φ), где ω = 2πf = 2π/T, где U – максимальное напряжение (амплитуда), ω – угловая скорость изменения, φ – начальная фаза, которая определяется смещением функции относительно нулевой точки координат.

Синусоидальная функция

Часть (ωt + φ) – это фаза, которая характеризует значение напряжения в конкретный промежуток времени. Из этого выходит, что амплитуда, угловая скорость и фаза – это основные характеристики переменных сетей, определяющие их значения в любой интервал времени.

Важно! При рассмотрении синусоидальной функции фазу часто принимают за ноль. На практике также часто прибегают к еще некоторым параметрам, включающим действующее и среднее напряжение, коэффициент формы.

Регулятор переменного напряжения

Отличие между переменным и постоянным напряжением

Разница между двумя этими величинами не только в названии. Все зависит от вида тока. В обычной розетке дома ток переменный. Это значит, что направление движения заряженных частиц в нем постоянно изменяется. Более того, у переменных токовых сил разная частота и напряжение. Например, в розетке на 220 вольт обычная частота равна 50 Гц, что означает смену направления движения электронов и их зарядов 50 раз в секунду. Напряжение в этом плане означает максимальную скорость, с которой движутся электроны по цепи.

Постоянная и переменная характеристики

Еще одно отличие изменчивого направления движения частиц и, как следствие, напряжения от постоянного, в том, что в нем постоянно изменяется заряд. Значение U в такой сети бывает равно то 100 %, то 0 %. Если оно всегда было полным, то потребовался бы провод очень большого диаметра.

Постоянное же направление – это ток, который не изменяет координаты своего движения. Его можно наблюдать в аккумуляторах и батареях. Попадает он туда через зарядное устройство, конвертирующее любой поток из розетки в постоянный.

Противофаза

Виды напряжения переменного тока

В случае наиболее распространенного синусоидального напряжения часто рассматривают его виды:

  • Мгновенное, которое определяется для произвольного момента времени t.
  • Действующее, производящее один и тот же тепловой эффект, равный по величине постоянной характеристики. Оно определяется выполненной активной работой первого полупериода.
  • Средневыпрямленное, определяемое как модуль величины выпрямленного напряжения за один цикл гармонического колебания.

Если электрический поток передается по воздушным линиям, то упоры и их размеры напрямую зависят от величины напряжения, которое применяется в сети. Его величина между фазами именуется линейным напряжением, а между землей и каждой из фаз – фазным.

Период и амплитуда синусоидального колебания

Двухфазный ток

Двухфазный ток – это когда идет передача сразу двух токов разного направления. Параметр напряженности для двухфазной сети сдвинут по фазе на угол в 90 градусов. Передается такой ток двумя проводниками: два фазных и два нулевых. Применяется в электрических сетях переменного тока. Для этого используют два контура, значения которых сдвинуты по фазе на 90 градусов. В каждом контуре используется четыре линии – по две штуки на каждую из фаз. Иногда применяется и один провод с большим диаметром, чем у двух других. Преимуществом двухфазный сетей был плавный запуск электродвигателей, но они были вытеснены трехфазными.

Двухфазный источник

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

График трехфазного сигнала

Виды источников переменного напряжения

Среди основных источников непостоянного напряжения можно выделить такие компоненты, как:

  • Электростанция;
  • Генератор непостоянного тока;
  • Промышленная и домашняя электросеть.

Главным источником непостоянных токовых сил и напряжения является электростанция или промышленная электросеть. Использование такого тока обосновано тем, что его намного легче передавать на большие расстояния по проводникам и просто преобразовать в постоянный электрический ток. Переменные параметры передаются со станции к трансформаторам, которые преобразуют напряжение непостоянного тока, не являясь его источниками. Генераторы вырабатывают такой ток путем преобразования механической энергии в электрическую.

Генератор переменной силы

Как можно измерить переменное напряжение

Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:

  • Найти шкалу измерения на приборе, которая чаще всего находится справа.
  • Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
  • Взять щупы и вставить их в источник. При этом неважно, какой щуп куда будет вставлен.
  • Произвести измерения с учетом техники безопасности.
  • Зафиксировать полученные показатели.
Однофазный двигатель

Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.

Чем отличается постоянное напряжение от переменного

Одной из характеристик тока является напряжение. В каждом случае оно вырабатывается определенным источником. Рассмотрим подробней эту физическую величину и выясним, чем отличается постоянное напряжение от переменного.

  • Небольшое отступление
  • Сравнение

Небольшое отступление

Вспомним, что такое «ток». Он представляет собой явление, при котором заряженные частицы перемещаются в определенном направлении. Если эти, скажем, электроны или ионы устремляются всегда в одну и ту же сторону, ток называют постоянным. А когда движение частиц периодически принимает другое направление, говорят о переменном токе.

Перейдем к напряжению. Его суть часто раскрывается по аналогии с водой. Последняя не течет сама по себе. Например, в наклонной трубе жидкость движется вниз под воздействием силы тяжести. И чем выше вода от земли, тем большей потенциальной энергией она обладает. Так же и с током: частицы «текут» под влиянием напряжения. При этом в начале своего пути они обладают большим потенциалом, а в конечной точке – меньшим.

к содержанию ↑

Сравнение

Больший потенциал обозначается плюсом, меньший – минусом. Когда говорят про отличие постоянного напряжения от переменного, имеют в виду, остаются ли на своих местах «+» и «–» при движении заряженных частиц. В случае с постоянным напряжением полярность всегда одна и та же. Примером здесь является такой источник, как батарейка. Важно, что напряжение подобного рода характерно для постоянного тока, схематично обозначаемого прямой линией.

При переменном напряжении положительный и отрицательный потенциалы на каждом из концов проводника чередуются с прохождением времени. Соответствующий пример – обычная электросеть, к которой приборы подключаются через розетку. В этом случае действует переменный ток, графически представляемый волнистой линией. Его частота, к примеру 50 Гц, означает в том числе, сколько раз в секунду чередуются относящиеся к напряжению плюс и минус.

Лучше понять, в чем разница между постоянным и переменным напряжением, поможет следующая схема:

На первом графике продемонстрировано, что с течением времени (t) постоянное напряжение (U) сохраняет свою величину. На втором изображении видна динамика переменного напряжения: оно то нулевое, то максимальное, то минимальное. При этом отчетливо видно, что все значения периодически повторяются. Надо сказать, переменное напряжение часто, но не всегда приобретает свои параметры именно по синусоидальному закону. В других случаях изображение на графике имеет несколько иной вид.

Что такое напряжение | Самое простое объяснение

Что такое напряжение в электронике и электротехнике? Как его можно трактовать? Обо всем этом мы как раз и поговорим в нашей статье.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

водобашняводоносная башня

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашняводобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил,  давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

Что такое напряжение

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”. Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

источник питанияисточник питания постоянного тока

Электрическое напряжение  – это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный  щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп  – черным или синим.

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – ноль.

Что такое напряжениеЧто такое напряжение

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.

формула напряженияформула напряжения

где

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

q – заряд, Кулон

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.

формула напряжения через сопротивление и силу токанапряжение из закона Ома

где

I – сила тока, Амперы

R – сопротивление, Омы

Напряжение тока – что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока – это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение – это синонимы, как и переменный ток и переменное напряжение. Получается фраза “напряжение тока” говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос “какое напряжение тока в розетке” вы можете смело ответить: переменный ток 220 Вольт”, а на вопрос “какое напряжение тока тока у автомобильного аккумулятора”, вы можете ответить “12 Вольт постоянного тока”. Так что не стоит пугаться).

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Что такое напряжение

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

переменное напряжение

то в другую:

переменное напряжениепеременное напряжение

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.

нулевое напряжениеосциллограмма нулевого напряжения

 

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения  – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

постоянное напряжениеосциллограмма постоянного напряжения

 

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

переменное напряжениеосциллограмма переменного напряжения

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.

 

Похожие статьи по теме

220 Вольт

Делитель напряжения

Как получить нестандартное напряжение

Как измерить ток и напряжение мультиметром?

Чем отличается переменный ток от постоянного — объяснение простыми словами

Основное отличие переменного тока от постоянного. Как получают каждый из этих токов.


В электричестве есть два рода тока – постоянный и переменный. Устройства также требуют для питания один или другой вид тока. От этого зависит возможность их работы, а иногда и целостность после подключения к неправильному питанию. Чем отличается переменный ток от постоянного мы расскажем в этой статье, дав краткий ответ наиболее простыми словами. Содержание:

Определение

Электрическим током называется направленное движение заряженных частиц. Так звучит определение из учебника по физике. Простыми словами можно перевести так, что у его составляющих всегда есть какое-то направление. Собственно, это направление и является определяющем в сегодняшнем разговоре.

Переменный ток (Alternative Current – AC) отличается от постоянного (Direct Current – DC) тем, что у последнего электроны (носители заряда) всегда движутся в одном направлении. Соответственно отличием переменного тока является то, что направление движения и его сила зависят от времени. Например, в розетке направление и величина напряжения, соответственно и сила тока, изменяется по синусоидальному закону с частотой в 50 Гц (50 раз за секунду изменяется полярность между проводами).

Для так сказать чайников в электрике изобразим это на графике, где по вертикальной оси изображена полярность и напряжение, а по горизонтальной время:

Красной линией изображено постоянное напряжение, оно остаётся неизменным с течением времени, разве что изменяется при коммутации мощной нагрузки или КЗ. Зелеными волнами показан синусоидальный ток. Вы можете видеть, что он протекает то в одну, то в другую сторону, в отличие от постоянного тока, где электроны всегда протекают от минуса к плюсу, а направлением движения электрического тока выбран путь от плюса к минусу.

Чем отличается переменный ток от постоянного — объяснение простыми словами

Если сказать по-простому, то разницей в этих двух примерах является то, что у постоянки всегда плюс и минус находятся на одних и тех же проводах. Если говорить о переменном, то в электроснабжении используют понятия фазы и нуля. Если рассматривать по аналогии с постоянкой, то фаза и ноль являются плюсом и минусом, только полярность меняется 50 раз в секунду (в США и ряде других стран 60 раз в секунду, а в самолётах более 400 раз).

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Чем отличается переменный ток от постоянного — объяснение простыми словами

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Чем отличается переменный ток от постоянного — объяснение простыми словами

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Чем отличается переменный ток от постоянного — объяснение простыми словами

Формулы для расчета постоянного тока

Разницей между переменкой и постоянкой являются и формулы для расчетов процессов, происходящих в цепи. Так сопротивление рассчитываются по Закону Ома для участка цепи или для полной цепи:

E=I/R

E=I/(R+r)

Мощность также просто рассчитываются:

P=UI

Формулы для расчета переменного тока

В расчётах цепей переменного тока разница в формулах обусловлена отличием процессов, протекающих в емкостях и индуктивностях. Тогда формула закона Ома будет для активного сопротивления:

Чем отличается переменный ток от постоянного — объяснение простыми словами

Для ёмкости:

Чем отличается переменный ток от постоянного — объяснение простыми словами

Для индуктивности:

Чем отличается переменный ток от постоянного — объяснение простыми словами

Здесь 1/wC и wL – емкостное и индуктивное реактивные сопротивления, а w – угловая частота, она равна 2пиF.

Для цепи с ёмкостью и индуктивностью:

Чем отличается переменный ток от постоянного — объяснение простыми словами

wL-1/wC – это реактивное сопротивление, оно обозначается как Z.

На видео ниже более подробно рассказывается, в чем отличие переменного тока от постоянного:

Материалы по теме:

  • Как повысить постоянное и переменное напряжение
  • Что такое активная, реактивная и полная мощность
  • Что такое линейное и фазное напряжение


НравитсяЧем отличается переменный ток от постоянного — объяснение простыми словами0)Не нравитсяЧем отличается переменный ток от постоянного — объяснение простыми словами0)

Постоянное и переменное напряжение — Всё о электрике

Напряжение переменного тока

Напряжение – это физическая величина, характеризующая работу эффективного электрического поля, совершающего перенос заряда из одной точки проводника в другую. Оно есть везде, где есть токовая сила и пропорционально зависит от него, как и сопротивление. Каждый знает, что в его домашней розетке 220 В, но мало кто догадывается, какой именно это вид величины. Стоит подробнее разобраться с постоянным и переменным напряжением, в чем их различия, и какие виды переменного напряжения существуют.

Напряжение переменного тока

Как известно еще с уроков физики, ток – это движение заряженных частиц, которое возникает под воздействием на них электромагнитного поля, разности потенциалов и напряженности. Основная характеристика любого напряжения – это зависимость от времени. Исходя из этого, различают постоянную и переменную величины. Значение постоянного с течением времени практически не изменяется, а переменного – изменяется.

В свою очередь переменная характеристика бывает периодической и непериодической. Периодическое – это напряжение, значения которого повторяются через одинаковые интервалы времени. Непериодическое же способно изменяться в любой отрезок времени.

Напряженность в переменной цепи – это такой параметр, который изменяет свою величину с течением времени. Для упрощения разъяснений в дальнейшем будет рассматриваться синусоидальное гармоническое переменное напряжение.

Минимальное время, в течение которого переменная величина повторяется, называется периодом. Абсолютно любую периодическую величину можно записать зависимостью от какой-либо функции. Если время – это t, то зависимость будет обозначаться F(t). Таким образом, любой период во времени имеет вид: F(t+-T) = F(t), где T – период.

Физическая величина, которая является обратной периоду, называется частотой. Она равна 1/T. Единицей ее измерения является герц, в то время как единицей измерения периода стала секунда.

f = 1/T, 1 Гц = 1/с = с в минус первой степени.

Важно! Чаще всего встречается функциональная зависимость переменной сети в виде синусоиды. Именно поэтому она была взята за основу этого материала.

Из математики известно, что синусоида – это простейшая периодическая функция, и с ее помощью из нескольких синусоид с кратными частотами можно представить любые другие периодические функции.

Синусоидальная напряженность в абсолютно любой промежуток времени может описать моментальная характеристика: u = U * sin(ωt + φ), где ω = 2πf = 2π/T, где U – максимальное напряжение (амплитуда), ω – угловая скорость изменения, φ – начальная фаза, которая определяется смещением функции относительно нулевой точки координат.

Часть (ωt + φ) – это фаза, которая характеризует значение напряжения в конкретный промежуток времени. Из этого выходит, что амплитуда, угловая скорость и фаза – это основные характеристики переменных сетей, определяющие их значения в любой интервал времени.

Важно! При рассмотрении синусоидальной функции фазу часто принимают за ноль. На практике также часто прибегают к еще некоторым параметрам, включающим действующее и среднее напряжение, коэффициент формы.

Отличие между переменным и постоянным напряжением

Разница между двумя этими величинами не только в названии. Все зависит от вида тока. В обычной розетке дома ток переменный. Это значит, что направление движения заряженных частиц в нем постоянно изменяется. Более того, у переменных токовых сил разная частота и напряжение. Например, в розетке на 220 вольт обычная частота равна 50 Гц, что означает смену направления движения электронов и их зарядов 50 раз в секунду. Напряжение в этом плане означает максимальную скорость, с которой движутся электроны по цепи.

Еще одно отличие изменчивого направления движения частиц и, как следствие, напряжения от постоянного, в том, что в нем постоянно изменяется заряд. Значение U в такой сети бывает равно то 100 %, то 0 %. Если оно всегда было полным, то потребовался бы провод очень большого диаметра.

Постоянное же направление – это ток, который не изменяет координаты своего движения. Его можно наблюдать в аккумуляторах и батареях. Попадает он туда через зарядное устройство, конвертирующее любой поток из розетки в постоянный.

Виды напряжения переменного тока

В случае наиболее распространенного синусоидального напряжения часто рассматривают его виды:

  • Мгновенное, которое определяется для произвольного момента времени t.
  • Действующее, производящее один и тот же тепловой эффект, равный по величине постоянной характеристики. Оно определяется выполненной активной работой первого полупериода.
  • Средневыпрямленное, определяемое как модуль величины выпрямленного напряжения за один цикл гармонического колебания.

Если электрический поток передается по воздушным линиям, то упоры и их размеры напрямую зависят от величины напряжения, которое применяется в сети. Его величина между фазами именуется линейным напряжением, а между землей и каждой из фаз – фазным.

Двухфазный ток

Двухфазный ток – это когда идет передача сразу двух токов разного направления. Параметр напряженности для двухфазной сети сдвинут по фазе на угол в 90 градусов. Передается такой ток двумя проводниками: два фазных и два нулевых. Применяется в электрических сетях переменного тока. Для этого используют два контура, значения которых сдвинуты по фазе на 90 градусов. В каждом контуре используется четыре линии – по две штуки на каждую из фаз. Иногда применяется и один провод с большим диаметром, чем у двух других. Преимуществом двухфазный сетей был плавный запуск электродвигателей, но они были вытеснены трехфазными.

Трехфазный ток

Трехфазная система – это система электрической цепи, работающая на трех цепях, в которых действуют силы одной и той же частоты, но сдвинутые по фазе друг от друга на одну треть периода или на 120 градусов. Каждая отдельная цепь такой системы называется фазой, а система из трех сдвинутых по фазе токов называется трехфазным током.

Практически все современные генераторы в домах и на электростанциях представляют собой генераторы трехфазного тока. Фактически это один большой генератор, состоящий из трех маленьких двигателей, которые генерируют токи, электродвижущие силы в них сдвинуты относительно друг друга на 120 градусов или одну треть периода.

Виды источников переменного напряжения

Среди основных источников непостоянного напряжения можно выделить такие компоненты, как:

  • Электростанция;
  • Генератор непостоянного тока;
  • Промышленная и домашняя электросеть.

Главным источником непостоянных токовых сил и напряжения является электростанция или промышленная электросеть. Использование такого тока обосновано тем, что его намного легче передавать на большие расстояния по проводникам и просто преобразовать в постоянный электрический ток. Переменные параметры передаются со станции к трансформаторам, которые преобразуют напряжение непостоянного тока, не являясь его источниками. Генераторы вырабатывают такой ток путем преобразования механической энергии в электрическую.

Как можно измерить переменное напряжение

Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:

  • Найти шкалу измерения на приборе, которая чаще всего находится справа.
  • Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
  • Взять щупы и вставить их в источник. При этом неважно, какой щуп куда будет вставлен.
  • Произвести измерения с учетом техники безопасности.
  • Зафиксировать полученные показатели.

Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.

Переменный и постоянный ток: в чем разница, история развития, применение

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках? Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток – трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток – alternating current (AC). Постоянный ток – direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе – отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 – это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей – война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Переменный ток и постоянный ток: отличие

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению — это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Графическое изображение постоянного тока

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Графическое изображение переменного тока

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «

». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

{SOURCE}

Обозначение постоянного и переменного тока: значок напряжения

Когда произносят слово «электричество», один человек представит себе обычную бытовую розетку из дома, а другой – высоковольтную линию электропередач. Более продвинутые вспомнят молнию, батарейки и даже сварочный аппарат. Все эти явления и приборы так или иначе связаны с электричеством, основными характеристиками которого, в соответствии с законом Ома, являются сила тока, напряжение и сопротивление. Ток, в свою очередь, бывает постоянным и переменным. В обозначении двух этих видов на схемах возникает еще больше путаницы, чем при поиске ассоциаций со словом «электричество». В этой статье будет рассказано о том, как обозначается постоянный ток, маркируется переменное напряжения и силы постоянного характера, используемые для обозначения на схемах и чертежах.

Что такое электричество

Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения. За счет того, что совокупность зарядов может перемещаться по проводнику, обладать притягивающими и отталкивающими свойствами, было открыто явление магнетизма и электричества. Одним из первых это описал Фалес, а позже в 1600 году английский физик Уильям Гилберт. С течением времени знания об этом явлении только увеличивались и прогрессировали.

Виды тока и их графики относительно времени

С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.

Направленное движение частиц

Какое отличие между переменным и постоянным током

Ток – это движение заряженных электронов в определенном направлении. Это перемещение необходимо для того, чтобы бытовые и профессиональные электроприборы могли работать с установленной номинальной мощностью. В домашней розетке ток появляется из электростанции, где кинетическая энергия электронов преобразуется в электрическую.

Электроток постоянного характера – электричество, получаемое из аккумулятора телефона или батарейки. Он называется так, потому что направление движения электронов в нем не меняется. На таком принципе основана работа зарядных устройств: они конвертируют переменное электричество сети в постоянное и в таком виде оно накапливается в аккумуляторных батареях.

Переменный ток – электричество в любой домашней электросети. Он называется так из-за того, что направление движения электронов постоянно меняется. Количество изменений направления задается частотой, которая для домашних сетей в СНГ равно 50 Гц. Это значит, что за одну секунду электроток меняет направление движения целых 50 раз. Напряжение же в сети – это максимальный «напор», который заставляет двигаться электроны.

Обозначение постоянного и переменного тока

Как обозначается постоянное и переменное напряжение

Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).

Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (~).

Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная).

Альтернативное обозначение видов тока и напряжения на схемах

Какой значок напряжения

Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и  обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.

Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника.

Обозначение вида тока на мультиметре

Таким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.

преимущества и недостатки ⋆ diodov.net

Программирование микроконтроллеров Курсы

Постоянный и переменный ток преимущества и недостаткиКакой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Постоянный или переменный ток

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.

Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Преимущества и недостатки переменного тока

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Автономный инвертор, асинхронный двигательКроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

 

Преимущества и недостатки постоянного токаТакже следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Электроника для начинающих

Еще статьи по данной теме

Разница между напряжением переменного и постоянного тока (со сравнительной таблицей)

Основное различие между переменным и постоянным напряжением состоит в том, что в переменном напряжении полярность волны меняется со временем, тогда как полярность постоянного напряжения всегда остается неизменной. Другие различия между напряжением переменного и постоянного тока показаны ниже в сравнительной таблице.

Содержание: напряжение переменного тока и напряжение постоянного тока

    1. Таблица сравнения
    2. Определение
    3. Ключевые отличия

Сравнительная таблица

Основа для сравнения Напряжение переменного тока Напряжение постоянного тока
Определение Напряжение переменного тока — это сила, которая вызывает переменный ток между двумя точками. Постоянное напряжение индуцирует постоянный ток между двумя точками.
Символическое представление alternating-current alternating-current
Частота Зависит от страны. Ноль
Коэффициент мощности Входит от 0 до 1. 0
Полярность Изменения Остается постоянной
Направление Различное Остается прежним
Получено из Генератор Элемент или батарея
КПД Высокая Низкая
Пассивный параметр Импеданс Сопротивление
Амплитуда Есть Нет
Преобразование С помощью инвертора. С помощью выпрямителя.
Трансформатор Требуется для передачи. Не требуется.
Фаза и нейтраль Есть Нет
Преимущества Простота измерения. Легко усилить

Определение переменного напряжения

Напряжение, вызывающее переменный ток, называется напряжением переменного тока.Переменный ток индуцируется в катушке, когда проводник с током вращается в магнитном поле. Проводник при вращении разрезает магнитный поток, и изменение потока индуцирует в проводнике переменное напряжение.

Определение напряжения постоянного тока

Постоянное напряжение индуцирует постоянный ток. Волны только в одном направлении, а величина напряжения всегда остается постоянной. Генерация постоянного напряжения довольно проста и легка. Напряжение индуцируется вращением катушки в поле магнита.Катушка состоит из разъемного кольца и коммутатора, преобразующего переменное напряжение в постоянное.

Ключевые различия между напряжением переменного и постоянного тока

  • Напряжение, вызывающее переменный ток, называется переменным напряжением. Напряжение постоянного тока производит постоянный ток.
  • Частота переменного напряжения зависит от страны (чаще всего используются 50 и 60 Гц). Тогда как частота постоянного напряжения становится равной нулю.
  • Коэффициент мощности для переменного напряжения находится в пределах от 0 до 1.А коэффициент мощности постоянного напряжения всегда остается 1.
  • Полярность переменного напряжения всегда меняется со временем, а полярность постоянного напряжения всегда остается постоянной.
  • Напряжение переменного тока является однонаправленным, а напряжение постоянного тока — двунаправленным.
  • Генератор генерирует переменное напряжение, а постоянное напряжение получается от элемента или батареи.
  • Эффективность переменного напряжения высока по сравнению с постоянным напряжением.
  • Импеданс — это пассивный параметр переменного напряжения, а для постоянного тока — сопротивление.Импеданс означает сопротивление, оказываемое напряжением току.
  • Напряжение переменного тока имеет амплитуду, а напряжение постоянного тока не имеет амплитуды. Термин амплитуда означает максимальное расстояние, которое преодолевает колебание и колеблющееся тело.
  • Инвертор преобразует постоянный ток в переменный. А выпрямитель преобразует переменный ток в постоянный.
  • Трансформатор необходим для передачи переменного тока, но не используется для передачи постоянного тока.
  • Напряжение переменного тока имеет фазу и нейтраль, тогда как напряжение постоянного тока не требует ни фазы, ни нейтрали.
  • Главное преимущество переменного напряжения в том, что его легко измерить. Преимущество постоянного напряжения заключается в том, что напряжение легко усиливается. Усиление — это процесс увеличения силы сигнала.

Связь между напряжением переменного и постоянного тока

Вольт переменного тока Χ 1,414 = Вольт постоянного тока

.

Electronics Club — AC, DC и электрические сигналы

Клуб электроники — AC, DC и электрические сигналы — свойства сигнала, амплитуда, пиковое значение, период времени, частота, RMS Electronics Club

AC | DC | Свойства сигнала | RMS

Следующая страница: Осциллографы (CRO)

См. Также: Диоды | Блоки питания

AC означает переменный ток, а DC означает постоянный ток. Переменный и постоянный ток также используются при обозначении напряжений и электрических сигналов. которые не токи! Например: источник питания 12 В переменного тока имеет переменное напряжение. (что сделает поток переменного тока).

Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.


Переменный ток (AC)

Переменный ток (AC) течет в одну сторону, затем в другую, постоянно меняя направление.

Напряжение переменного тока постоянно меняется с положительного (+) на отрицательное (-).

Скорость изменения направления называется частотой переменного тока и измеряется в герц (Гц) , количество циклов в прямом и обратном направлении цикл в секунду .

Электроэнергия в Великобритании имеет частоту 50 Гц.

См. Ниже более подробную информацию о свойствах сигнала.

Источник переменного тока подходит для питания некоторых устройств, таких как лампы и обогреватели, но почти все электронные схемы требуют постоянного источника постоянного тока (см. ниже).

AC
Переменный ток от источника питания
Эта форма называется синусоидой .

triangle wave
Этот треугольный сигнал является переменным, потому что он меняет значение
между положительным (+) и отрицательным (-).


Постоянный ток (DC)

Постоянный ток (DC) всегда течет в одном направлении, но может увеличиваться и уменьшаться.

Напряжение постоянного тока всегда положительное (или всегда отрицательное), но оно может увеличиваться и уменьшаться.

Для электронных схем обычно требуется постоянный источник питания постоянного тока , который имеет одно значение. или источник питания smooth DC , который имеет лишь небольшую вариацию, называемую пульсации .

Элементы, батареи и регулируемые источники питания обеспечивают устойчивый постоянный ток , который идеально подходит для электронных схем.

Блоки питания содержат трансформатор, преобразующий от сети переменного тока к безопасному низковольтному переменному току. Затем переменный ток преобразуется в постоянный ток мостовой выпрямитель, но выход изменяет постоянный ток , что не подходит для электронных схем.

Некоторые источники питания включают конденсатор для обеспечения smooth DC , который подходит для менее чувствительных электронных схем, в том числе большинство проектов на этом сайте.

Лампы, обогреватели и двигатели будут работать от любого источника постоянного тока.

Дополнительную информацию см. На странице источников питания.

Источники питания также рассматриваются на веб-сайте Electronics in Meccano.

Steady DC
Постоянный ток
от батареи или регулируемого источника питания,
идеально подходит для электронных схем.

Smooth DC
Smooth DC
от сглаженного источника питания,
подходит для некоторой электроники.

Varying DC
Изменение постоянного тока
от источника питания без сглаживания,
это не подходит для электроники.



Свойства электрических сигналов

Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.

График «напряжение-время» ниже показывает различные свойства электрического сигнала. Помимо свойств, отмеченных на графике, есть частота количество циклов в секунду.

На диаграмме показан синусоидальный сигнал , но свойства применимы к любому сигналу с постоянно повторяющейся формой.

  • Амплитуда — максимальное напряжение, достигаемое сигналом. Измеряется в В , В .
  • Пиковое напряжение — другое название амплитуды.
  • Пиковое напряжение в два раза больше пикового напряжения (амплитуды). При считывании осциллограммы обычно измеряют пиковое напряжение.
  • Период времени — это время, необходимое сигналу для завершения одного цикла. Он измеряется в секундах (с) , но периоды времени обычно короткие, поэтому часто используются миллисекунды (мс) и микросекунды (мкс).
    1 мс = 0,001 с и 1 мкс = 0,000001 с.
  • Частота — это количество циклов в секунду. Он измеряется в герц (Гц) и , но частоты имеют тенденцию быть высокими, поэтому часто используются килогерцы (кГц) и мегагерцы (МГц).
    1 кГц = 1000 Гц и 1 МГц = 1000000 Гц.

Wave properties

Частота и период времени

Частота и период времени противоположны друг другу:

частота = 1
период времени

и

период времени = 1
частота

Электросеть в Великобритании имеет частоту 50 Гц поэтому он имеет период времени 1 / 50 = 0.02с = 20 мс .


Не хватает денег на проекты в области электроники? Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk


Среднеквадратичное значение (RMS)

Значение переменного напряжения непрерывно меняется от нуля до положительного пика через от нуля до отрицательного пика и снова обратно к нулю. Очевидно, что в большинстве случаев оно меньше пикового напряжения, так что это не лучшая мера его реального эффекта.

Вместо этого мы используем среднеквадратичное напряжение RMS ) что составляет 0,7 пикового напряжения (V пик ):

и

Эти уравнения также применимы к , текущий .

Важно отметить, что эти уравнения верны только для синусоидальных волн (наиболее распространенного типа переменного тока), потому что Коэффициенты 0,7 и 1,4 — это разные значения для других форм.

RMS and peak voltages

Действующее значение — эффективное значение переменного напряжения или текущий.Это эквивалентное постоянное значение постоянного тока, которое дает такой же эффект.

Например, лампа, подключенная к источнику питания 6V RMS AC , будет гореть с той же яркостью. при подключении к источнику постоянного тока 6 В постоянного тока . Тем не менее, лампа будет тусклее, если она подключена к пиковому источнику переменного тока 6 В переменного тока питание, потому что его среднеквадратичное значение составляет всего 4,2 В (это эквивалентно постоянному 4,2 В постоянного тока).

Возможно, вам будет полезно рассматривать значение RMS как своего рода среднее значение, но, пожалуйста, помните что это не совсем средний показатель! Фактически, среднее напряжение (или ток) типичного сигнала переменного тока равен нулю, потому что положительная и отрицательная части полностью компенсируются.

Что показывают измерители переменного тока, это среднеквадратичное или пиковое напряжение?

Вольтметры и амперметры переменного тока показывают значение RMS, напряжения или тока.

Что на самом деле означает «6 В переменного тока», это среднеквадратичное или пиковое напряжение?

Если имеется в виду пиковое значение, оно должно быть четко указано, в противном случае предположим, что это значение RMS . В повседневном использовании напряжение переменного тока (и токи) всегда задается как среднеквадратичное значение , потому что это позволяет провести разумное сравнение с постоянными напряжениями (и токами) постоянного тока, например, от батареи.

Например, «питание 6 В переменного тока» означает 6 В RMS, пиковое напряжение составляет 8,4 В. Электроснабжение Великобритании 230 В переменного тока, это означает 230 В RMS, поэтому пиковое напряжение сети составляет около 320 В.

Так что же на самом деле означает среднеквадратичное значение (RMS)?

Сначала возведите все значения в квадрат, затем найдите среднее (среднее) этих квадратов значений по полный цикл и найдите квадратный корень из этого среднего. Это значение RMS. Смущенный? Не обращайте внимания на математику (она выглядит сложнее, чем есть на самом деле), просто примите что среднеквадратичные значения напряжения и тока являются гораздо более полезной величиной, чем пиковые значения.


Следующая страница: Осциллографы (CRO) | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

.Схема преобразователя переменного тока в постоянный ток

В современную эпоху почти каждая бытовая электроника работает на постоянном токе (DC), но мы получаем переменный ток (AC) от электростанций через линии передачи, потому что переменный ток может передаваться более эффективно, чем постоянный ток в более низкая стоимость. Таким образом, каждое устройство, которое работает от постоянного тока, имеет схему преобразователя переменного тока в постоянный ток . Ранее мы создали зарядное устройство для сотового телефона на 5 В, в котором также есть схема преобразователя переменного тока в постоянный.

Существует два типа преобразователей, широко используемых для разговора переменного тока в постоянный.

One — это традиционный линейный преобразователь на базе трансформатора , в котором используется простой диодный мост, конденсатор и регулятор напряжения. Простой диодный мост может быть построен либо с одним полупроводниковым устройством, например DB107, либо с 4 независимыми диодами, например 1N4007. Другой тип преобразователя — это SMPS или импульсный источник питания , в котором для обеспечения выхода постоянного тока используется высокочастотный небольшой трансформатор и импульсный стабилизатор.

В этом проекте мы обсудим конструкцию на основе традиционного трансформатора , в которой используются простые диоды и конденсатор для преобразования переменного тока в постоянный ток , а также дополнительный регулятор напряжения для регулирования выходного постоянного напряжения.Проектом будет преобразователь AC-DC с использованием трансформатора с входным напряжением 230 В и выходом 12 В 1A .

Необходимые компоненты

1. Трансформатор с номиналом 1 А 13 В

2,4 шт 1N4007 Диоды

3.A 1000 мкФ Электролитический конденсатор с номиналом 25 В.

4. несколько одножильных проводов

5. макетная

6.LDO или линейный регулятор напряжения согласно спецификации (здесь используется LM2940).

7.Мультиметр для измерения напряжения.

Принципиальная схема и пояснения

AC to DC Converter Circuit Diagram

Схема преобразователя AC-DC проста. Трансформатор используется для понижения напряжения 230 В переменного тока до 13 В переменного тока.

Четыре выпрямительных диода общего назначения 1N4007 используются здесь для защиты входа переменного тока. 1N4007 имеет пиковое повторяющееся обратное напряжение 1000 В при среднем выпрямленном прямом токе 1 А.Эти четыре диода используются для преобразования выходного напряжения 13 В переменного тока через трансформатор. Диоды используются для изготовления мостового преобразователя, который является важной частью схемы преобразования переменного тока в постоянный. Чтобы узнать больше о схеме мостового выпрямителя, перейдите по ссылке.

Конденсатор фильтра, C1 добавлен после мостового преобразователя для сглаживания выходного напряжения.

LDO, IC1 также подключается для регулирования выходного напряжения.

Работа цепи преобразователя переменного тока в постоянный

Понижающий трансформатор используется для преобразования переменного тока высокого напряжения в переменный ток низкого напряжения.Трансформатор установлен на печатной плате и представляет собой трансформатор на 1 ампер и 13 вольт. Однако во время нагрузки напряжение трансформатора падает примерно на 12,5-12,7 вольт.

Transformer for AC to DC Converter

Неотъемлемой частью схемы является диодный мост , состоящий из четырех диодов. Диод — это электронное полупроводниковое устройство, преобразующее переменный ток в постоянный.

Diode for AC to DC Converter

Поток тока внутри диодного моста можно увидеть на изображении ниже.

Diode-Bridge for AC to DC Converter

Здесь два диода D2 и D4 блокируют отрицательный пик переменного тока и заставляют ток течь в одном направлении. Это полный мостовой выпрямитель, который означает, что диодный мост выпрямляет как положительный, так и отрицательный пик сигнала переменного тока.

Большой конденсатор C1 заряжается во время преобразования и сглаживает выходное напряжение. Но в конечном итоге это не регулируемое выходное напряжение. Здесь регулировка напряжения осуществляется с помощью LDO, LM2940, , который на схеме обозначен IC1.

LDO, LM2940 — это 3-выводное устройство в корпусе TO220. LDO означает низкое падение напряжения. Схема контактов может быть показана на изображении ниже.

LM2940 Pinout

Некоторые регуляторы напряжения имеют ограничения на входное напряжение, которое требуется для обеспечения гарантированного регулирования напряжения на выходе регулятора. В некоторых линейных регуляторах это означает, что требуется минимум 2 вольта разницы между входным напряжением и выходным напряжением, что означает, что для регулируемого выхода 12 вольт регулятору требуется входное напряжение не менее 14 вольт для гарантированного стабилизированного выходного напряжения 12 вольт.Как правило, регуляторы с малым падением напряжения (LDO) требуют минимальной разницы напряжений между входом и выходом. Для таблицы данных LM2940 требуется минимальная разница в 0,5 вольта между входом и выходом. Мы использовали стабилизатор LDO серии с фиксированным напряжением от Texas Instruments. LM2940 с номинальным выходным напряжением 12 В.

AC to DC Converter Circuit Hardware

Результат хорошо виден на изображении ниже.

Testing AC to DC Converter Circuit

Проверьте работу на видео , приведенном в конце.

Трансформаторный преобразователь переменного тока в постоянный очень часто используется там, где требуется преобразование переменного тока в постоянное высокое напряжение. Чаще всего используется в усилителях, различных адаптерах питания, паяльных станциях, испытательном оборудовании и т. Д.

Ограничения схемы преобразователя переменного тока в постоянный на основе трансформатора

Трансформаторное преобразование переменного тока в постоянный — это распространенный выбор, когда требуется постоянный ток, но он имеет определенные недостатки.

1.В любых ситуациях, когда входное переменное напряжение может колебаться или если переменное напряжение значительно падает, выходное переменное напряжение на трансформаторе также падает. Таким образом, преобразователь 230 В переменного тока в 12 В постоянного тока не может питаться от сети 110 В. Для решения этой проблемы предусмотрена дополнительная настройка для различных уровней входного напряжения.

2. Несмотря на отсутствие универсального диапазона входных напряжений, это дорогостоящий выбор, так как стоимость самого трансформатора превышает 60% от общей стоимости изготовления схемы преобразователя.

3. Еще одним ограничением является низкая эффективность преобразования. Трансформатор нагревается и расходует ненужную энергию.

4. Трансформатор — тяжелый предмет, который излишне увеличивает вес продукта.

5. Из-за трансформатора внутри изделия требуется больше места для размещения схемы преобразователя или, по крайней мере, трансформатора.

Для преодоления этих ограничений предпочтительным выбором является импульсный источник питания или импульсный источник питания.

.

155 Источник переменного / постоянного тока и напряжения

Попробуйте без риска с нашей 90-дневной гарантией возврата денег при заказе источника тока и напряжения 155 непосредственно у Lake Shore Cryotronics.

Положения и условия

  • Это ограниченное по времени предложение распространяется на первый заказ Покупателя на источник MeasureReady 155.
  • Заказ должен быть размещен непосредственно через Lake Shore Cryotronics.
  • 90-дневный период начинается с даты отгрузки продукта с завода в Лейк-Шор.
  • Перед возвратом любого прибора MeasureReady 155 покупатель должен связаться с компанией Lake Shore Cryotronics для получения разрешения на возврат материалов (RMA).
  • Покупатель несет ответственность за все расходы по доставке и транспортировке любого продукта MeasureReady 155, возвращенного в Lake Shore Cryotronics (550 Tressler Drive, Westerville, OH 43082).
  • Возвращенный прибор MeasureReady 155 должен быть отправлен в оригинальной упаковке и включать все содержимое, входящее в исходную поставку.
  • Плата за пополнение запасов не взимается, и покупателю будет начислен полный возврат первоначальной покупной цены MeasureReady 155 (без учета первоначальной стоимости доставки и погрузочно-разгрузочных работ), если материалы будут получены компанией Lake Shore в первоклассном товарном виде. состояние. Любые дополнительные расходы, необходимые для возврата полученного материала в первоклассное товарное состояние, могут быть вычтены из предоставленного кредита.
  • Применяются все остальные стандартные положения и условия.

Низкий уровень шума при постоянном токе без ущерба для полосы пропускания переменного тока

Бесшумный прецизионный источник тока и напряжения MeasureReady ™ 155 сочетает превосходные характеристики с беспрецедентной простотой для материаловедов и инженеров, которым требуется точный источник напряжения и тока.

Обладая обширным опытом в области создания малошумящих приборов для исследований, компания Lake Shore использовала новейшие электронные технологии для снижения минимального уровня шума внутри и вне полосы для источника MeasureReady 155 до уровней, которые ранее были возможны только с использованием надстройки. фильтры. Результатом является комбинация источника переменного / постоянного тока и напряжения, которая хорошо подходит для задач определения характеристик чувствительных материалов и устройств, где требуются более низкие сигналы возбуждения и минимальное введение шума в измерения. необходимо.

Несмотря на внутреннюю сложность, 155 необычайно проста в эксплуатации. Ведущие продуктовые дизайнеры отмечают, что простое намного сложнее выполнить, чем сложное — простое размещение сенсорного экрана на сложном продукте не поможет. сделай это проще. Современный, ориентированный на пользователя дизайн MeasureReady 155 от Lake Shore представляет собой лаконичный и интуитивно понятный интерфейс, который мгновенно становится знакомым и естественным для любого, у кого есть смартфон.

.

0 comments on “Постоянное и переменное напряжение: Переменное напряжение тока — что это?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *