Прибор для измерения электромагнитного излучения и поля

Прибор для измерения электромагнитного излучения
Прибор для измерения электромагнитного излучения (ЭМИ) позволяет обнаружить зоны, негативно влияющие на состояние здоровья и самочувствие человека. В условиях изобилия бытовой и компьютерной техники такой аппарат нужен в каждом доме.
Общие сведения об источниках электромагнитных полей
Электромагнитным полем называют форму материи, возникающую на базе электрического поля. Движущиеся заряды вызывают «возмущение» в расположенном рядом с ними пространстве, образуя при этом магнитное поле. Для него характерен волновой тип распространения от источника ― электричества. Электромагнитное поле ― это совокупность электрического и магнитного полей.
Электромагнитные волны различаются по частотам и разделены на 6 диапазонов. Все они отличаются степенью проникновения в различные вещества и скоростью распространения в пространстве. Могут оказывать как положительные, так и отрицательные воздействия на живые организмы. Большую роль в этом играет длина волны. Чем выше этот показатель, тем большее количество энергии распространяют и переносят волны.
Вокруг подключенных к электросети бытовых приборов всегда формируется силовое поле. Оно оказывает влияние на человека, животных и растения. Различают два вида ЭМИ:
- ионизирующее (радиоактивное): гамма-лучи, рентгеновское, отдельные диапазоны ультрафіолетового излучения;
- неионизирующее: инфракрасное, видимое, радиоволны.
Первый тип излучения способен вызывать изменения в клетках, нарушая естественные биологические процессы. Наиболее высокую силу воздействия имеют гамма-лучи, провоцирующие развитие лучевой болезни. Неионизирующие виды излучения имеют небольшой энергетический потенциал и способны вызвать незначительные изменения в структуре клеток, атомов и молекул.
Открытое распределительное устройство
Есть источники постоянного магнитного поля (ПМП):
- электросети;
- магниты;
- электролитные ванны;
- МГД-генераторы;
- термоядерные устройства.
Многочисленными исследованиями доказано негативное воздействие ПМП на организмы живых существ. Источниками сигнала могут быть любые электронные приборы:
- мобильные телефоны;
- компьютеры;
- телевизоры;
- музыкальные центры;
- игровые приставки.
Микроволновые печи
Микроволновым называют сверхчастотное излучение (СВЧ), для которого характерна длина волны от 1 мм до 1 м. Этот тип излучения используется не только в микроволновых печах, но и в радионавигации, спутниковом телевидении, сотовой связи. В бытовых микроволновках вырабатываются волны длиной 12 см и частотой излучения 2450 мГц (2,45 ГГц).
На шкале частот микроволны находятся между инфракрасным и рентгеновским излучениями. В исправно работающих СВЧ-печах они всегда поглощаются пищей и посудой, в которой она разогревается. Непосредственно на человека, животных и растения не оказывают никакого влияния. В неисправных печах возможно проникновение микроволн за пределы корпуса. Но и в этом случае они не способны причинить вред живым организмам, так как относятся к категории неионизирующего излучения.
Компьютеры
Компьютер
Компьютеры последних поколений продуцируют поля двух видов:
- электромагнитное;
- электростатическое.
Устаревшие мониторы с электронно-лучевой трубкой излучали рентгеновские волны. Модели LCD или LED лишены этого недостатка. Однако работающий компьютер генерирует ЭМИ в диапазоне частот от 20 до 300 МГц. Это достаточно интенсивное силовое поле, которое при систематическом воздействии способно вызывать негативные изменения в работе некоторых органов и систем организма. Это может выражаться в возникновении следующих симптомов:
- головные боли;
- слезоточивость;
- покраснение глазного яблока;
- расстройства сна и психики;
- повышение утомляемости;
- ухудшение мозговой деятельности.
Важна и направленность волн, исходящих от компьютерной техники. Если компьютер или ноутбук находятся на уровне живота, наибольшее негативное воздействие оказывается на эту часть тела. Это может привести к различным отклонениям в работе пищеварительной системы. Если монитор расположен на уровне головы, можно ожидать негативной симптоматики от верхней части тела.
Телефоны
Изо всех бытовых источников ЭМИ самыми опасными являются телефоны. Они в постоянном режиме поддерживают радиоконтакт со станцией сотовой связи. При перемещении человека с мобильником устройство переключается с одной станции на другую. В состоянии бездействия (отсутствия звонка), аппарат находится в режиме ожидания и с одинаковой периодичностью излучает волны.
Телефон в непосредственной близости от тела ― опасное соседство. Мобильник является мощным источником ЭМИ радиочастотного диапазона. Во время разговора они частично поглощаются тканями головы, поэтому человек при длительном разговоре чувствует нагрев в области ушной раковины и виска.
Низкочастотное излучение в большей степени опасно для детей. Череп и ткани головы ребенка не способны отразить воздействие электромагнитных волн, и те почти полностью проникают в них. ЭМИ оказывает сильное влияние на мозговые ритмы, что не может не сказаться на состоянии здоровья.
Потенциально опасны и технологии беспроводного доступа в интернет. Оборудование для Wi-Fi в непрерывном режиме генерирует пульсирующее ЭМИ. Поэтому специалисты ВОЗ (Всемирной организации здравоохранения) не рекомендуют использование Wi-Fi в дошкольных учреждениях и учебных заведениях.
Как именно влияют электромагнитные излучения на здоровье человека?
Учеными доказано негативное влияние электромагнитного излучения на здоровье человека. Наиболее чувствительны к ЭМИ системы организма, выполняющие регуляторные функции:
- нервная;
- сердечно-сосудистая;
- эндокринная;
- репродуктивная.
У тех, кто длительное время контактирует с источниками постоянного магнитного поля, чаще всего развиваются следующие патологические состояния:
- вегето-сосудистая дистония и периферические вазовегетативные синдромы;
- сенситивные расстройства в дистальном отделе рук;
- нарушения двигательных и рефлекторных функций.
Бессонница у женщины
ЭМИ меньше всего влияет на кровь. При систематическом контакте с источником наблюдается лишь уменьшение количества эритроцитов и снижение уровня гемоглобина, развивается умеренный лейко- и лимфоцитоз. Первые симптомы воздействия на организм электромагнитных волн:
- повышенная утомляемость;
- нарушения сна;
- раздражительность;
- ухудшение памяти;
- снижение способности сосредоточения.
Интенсивность воздействия зависит от значений концентрации потока энергии. Американские ученые выявили прямую зависимость между развитием онкологических заболеваний и профессиональной занятостью. В группе риска:
- полицейские, часто использующие радиопередатчики;
- специалисты, вынужденные по долгу службы находиться рядом с электронным оборудованием (в качестве вредного фактора выступают и дисплейные терминалы).
Излучение опасно и для беременных женщин. У тех из них, кто подолгу работает на компьютере, в 1,5 раза чаще происходят самопроизвольные выкидыши.
Санитарные нормы воздействия электрического поля
Самые строгие нормы в Европе. ПДУ излучения базовых станций мобильной связи не должны превышать 2,5 мкВт/см². В Москве и России допустима плотность потока энергии 10 мкВт/см². Контроль за соблюдением норм возложен на органы санитарного надзора, службы охраны труда и инспекции по радиосвязи.
Согласно санитарным правилам, разработаны рекомендации по допустимому времени непрерывной работы за компьютером детей разного возраста.
Возраст | Максимально допустимое время непрерывной работы (минуты) |
5 | 7 |
6 | 10 |
7-10 | 15 |
11-13 | 20 |
14-15 | 25 |
16-17 | 30 на первом часе занятий, 20 на втором часе |

Нормы ЭМИ
Предельно допустимая норма ЭМИ — от 0,2 до 10 мкТл. Повышенным уровнем считают достижение частоты излучения 50 Гц. Для электрических полей установлены следующие нормы:
- жилые помещения ― до 0,5 кВ/м;
- в зоне жилой застройки — до 1 кВ/м;
- вне зоны жилой застройки — до 5 кВ/м.
Измерение уровня ЭМИ
Учеными разработаны приборы для измерения электромагнитных полей и излучений ― ручные анализаторы. С их помощью допустимо узнать уровень напряженности (плотность потока энергии) электромагнитного поля. Измеряющие устройства работают в широком диапазоне частот и способны отслеживать заданную частоту. Можно выбрать единицы измерения: В/м (вольтметр) или мкВт/см² (микроватт/см²).
Анализатор «АТТ-2593»
Популярный и недорогой прибор ― «АТТ-2593». Он предназначен для мониторинга ненаправленных измерений напряженности электрического и магнитного полей, а также плотности потока их мощности. «АТТ-2593» работает в диапазоне частот от 5 мГц до 8 Гц. На основании результатов тестирования делают выводы о том, насколько вредно длительное нахождение рядом с источником ЭМИ.
Анализатор «ВЕ-метр-АТ-003»
Замерить излучение от компьютеров, телефонов и ноутбуков поможет анализатор «ВЕ-метр-АТ-003». Прибор позволяет определить уровень магнитного поля и время прохождения волн. «ВЕ-метр-АТ-003» может использоваться не только в бытовых целях. Он подходит для измерения магнитной и электрической составляющих силового поля на производствах, рабочих местах, в общественных зданиях и на селитебных территориях. Прибор работает в диапазоне частот от 5 Гц до 5 кГц.
Экспертиза магнитных полей

Детектор электромагнитного излучения
Экспертиза силовых полей — востребованная услуга, которая входит в компетенцию специализированных аккредитованных лабораторий. Учреждение должно иметь соответствующий сертификат. Наиболее частыми причинами проведения экспертизы являются:
- недочеты в проектировании зданий, влекущие неправильное распределение и монтаж электросетей;
- нахождение вблизи жилых домов трансформаторных подстанций;
- расположение дач вблизи ЛЭП.
Для того чтобы измерить ЭМИ, используют детектор электромагнитного излучения. Это прибор, предназначенный для измерения напряженности электрических и магнитных полей вокруг систем радиосвязи, бытовой техники, производственного оборудования. Перед тем как заказать экспертизу, рекомендуется узнать о том, какой измеритель электромагнитного поля будет использоваться, и о сроке его поверки.
Как замерить электромагнитное излучение в квартире и кому необходима данная процедура?
Есть простой и доступный способ измерить электромагнитное излучение в домашних условиях. Для этого понадобится индикаторная отвертка, которую можно купить в любом магазине хозяйственных товаров и строительных материалов. Индикаторы таких отверток реагируют на ЭМИ. Поэтому если поднести инструмент к работающей бытовой или компьютерной технике, то он отреагирует свечением. Оно будет тем более интенсивным, чем выше ЭМИ в зоне измерения.
Но точные данные удастся получить только с помощью анализатора. Каждому, кто имеет дома бытовую и компьютерную технику, необходимо знать о том, какова интенсивность излучаемых ею волн. Это поможет найти способы минимизации вредного воздействия.
Как уменьшить электромагнитное излучение?
Специалистами разработаны меры по защите от воздействия ЭМИ на организм человека. Главная из них ― это нахождение на больших расстояниях от источника излучения. Так, не рекомендуется находиться вблизи работающей СВЧ-печи или роутера. Телевизор с диагональю 60-70 см нужно смотреть на расстоянии от 1,5 м. Чем шире экран, тем выше показатель интенсивности ЭМП и тем дальше должен находиться зритель.
Стены из любых строительных материалов не являются преградой для ЭМИ. Это нужно учитывать при расстановке мебели и своевременно поинтересоваться, где у соседей расположены приборы, создающие магнитный фон.
Необходимо использовать средства защиты от ЭМИ ― экранирующие материалы. Один из них ― металлическая сетка, которую закладывают в стяжку и стены при строительстве дома. Она способна отражать излучение по направлению к его источнику. Существуют специальные защитные пленки и экраны для дисплеев компьютеров и телефонов.
С целью снижения уровня воздействия ЭМИ рекомендуется выключать из электросети неработающие приборы. Также необходимо сократить время разговоров по мобильному. При выполнении рекомендаций по защите себя и своего помещения от магнитного излучения, можно минимизировать причиняемый им вред.
Автор статьи: Беспалова Ирина Леонидовна
Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.
Беспалова Ирина Леонидовна опубликовала статей: 418
obotravlenii.ru
МАГНИТОМЕТР • Большая российская энциклопедия
МАГНИТО́МЕТР, прибор для измерения характеристик магнитного поля и магнитных свойств объектов и материалов. Некоторые М. имеют спец. названия в зависимости от измеряемой величины: эрстедметры измеряют напряжённость магнитного поля, градиентометры и вариометры – изменения напряжённости в пространстве и времени, инклинаторы и деклинаторы – направление вектора напряжённости, тесламетры – величину магнитной индукции. М. измеряют также следующие характеристики объектов и материалов: магнитную проницаемость и магнитную восприимчивость (мю-метры и каппа-метры), коэрцитивную силу (коэрцитиметры), поток магнитной индукции (веберметры или флюксметры), магнитный момент, кривые намагничивания, потери на гистерезис и др. Часто магнитометрич. датчики используются при косвенных измерениях немагнитных величин.
По принципу действия М. можно разделить на магнитостатические (механические), индукционные, квантовые и др.
Магнитостатические магнитометры
Принцип действия этих М. основан на механич. воздействии магнитного поля на магнит. К таким приборам относятся компас магнитный и буссоль, определяющие направление магнитного поля Земли, кварцевые вариометры, позволяющие регистрировать геомагнитные вариации с точностью 10–3–10–4 А/м и магнитные весы, применяемые в лабораторных условиях для исследования магнитной восприимчивости образцов. В магнитных весах восприимчивость магнитного материала определяется по силе, с которой исследуемый образец, имеющий форму длинного цилиндра, втягивается в поле электромагнита (метод Гуи), или по силе, действующей на образец малого размера, помещённый в неоднородное магнитное поле (метод Фарадея). В методе Гуи требуется бо́льшая масса вещества (1–10 г), а метод Фарадея позволяет работать с миллиграммами вещества и требует более сложного оборудования.
Индукционные магнитометры
Работа этих М. основана на явлении электромагнитной индукции; они регистрируют изменение потока магнитной индукции в измерит. катушке, вызванное разл. причинами. Индукционные М. условно делят на пассивные и активные: в первых эдс в катушке возбуждается изменением во времени внешнего магнитного поля, во вторых – изменениями в самом приборе. Пассивные М. представляют собой длинную цилиндрич. катушку, намотанную на ферромагнитный сердечник и фактически являются антеннами сверхнизкой частоты. Такие М. используются для детектирования ядерных взрывов, связи с подводными лодками, магнитотеллурич. зондирования земной коры, изучения взаимодействия солнечного ветра с магнитосферой Земли и волновых процессов в космич. плазме.
К активным индукционным М. относятся, напр., рок-генератор и феррозондовый М. В рок-генераторе исследуемый образец помещается на спец. площадку, вращающуюся в центре измерит. катушки с частотой 40 Гц. В результате в катушке возникает эдс, величина которой пропорциональна величине намагниченности образца. Для исключения влияния внешнего магнитного поля на результаты измерений катушка (вместе с вращающейся площадкой и образцом) закрыта многослойным пермаллоевым экраном. Рок-генератор применяется при исследованиях магнитных свойств горных пород, напр. при изучении палеомагнетизма.
Феррозондовые М. основаны на периодич. изменении магнитной проницаемости ферромагнетиков при перемагничивании (до насыщения) переменным полем возбуждения. На обмотку возбуждения подаётся переменный ток; при этом в измерит. катушке наводится переменная эдс, чётные гармоники которой пропорциональны продольной компоненте внешнего поля. Простейший феррозондовый датчик состоит из стержневого ферромагнитного сердечника и находящихся на нём обмоток измерения и возбуждения. В наиболее распространённых феррозондовых М. используется тороидальный сердечник с обмоткой возбуждения или два стержневых сердечника с распределёнными по их длине обмотками возбуждения, включёнными последовательно-встречно (т. е. электрически последовательно, но магнитные поля, создаваемые обмотками, имеют противоположное направление). Измерения производятся либо при помощи одной общей сигнальной обмотки, либо с использованием двух обмоток, соединённых так, что нечётные гармонич. составляющие магнитного поля практически компенсируются. Использование тороидального сердечника позволяет одновременно измерять 2–3 взаимно ортогональные компоненты магнитного поля, что уменьшает ошибки в определении направления вектора поля.
Феррозондовые М. применяют для измерения магнитного поля Земли и его вариаций, при аэромагнитных съёмках и разведке полезных ископаемых, в космич. исследованиях, хирургии, в системах контроля качества продукции, в электронных компасах. Чувствительность феррозондового М. достигает 10–4–10–5 А/м.
Квантовые магнитометры
В работе квантовых магнитометров используются квантовые явления: свободная упорядоченная прецессия ядерных (ядерный магнитный резонанс, ЯМР) или электронных (электронный парамагнитный резонанс, ЭПР) магнитных моментов во внешнем магнитном поле, квантовые переходы между магнитными подуровнями атомов, а также квантование магнитного потока в сверхпроводящем контуре. В зависимости от способа создания макроскопич. магнитного момента и метода детектирования сигнала различают: протонные М. (М. свободной прецессии, с динамической и синхронной поляризацией), М. с оптич. накачкой и др.
Датчиком протонного М. служит контейнер с диамагнитной жидкостью, молекулы которой содержат атомы водорода. В качестве такой жидкости могут выступать вода, керосин, бензол, гептан и др. Ампулу с жидкостью помещают в катушку, либо катушку погружают в ёмкость с рабочей жидкостью. Через катушку вначале пропускают ток поляризации, который создаёт магнитное поле, ориентирующее магнитные моменты протонов и намагничивающее жидкость. После отключения тока поляризации магнитные моменты протонов начинают прецессировать вокруг направления измеряемого магнитного поля Низм c частотой ω = γpНизм, где γp – гиромагнитное отношение для протонов. Т. о., измерение частоты прецессии позволяет с высокой точностью определить величину напряжённости магнитного поля.
В работе квантового М. может быть использована также прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов. Частота прецессии электронов в сотни раз больше частоты прецессии протонов. Созданы протонные М., в которых ЭПР увеличивает интенсивность ЯМР (эффект Оверхаузера).
Квантовый оптич. М. (М. с оптич. накачкой) часто называют просто квантовым М. Датчиком прибора является стеклянная колба, наполненная парáми щелочного металла (напр., Rb, Cs, K), атомы которого парамагнитны. При пропускании через колбу света с круговой поляризацией и длиной волны, соответствующей переходу атомов металла на один из возбуждённых уровней, атомы заполняют один из магнитных подуровней этого уровня, что приводит к уменьшению резонансного поглощения и рассеяния света. При помещении колбы в переменное магнитное поле с частотой ω = γeНизм (γe – гиромагнитное отношение для электронов) населённость магнитных подуровней выравнивается, а поглощение и рассеяние света резко возрастают. Чувствительность протонного и оптического М. составляет 10–4–10–5 А/м.
Все описанные квантовые М. применяются для измерения напряжённости слабых магнитных полей, в т. ч. геомагнитного поля в космич. пространстве, а также в геологоразведке.
Принцип действия сверхпроводящих квантовых М. (СКВИД-магнитометров) основан на квантовых эффектах в сверхпроводниках: квантовании магнитного потока в сверхпроводнике и зависимости критич. тока контакта двух сверхпроводников от Низм (см. Джозефсона эффект). Сверхпроводящие М. измеряют сверхслабые магнитные поля и применяются в биофизике, физике твёрдого тела, магнетохимии и др., а также для измерений компонент геомагнитного поля. Чувствительность СКВИД-магнитометров достигает 10–10 A/м.
Другие типы магнитометров
Принцип действия гальваномагнитных М. основан на искривлении траекторий заряженных частиц в магнитном поле. К этой группе М. относятся М., использующие Холла эффект и эффект Гаусса (изменение сопротивления проводника в поперечном магнитном поле). На эффекте Холла основаны также: тесламетры, применяемые для измерения постоянных, переменных и импульсных магнитных полей; флюксметры, используемые для отбраковки постоянных магнитов; коэрцитиметры, применяемые при неразрушающем контроле качества. На основе датчиков Холла создаются градиентометры для исследования магнитных свойств материалов. Чувствительность М. на эффекте Холла обычно находится в диапазоне 10–100 А/м. Эффект Гаусса применяется в магниторезистивных датчиках, используемых в электронных компасах и др. Чувствительность таких тесламетров составляет 0,5–10 А/м.
Существуют также М., принцип действия которых основан на вращении плоскости поляризации света в магнитном поле или поле намагниченного образца, изменении длины намагниченного стержня под действием приложенного поля (магнитострикции) и др. Такие М. применяются в разл. областях техники.
bigenc.ru
Магнитометр. Виды и работа. Применение и особенности
Магнитометр – это прибор, который применяется для разведки магнитного поля Земли или поиска скрытых предметов. По принципу действия прибор немного напоминает металлоискатель, который реагирует на металлические поверхности, за тем исключением, что он чувствителен к естественному магнитному полю Земли, а также крупным неметаллическим предметам, имеющим собственное остаточное поле. Устройство нашло свое применение в различных отраслях промышленности и науки, поскольку позволяет фиксировать природные аномалии, а также ускоряет поиски объектов.
Зачем используется магнитометр
Магнитометры реагируют на магнитное поле и выражают показатели его силы в различных физических единицах измерения. В связи с этим существует много типов данных приборов, каждый из которых адаптирован под определенную поисковую цель.
Модификации этих устройств применяются в десятках отраслях науки и промышленности:
- Геология.
- Археология.
- Навигация.
- Сейсмология.
- Военная разведка.
- Геохронология.
В геологии с помощью магнитометра осуществляется поиск полезных ископаемых без необходимости проводить пробное бурение для взятия образцов. Прибор позволяет зафиксировать богатую ископаемыми жилу и принять решение о целесообразности начала добычи в данном районе. Также с помощью данного оборудования можно определить, где находятся подземные источники питьевой воды, как они располагаются и их объем. Благодаря этому можно заблаговременно решить, где осуществить строительство колодца или скважины, чтобы добраться к воде без необходимости максимального углубления.
Магнитометры используются в археологии при раскопках. Они позволяют реагировать на скрытые глубоко под землей фундаменты зданий, статуи и прочие объекты, которые имеют остаточную намагниченность. В первую очередь это обожженный кирпич или камень. Устройство реагирует на скрытые глубоко под землей старинные очаги и печи. С его помощью можно искать объекты во льду или снегу.
Магнитометр также используется в навигации. С его помощью осуществляется определение магнитного поля Земли, в результате чего можно получить данные о направлении движения в случае дезориентации. Такие приборы используют в авиации и морском транспорте. Магнитометры являются обязательным оборудованием на космических станциях и шаттлах.
В сейсмологии магнитометры, которые реагируют на магнитное поле Земли, позволяют предсказывать землетрясение, поскольку при изменении характеристик тектонических плит происходит нарушение привычных показателей поля. Таким способом можно определить свежие подземные трещины, сквозь которые может начаться извержение.
В военной разведке данное оборудование позволяет искать военные объекты, скрытые от обычных радаров. С помощью магнитометра можно выявить лежащую на морском или океанском дне подводную лодку.
В геохронологии по силе остаточной намагниченности можно определить возраст горных пород. Существуют и более точные методы, но с помощью магнитометра это можно сделать за считанные секунды, без необходимости осуществления дорогостоящего анализа.
Разновидности магнитометров по принципу действия
По принципу действия магнитометры разделяют на 3 вида:
- Магнитостатические.
- Индукционные.
- Квантовые.
Каждая разновидность реагирует на стороннее магнитное поле, используя определенный физический принцип. На базе этих трех разновидностей созданы различные узкоспециализированные виды магнитометров, которые являются более точными для измерений в определенных условиях.
Магнитостатические
Несмотря на внешнюю сложность данного прибора, он работает по вполне понятному физическому принципу. Внутри магнитометра находится небольшой постоянный магнит, реагирующий на магнитное поле, с которым контактирует. Магнит находится в подвешенном состоянии на упругой подвеске, позволяющей ему прокручиваться. Она практически не обладает своей жесткостью, поэтому не удерживает его и позволяет прокручиваться без сопротивления. Когда постоянный магнит реагирует с чужеродным полем направление которого или сила не совпадают с его собственным, происходит реакция притяжение или отторжения. В результате подвешенный постоянный магнит начинает проворачиваться, что фиксирует чувствительный датчик. Таким образом осуществляется измерение силы и направления стороннего магнитного поля.
Чувствительность магнитостатического прибора зависит от эталонного магнита, который в него установлен. Также на точность измерения влияет упругость подвески.
Индукционные
Индукционные магнитометры имеют внутри катушку с проволочной обмоткой из токопроводящего материала. Она находится под напряжением от аккумуляторного источника питания. Катушка создает собственное магнитное поле, которое начинает контактировать со сторонними полями, проходящими через ее контур. Чувствительные датчики реагируют на изменения, которые отображаются на катушке в результате такого взаимодействия. Они могут реагировать на вращение или колебания. У более сложных устройств датчики реагируют на изменение магнитной проницаемости сердечника катушки. Независимо от того каким образом фиксируется изменение, прибор отображает показатели внешних магнитных полей и позволяет определять местонахождение объектов, их размер и отдаленность.
Квантовые
Квантовый магнитометр реагирует на магнитный момент электронов, которые двигаются под действием внешних магнитных полей. Это дорогостоящее оборудование, которое применяется для лабораторных исследований, а также сложных поисков. Устройство фиксирует магнитный момент микрочастиц и напряженность измеряемого поля. Данное оборудование позволяет измерить напряженность слабых полей, в том числе тех которые находятся в космическом пространстве. Именно это оборудование применяется в георазведке для поиска глубоких залежей полезных ископаемых.
Отличие между приборами
Магнитометр представляет собой высокотехническое оборудование, которое может отличаться от других подобных приборов не только по физическому принципу реакции на изменение магнитного поля или чувствительности, но и по прочим характеристикам.
Устройства могут отличаться друг от друга по следующим критериям:
- Наличию дисплея.
- Количеству датчиков.
- Наличию звукового индикатора.
- Погрешности измерения.
- Способу индикации.
- Продолжительности непрерывной работы.
- Габаритам и весу.
Что касается количества чувствительных датчиков, то чем их больше, тем более точным будет оборудование. Магнитометр может отображать свои измерения в числовом или графическом выражении. Сказать что лучше сложно, поскольку все зависит от особенностей условий, в которых проводится измерение. В определенных случаях нужно просто получить отображение показателей магнитного поля в цифрах, в то время как иногда больше нужно визуальное определение вектора его завихрений. Оптимальным вариантом являются комбинированные устройства, которые позволяют визуализировать показатели в цифровом и графическом отображении.
Похожие темы:
tehpribory.ru
Электромагнитные поля — ЭМП

В-50-2
Измеритель магнитного поля промышленной частоты
Предназначен для определения модуля индукции магнитного поля промышленной частоты, создаваемого магнитными системами и электрическими аппаратами различного назначения, линиями электропередачи, системами электроснабжения, транспорта и другими источниками.

КОМБИ-ФАКТОР
(ВЕ-метр 50Гц, ВЕ-метр-АТ-004, П3-34)
Комплект для контроля норм по электромагнитной безопасности при специальной оценке условий труда, производственном контроле и комплексных санитарно-гигиенических обследованиях объектов.

ВЕ-метр
Модификация «АТ-004» и «50Гц» с блоком управления «НТМ-Терминал»
Измеритель параметров электрического и магнитного полей трехкомпонентный — предназначен для контроля норм по электромагнитной безопасности при специальной оценке условий труда, производственном контроле и комплексных санитарно-гигиенических обследованиях объектов. Измеритель оснащен изотропными датчиками ЭМП (ненаправленного приема).

ВЕ-50И
Индикатор уровня электромагнитного поля промышленной частоты 50 Гц
Индикатор уровня электромагнитных полей промышленной частоты ВЕ-50И используется для оценки эффективных значений напряженности электрического поля и индукции магнитного поля промышленной частоты 50 Гц. Предназначен для применения на стадии планирования производственного контроля и аттестации рабочих мест для экспресс-оценки электромагнитной обстановки в местах будущего контроля норм по электромагнитной безопасности.

П3-33М
Измеритель плотности потока энергии электромагнитного поля
Рабочий диапазон частот 0,3 — 18,0 ГГц. Применяется для обнаружения и контроля биологически опасных уровней плотности потока энергии (ППЭ) электромагнитного излучения и экспозиции в соответствии с действующими правовыми и нормативными документами Госстандарта и Госкомэпиднадзора России. Удовлетворяет требованиям: стандарта США и Германии.
Стенд для измерения электризуемости тканей (к прибору СТ-01)
Стенд для измерения электризуемости тканей по ГОСТ 32995-2014 «Материалы текстильные. Методика измерения напряженности электростатического поля», СанПиН 2.4.7/1.1.1286-03 «Гигиенические требования к одежде для детей, подростков и взрослых», МУК 4.1/4.3.1485-03 «Гигиеническая оценка одежды для детей, подростков и взрослых». (поставляется по отдельному заказу).
П3-41
Измеритель уровней электромагнитных излучений
Измеритель П3-41 разработан с целью обнаружения и контроля биологически опасных уровней электромагнитных излучений напряженности, плотности потока энергии и экспозиции для обеспечения выполнения требований Общего Технического Регламента об электромагнитной совместимости и безопасности, действующего в странах Европейского Союза и РФ.
ИПМ-101М
Измеритель напряжённости поля малогабаритный
Измеритель предназначен для контроля предельно допустимых уровней высокочастотных излучений на рабочих местах персонала, обслуживающего электрорадиотехнические установки и системы, излучающие электромагнитное поле.

BE-50
Измеритель электромагнитного поля промышленной частоты
В связи с выходом новой модели, данная снята с производства с 01.09.2015г.
Новый модернизированный прибор: «ВЕ-метр»
Приборы для измерения электромагнитных полей: какие приборы лучше выбрать и купить?
Электромагнитные поля и средства измерения их параметров (напряженности, поляризации, спектральных составляющих).
Электромагнитные излучения — электромагнитные волны, излучаемые различными объектами и распространяющиеся в пространстве. При определенных условиях эти факторы могут оказывать неблагоприятное действие на здоровье человека. Любой живой организм зависит от условий внешней среды. Если измерения уровней электромагнитных излучений показывают, что предельно допустимая норма превышена, нужно принимать меры: эти волны могут представлять опасность для здоровья.
Источники электромагнитного излучения:
- воздушные линии электропередач;
- рентгеновские установки;
- радиосвязь;
- передатчики мобильной связи;
- все устройства, использующие или вырабатывающие электрическую энергию.
Однако не так просто провести в домашних условиях измерение электромагнитного излучения. Поля совершенно невидимы, а большинство из них не ощущается человеком. Зафиксировать истинную обстановку и определить тип волн можно только с помощью высокоточной техники.
Производимые нами приборы для измерения электромагнитного излучения перекрывают практически весь частотный диапазон – от электростатического и постоянного магнитного поля, через низкочастотные электромагнитные поля промышленной частоты 50 Гц и электромагнитное излучение видеодисплейных терминалов персональных компьютеров, до потоков СВЧ-излучения. Как правило, методы и средства измерения электромагнитного излучения в каждом отдельном случае избираются исходя из частоты волн, плотности потока энергии, напряженности поля. Все требования к таким измерениям описаны в санитарных нормах. В документах указаны и предельно допустимые напряжения для различных объектов.
Таблица выбора средства измерения электромагнитного поля:
Измеряемый параметр: | Измеритель электромагнитных полей: |
---|---|
Геомагнитное поле (ГМП) | МТМ-01 Диапазон измерения напряженности магнитного поля от ±0,5 до ±200 А/м; |
Постоянное магнитное поле (ПМП) | |
МТМ-02 Диапазон измерения напряженности постоянного магнитного поля от -200 до +200 кА/м; |
|
Электрические и магнитные поля промышленной частоты (50Гц) | ВЕ-метр Диапазон частот: от 48 Гц до 52 Гц, от 5 Гц до 400 кГц |
ВЕ-50И Индикатор уровня электромагнитного поля промышленной частоты 50 Гц |
|
В-50-2 Измеритель магнитного поля промышленной частоты |
|
Электромагнитные поля на рабочем месте пользователя ПЭВМ | ВЕ-метр Диапазон частот: от 48 Гц до 52 Гц, от 5 Гц до 400 кГц |
Электромагнитные излучения радиочастотного диапазона (10 кГц — 300 ГГц) | П3-33М Измеритель плотности потока энергии электромагнитного поля |
П3-34 Измеритель параметров электромагнитного поля |
|
ИПМ-101М Измеритель напряжённости поля малогабаритный |
|
П3-41 Измеритель уровней электромагнитных излучений |
|
П3-42 Измеритель уровней электромагнитных излучений |
|
Электростатическое поле | СТ-01 Универсальный измеритель напряженности и потенциала электростатического поля |
Динамические диапазоны измерения напряженности электромагнитных полей выбраны с учетом действующих нормативов по уровням электромагнитных полей в быту.
Перечисленные характеристики измерителей электромагнитных полей позволяют использовать их в работе ЦГСЭН, лабораторий по аттестации рабочих мест на объектах народного хозяйства — промышленных предприятиях, в том числе в металлургической, угольной, нефтяной, газовой и химической промышленности, а также проведения производственного контроля объектов коммунальной гигиены.
Часть приборов интегрирована в единый инструмент санитарно-гигиенического контроля, включающий в себя программный продукт «НТМ-ЭкоМ» и измерители физических факторов окружающей среды. Программа «НТМ-ЭкоМ» дает возможность интерактивной аналитической работы с накопленными в памяти измерителей результатами измерения производственных физических факторов.
ntm.ru
что это, для чего нужен, как сделать своими руками
Прибор для измерения электромагнитного излучения позволяет выявить негативные волны, идущие от ЛЭП (линий, передающих электричество), бытовой техники, электрооборудования. Ионизирующие и неионизирующие потоки невозможно пощупать или увидеть. Несмотря на это, они могут отрицательно влиять на здоровье человека. Между прочим, ученые всего мира продолжают дискуссии о пользе и вреде этих сигналов (ультрафиолетовое, рентгеновское излучение, радиоволны).

Силовые поля, которые возникают возле источников или потребителей электрического тока, это и есть электромагнитное излучение. Оно воздействует на все окружающие предметы, людей, животных. На степень подверженности этим сигналам непосредственно влияет частота и длина волн.
Воздействие на человека оказывает любое ЭМИ, начиная от обычной электрической лампочки, заканчивая гамма-лучами, отличаясь только объемом единоразового облучения. Степень воздействия и нахождение вредоносных зон можно определить при помощи прибора для измерения электромагнитного излучения. Рекомендовано проводить проверку не только на предприятиях, но и в жилых домах.
Основные причины появления излучения
Для того чтобы избежать воздействия предельных показаний излучения, необходимо принимать соответствующие меры, обеспечивающие сохранность жизни и здоровья людей. Основными источниками ЭМИ являются следующие факторы:
- Мобильная связь и радиоволны.
- Линии электропередач.
- Источники электричества.
- Рентгеновские и схожие с ними аппараты.
Провести точные измерения самостоятельно довольно непросто. Наиболее точно понять силу и тип волн позволяют высокоточные приборы для измерения электромагнитных полей и излучений (типа ПЗ-31). В продаже имеются различные домашние дозиметры и детекторы. Однако они имеют высокую долю погрешности.

Бытовой прибор для измерения электромагнитного излучения
Эти аппараты производятся преимущественно в Китае. При этом они не обладают точными данными. Если требуется квалифицированная помощь в этом аспекте, работу лучше доверить специалистам, обладающим соответствующими знаниями и приспособлениями. В таких сертифицированных лабораториях имеется ряд высокоточных устройств, дающих возможность провести качественную экспертизу с предоставлением комплексной оценки результатов.
Методы проверки подбираются для каждого конкретного случая, в зависимости от концентрации энергии, частотности волн, интенсивности полей. Все условия и нормы прописаны в СанПиНе. Полученные показания выводятся по специальной шкале. Частота электромагнитных сигналов зависит от спектральных параметров. Длина излучения может колебаться от 103 метров до нескольких миллиметров. ЭМИ измеряется в ГГц, а длина волны в мегаметрах (Мм). При проведении комплексного исследования во внимание принимают электрический и магнитный аспект.
Экспертиза
Проведение исследования ЭМИ может проводиться как в жилых помещениях, так и на производстве. Подобная процедура называется аттестацией рабочего места, выполняется с использованием точного и сертифицированного оборудования. Согласно санитарно-эпидемиологическим стандартам показания прибора для измерения электромагнитного излучения не должны превышать норму в 50-300 ГГц. В случае превышения параметров полагается доплата либо сокращение рабочего времени пропорционально увеличению дозы облучения.

Большая опасность таится не в отдельно взятой волне, а в накоплении электромагнитного фона, чему подвержены все живые организмы. Предполагают, что это может приводить к мутациям, изменениям ДНК и раковым заболеваниям.
Профессиональные модификации
Рассмотрим характеристики и возможности приспособлений для измерения ЭМИ, которые используются в экологических службах. Наиболее популярными и точными считаются модификации ПЗ-41 и ПЗ-31.
Прибор для измерения электромагнитного излучения ПЗ-31 предназначен для определения среднеквадратичных параметров интенсивности электрических и магнитных полей. Кроме того, он измеряет амплитуду и импульсы модуляции, концентрацию потока энергии, соответствие электромагнитных полей стандартам СаНПиН и ГОСТА.
Возможности устройства ПЗ-31:
- Фиксирование усредненных показаний результатов текущих параметров концентрации потока энергии и интенсивности магнитных полей за истекшие шесть минут.
- Отбор и сохранение в оперативной памяти полученной информации с возможностью вывода сведений и предельных значений в течение трех с половиной дней работы (от усредненных до предельных значений в диапазоне 1-832).
- Исследование местоположения излучения.
- Выдача звукового сигнала при достижении предельных показателей.

Особенности
Прибор для измерения электромагнитного излучения ЛЭП и других источников марки ПЗ-31 обладает следующим частотным диапазоном:
- По отношению к электрическому полю – 0,03-300 МГц при разности измерения от 2 до 600 В/м.
- В части магнитного компонента – 0,01-30 МГц (0,5-16 А/м).
- В плане концентрирования потока энергии – 300-40000 МГц (0,265-100000 мкВт/кв. см).
Основными плюсами устройства является компактность, малый вес, простота в эксплуатации, длительность работы не менее 60 часов.
ПЗ-41
Этот прибор для измерения электромагнитного излучения в квартире также подходит в качестве тестера при аттестации рабочего места. У него выше точность по выявлению неионизирующих волн. Приспособление обладает широким охватом всевозможных частот, включая длинные сигналы и микроволны. Агрегат позволяет произвести высокоточные замеры радиоактивности любого электрического оборудования.

Меры предосторожности
Абсолютно обезопасить себя от негативного воздействия ЭМИ в современном мире невозможно. Тем не менее прибор для измерения электромагнитного излучения от ЛЭП и других источников электричества позволит выявить особо опасные зоны и предпринять соответствующие меры.
Правила безопасности:
- Желательно не устанавливать бытовые устройства в зоне отдыха, что даст возможность минимизировать воздействие вредного излучения.
- Стараться чаще бывать на природе, вдали от любых источников электричества.
- Регулярно принимать душ или ванну, что позволяет уменьшить статический фон организма, который вырабатывает собственное электромагнитное поле.
- Своевременно менять технику, поскольку некоторые детали после истечения гарантированного срока начинают выделять больше радиоактивных волн.
Как сделать прибор для измерения электромагнитного излучения своими руками?
Это устройство не выдает показатели, однако позволяет услышать электромагнитное поле. Для его изготовления потребуется старый кассетный плеер и клей. Мини-магнитофон необходимо разобрать и вынуть аккуратно основную плату. Главная рабочая деталь – это считывающая головка. Около нее имеется пара проводов на болтах. Крепление следует открутить, а головка останется висеть на шлейфе.
Затем плата помещается обратно в корпус, а оставшийся элемент приклеивается снаружи при помощи клея. В качестве динамика будет служить внешний аналог либо наушники. Прислонив считывающую головку к телевизору, вы услышите электромагнитное излучение. Чем новее телевизионный приемник, тем слабее звук, что говорит о пониженном количестве ЭМИ. Считывать информацию можно на расстоянии до 400 мм. Примечательно, что излучение дают любые мобильные телефоны, зарядка для них и даже телевизионный пульт.

Детектор СВЧ-волн
Схема такого самодельного прибора состоит из нескольких блоков, включающих в себя измерительную головку, питающие источники, микроамперметр, рабочую плату.
Головка для измерения – это вибратор полуволнового типа, к которому присоединяются диоды типа Д-405, дающие возможность выпрямлять ток сверхвысокой частоты. Кроме того, на нем крепится конденсатор на 1000 пФ на текстолитовой пластине.
Полуволновой вибратор представляет собой пару отрезков трубок диаметром 10 мм и длиной 70 мм. Подойдут заготовки из алюминия или другого немагнитного материала. Минимальное расстояние между краями элементов составляет не более 10 мм, чтобы была возможность размещения диода. Предельная дистанция между торцами труб не должно превышать 150 мм, что соизмеримо с половиной длины волны частоты в 1ГГц.
Чем толще будут трубки, тем меньше вибратор подвергается искажению величины, в зависимости от частоты сигнала. Для точной градации шкалы необходимо использовать калиброванный генератор нужной частоты. Разметку желательно проводить нескольких частот. Такое приспособление позволит ориентировочно измерить ЭМИ, но не является сверхточным устройством. Как альтернатива, имеется возможность приобретения комплекта деталей для создания детектора, который можно собрать самостоятельно, однако погрешность будет и у него.

В заключение
Заботясь о своем здоровье в плане влияния ЭМИ на организм, многие пользователи задумываются, как называется прибор для измерения электромагнитного излучения? Выше рассмотрены несколько профессиональных и самодельных моделей. Если вы озабочены возможностью проявления негативного поля, лучше обратиться к специалистам. Приблизительные значения можно выявит при помощи бытовых и самодельных приспособлений.
fb.ru