Принцип действия трансформатора напряжения – 11. Трансформаторы напряжения. Назначение и классификация. Принцип действия.

11. Трансформаторы напряжения. Назначение и классификация. Принцип действия.

Трансформаторы напряжения предназначены для измерения напряжения, питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

По числу фаз – однофазные и трёхфазные; По числу обмоток – двухобмоточные и трёхобмоточные;

По классу точности, т.е. по допускаемым значениям погрешностей – согласно таблице 2.3;

По способу охлаждения:

трансформаторы с масляным охлаждением (масляные); трансформаторы с естественным

воздушным охлаждением (сухие и с литой изоляцией).

По роду установки:

для внутренней установки; для наружной установки.

Трансформатор напряжения (ТН) по принципу действия и конструктивному выполнению аналогичен обычному силовому трансформатору и состоит из стального сердечника (магнитопровода), собранного из тонких пластин трансформаторной стали, и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника.

Устройство и принцип действия трансформатора напряжения

Устройство и схема включения трансформатора напряжения изображены на рисунке 2.14.

Первичная обмотка W1, имеющая очень большое число витков, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке W2, имеющей меньшее число витков, подключаются параллельно измерительные приборы и реле:

Рисунок 2.14 – Устройство и схема включения ТН.

Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней э.д.с. Е, равную при разомкнутой вторичной обмотке (холостой ход трансформатора) напряжению на её зажимах U2хх.

Напряжение U2хх, меньше первичного напряжения U1 во столько раз, во сколько раз число витков вторичной обмотки W2 меньше числа витков первичной обмотки W1:;

Отношения чисел витков обмоток называется коэффициентом трансформации и обозначается nн:

; Следовательно, можно записать:

Если ко вторичной обмотке подключена нагрузка в виде приборов и реле, то напряжение на её зажимах

U2 будет меньше э.д.с. на величину падения напряжения в сопротивлении вторичной обмотки. Однако

это падение напряжения невелико и им можно пренебречь, тогда: U1 = U2nн и ;

В паспортах на трансформаторы напряжения их коэффициенты трансформации указываются дробью, в

числителе которой – номинальное первичное напряжение, а в знаменателе – номинальное вторичное

напряжение. Для правильного соединения обмоток ТН между собой и правильного подключения к ним реле направления мощности, ваттметров и счётчиков выводы обмоток маркируются определенным образом: начало первичной обмотки – А, конец – Х; начало основной вторичной обмотки – a, конец – х;

начало дополнительной обмотки aд, конец –

xд.

12. Схемы соединения трансформаторов напряжения.

Однофазные трансформаторы напряжения в зависимости от назначения соединяются между собой в различные схемы.

На рисунке 2.16 приведены основные схемы соединения однофазных ТН.

Рисунок 2.16 – Схемы соединения обмоток однофазных трансформаторов напряжения с одной вторичной обмоткой.

На рисунке а) представлена схема включения одного ТН на междуфазное напряжение АС.

Эта схема применяется, когда для защиты или измерений нужно только одно междуфазное напряжение.

На рисунке б) приведена схема соединения 2-х ТН в открытый треугольник (или неполную звезду). Эта схема применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рисунке в) приведена схема соединения трёх однофазных ТН в звезду. Эта схема получила широкое распространение и применяется когда для защиты и измерений нужны фазные напряжения или же одновременно фазные и междуфазные напряжения.

Соединение 3-х однофазных ТН по схеме треугольник – звезда представлена на рисунке г). Эта схема обеспечивает напряжение на вторичной стороне, равное

На рисунке д) представлена схема соединения обмоток 3‑х однофазных ТН в фильтр напряжения нулевой последовательности. В этой схеме первичные обмотки ТН соединяются в звезду с заземлённой нейтралью, а вторичные обмотки соединяются последовательно, образуя разомкнутый (не замкнутый) треугольник. Напряжение на зажимах разомкнутого треугольника равно геометрической сумме напряжений нулевой последовательности вторичных обмоток:

;

Так как сумма 3‑х фазных напряжений равна утроенному напряжению нулевой последовательности, то

;

Следовательно, на зажимах схемы разомкнутого треугольника получается напряжение, пропорциональное напряжению нулевой последовательности.

В нормальных режимах и при к.з. без земли Up=0, т.к. векторы напряжений не содержат нулевой последовательности.

При к.з. на землю в сетях с заземлённой нейтралью и при замыканиях на землю в сетях с изолированной нейтралью геометрическая сумма фазных напряжений не равна нулю за счёт появления напряжения нулевой последовательности. На зажимах разомкнутого треугольника появится напряжение нулевой последовательности 3U0.

Таким образом, рассмотренная схема является фильтром напряжений нулевой последовательности.

Следует отметить, что обязательным условием работы рассмотренной схемы д) в качестве фильтра U0 является заземление нейтрали первичных обмоток ТН, так как при отсутствии заземления первичным обмоткам ТН будут подводиться не фазные напряжения относительно земли, а фазные напряжения относительно изолированной нейтрали, сумма напряжения которых не содержит U0. Их сумма всегда равна нулю и при замыканиях на землю напряжение на выходе схемы будет отсутствовать.

На рисунке 2.17 представлена схема соединения трансформатора напряжения, имеющего две вторичные обмотки. Здесь первичная и основная вторичная обмотки соединены в звезду, а дополнительная вторичная обмотка соединена в схему разомкнутого треугольника (на сумму фазных напряжений – для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных к.з. в сетях с заземлённой нейтралью, а также для устройств контроля изоляции действующих на сигнал в сетях с изолированной нейтралью).

Рисунок 2.17 – Схема соединений обмоток ТН с двумя вторичными обмотками.

Как известно, сумма 3-х фазных напряжений в нормальном режиме, а также при 2-х и 3-х фазных к.з. равна нулю. Поэтому в этих условиях напряжение на выводах разомкнутого треугольника будет равно нулю.

Обычно на выводах разомкнутого треугольника в нормальном режиме (при отсутствии замыкания на землю) имеется небольшое напряжение величиной 0,5-2 В, которое называется напряжением небаланса.

При однофазном.к.з. в сети с заземлённой нейтралью фазное напряжение повреждённой фазы становится равным нулю, а геометрическая сумма фазных напряжений 2-х неповрежденных фаз оказывается равной фазному напряжению.

При однофазных замыканиях на землю в сети с изолированной нейтралью напряжения неповреждённых фаз становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. В этом случае, чтобы на реле напряжение не превосходило номинального значения, равного 100 В, у ТН, предназначенных для работы в сетях с изолированными нейтралями, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют повышенный в 3 раза коэффициент трансформации (например, . Следует иметь в виду, чтопри включении первичных обмоток ТН на фазные напряжения они должны соединяться в звезду, нулевая точка которой обязательно должна соединяться с землёй. Заземление первичных обмоток необходимо для того, чтобы при однофазном.к.з или замыканиях на землю в сети, где установлен

ТН, приборы и реле, включенные на его вторичную обмотку, правильно измеряли напряжения фаз относительно земли.

Заземление вторичных обмоток также обязательно независимо от их схемы соединения т.к. это заземление является защитнымобеспечивает безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется один из фазных проводов (как правило, фаза В) или нулевая точка звезды.

Первичные обмотки ТН до 35 кВ подключаются к сети через высоковольтные предохранители для быстрого отключения от сети повреждённого ТН.

Для защиты обмоток ТН при повреждениях во вторичных цепях устанавливаются автоматические выключатели (или предохранители) низкого напряжения.

Вторичные цепи ТН должны выполняться с высокой степенью надёжности, исключающей обрывы и потерю контактов для исключения исчезновения напряжения на защитах, так как исчезновение напряжения будет восприниматься защитами как понижение напряжения при к.з. в защищаемой сети и может привести к их неправильному действию. Исчезновение напряжения от

ТН вследствие неисправностей или перегорания предохранителей также будет восприниматься защитами как потеря напряжения и также может привести к их неправильному действию. Поэтому защиты, реагирующие на понижение напряжения, выполняются так, что отличают к.з. от неисправности во вторичных цепях, либо снабжаются специальными устройствами – блокировками при неисправностях в цепях напряжения.

studfile.net

Для чего нужны ТНы

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Трансформатор напряжения , назначение и принцип действия

Трансформатор напряжения — это одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

измерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения назначение и принцип действия

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

Схемы включения  трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

рис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные ТН. Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Обозначение трансформатора напряжения на схеме

Предохранители  трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Видео: Трансформаторы напряжения

Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.

transformator220.ru

Трансформатор напряжения — этого не знает более 80%!

Своим появлением трансформатор обязан английскому ученому Майклу Фарадею. В 1831 году физик описал явление, которое назвал «электромагнитная индукция». Оно заключается в том, что в близко расположенных катушках (обмотках) проявляется ярко выраженная

электромагнитная взаимосвязь. То есть, если в первой катушке (первичной обмотке) создать переменный ток, то во второй катушке (вторичной обмотке) возбуждается напряжение с аналогичной частотой и мощностью, зависящей от многих параметров, которые рассмотрим далее.


[contents]


Трансформаторы напряжения назначение  и принцип действия

Трансформаторы напряжения предназначены для преобразования энергии источника напряжения в напряжение с нужным нам значением (амплитудой). Нужно заметить, что такие трансформаторы работают только с переменным напряжением и его частота остается неизменной.

Для чего нужен трансформатор напряжения?

 Трансформаторы напряжения, в силу своей универсальности, необходимы в блоках питания, устройствах обработки сигналов, передающих устройствах, аппаратах передачи электроэнергии и во многом другом оборудовании.

По коэффициенту трансформации эти устройства могут делиться на 3 типа:

  1. трансформатор напряжения понижающий – на выходе устройства напряжение ниже входного (n>1), например, применяется в блоках питания;
  2. повышающий трансформатор – на выходе устройства напряжение выше, чем напряжение на входе (n<1), например, применяется в ламповых усилителях;
  3. согласующий – трансформатор параметры напряжения не изменяет, происходит только гальваническая развязка цепей (n~1), например, применяется в звуковых усилителях.

В основе работы трансформатора лежит принцип электромагнитной индукции и для наиболее полной передачи энергии, для уменьшения потерь при трансформации, устройство обычно выполняется на магнитопроводе.

Как правило, первичная катушка одна, а вот вторичных может быть несколько, все зависит от назначения трансформатора.

Как работает трансформатор напряжения?

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения.

Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличается трансформатор тока от трансформатора напряжения?

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы напряжения и тока

 При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Дополнительная информация

 Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству. Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

popayaem.ru

устройство, классификация, принцип работы, видео

Трансформатор напряжения – это один из видов трансформаторов, который еще называют измерительным, предназначеннный для отделения первичных цепей высокого и сверх высокого напряжений и цепей измерений, РЗ и А. Также их используют для понижения высоких напряжений (110, 10 и 6 кВ) до стандартных нормируемых величин напряжений вторичных обмоток – 100 либо 100/√3.

Помимо этого, применение трансформаторов напряжение в электроустановках позволяет изолировать маломощные низковольтные измерительные приборы и устройства, что удешевляет стоимость и позволяет использовать более простое оборудование, а также обеспечивает безопасность обслуживания электроустановок.

Трансформаторы напряжения нашли широкое применение в силовых электроустановках высокого напряжения

От точности их работы зависит правильность коммерческого учета электроэнергии, селективность действия устройств РЗ и противоаварийной автоматики, также они служат для синхронизации и питания автоматики релейной защиты ЛЭП от коротких замыканий, и др.

  1. силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу. Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем. Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже: Потери намагничивания обуславливают некоторую погрешность в классах точности. Погрешность определяется: конструкцией магнитопровода; проницаемостью стали; коэффициентом мощности, т.е. зависит от вторичной нагрузки. Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения Классификация трансформаторов напряжения Трансформаторы напряжения принято разделять по следующим признакам: По количеству фаз: однофазные; трехфазные. По числу обмоток: 2-х-обмоточные; 3-х-обмоточные. По способу действия системы охлаждения: электрические устройства с масляным охлаждением; электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие). По способу установки и размещения: для наружной установки; для внутренней; для комплектных РУ. По классу точности: по нормируемым величинам погрешностей. Виды трансформаторов напряжения Рассмотрим несколько трансфомраторов напряжения разных производителей: Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11 Производиель — Невский трансформаторный завод «Волхов». Назначение и область применение ЗНОЛ-НТЗ Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции. Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх. Рисунок — Габаритные размеры трансформатора Рисунок — схемы подключения обмоток трансформаторов Характеристики: Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27 Наибольшее рабочее напряжение, кВ — 30 40,5 40,5 Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5 Номинальное напряжение основной вторичной обмотки, В — 57,7 100 Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127 Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3 Ещё одно интересное видео о работе трансформаторов тока: Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И) Производитель «Свердловский завод трансформаторов тока» Назначение 3хЗНОЛПМ(И) Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью. Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150. Рабочее положение — любое. Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора. Трехфазная группа может комплектоваться в 4-ех вариантах: из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10; из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10; из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10; из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10. Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А. Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа. Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя. Срок службы — 30 лет. НАМИТ-10-2 Производитель ОАО «Самарский Трансформатор» Назначение и область применения Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий Технические параметры трансформатора напряжения НАМИТ-10-2 Номинальное напряжение первичной обмотки, кВ — 6 или 10 Наибольшее рабочее напряжение, кВ — 7,2 или 12 Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110) Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3 Класс точности основной вторичной обмотки — 0,2/0,5 Рисунок — Габаритные размеры и схема подключения
  2. Классификация трансформаторов напряжения
  3. Виды трансформаторов напряжения
  4. Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11
  5. Назначение и область применение ЗНОЛ-НТЗ
  6. Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)
  7. Назначение 3хЗНОЛПМ(И)
  8. НАМИТ-10-2
  9. Назначение и область применения
  10. Технические параметры трансформатора напряжения НАМИТ-10-2

силовых трансформаторов. Он состоит из обмоток: первичной и одной либо нескольких вторичных и стального сердечника, набранного листами электротехнической стали. Первичная обмотка имеет большее количество витков, в сравнении со вторичной. На первичную — подается напряжение, которое требуется измерить, а ко вторичным — подключаются ваттметр и пр. измерительные аппараты. Поскольку ваттметр имеет значительное сопротивление, то по вторичной принято считать, что протекает малый ток. Поэтому полагают, что измерительный трансформатор напряжения функционирует в режимах близких к холостому ходу.

Такие трансформаторы оснащают разъемами для подключения: первичная обмотка присоединяется к цепям силового напряжения, а ко вторичной могут подключены — реле, обмотки вольтметра или ваттметра и пр. приборы. Принцип действия у них аналогичен силовому трансформатору: трансформирование напряжения в измерительном трансформаторе производится переменным магнитным полем.

Интересное видео о работе и принципе устройста трансформаторов тока смотрите ниже:

Потери намагничивания обуславливают некоторую погрешность в классах точности.

Погрешность определяется:

Конструкцией предусматривается компенсация погрешности по напряжению благодаря уменьшению количества витков первичной обмотки, устранению угловой погрешности с помощью компенсирующих обмоток. Простейшая схема включения трансформатора напряжения

Классификация трансформаторов напряжения

Трансформаторы напряжения принято разделять по следующим признакам:

  1. По количеству фаз:
    • однофазные;
    • трехфазные.
  2. По числу обмоток:
    • 2-х-обмоточные;
    • 3-х-обмоточные.
  3. По способу действия системы охлаждения:
    • электрические устройства с масляным охлаждением;
    • электрические устройства с воздушной системой охлаждения ( с литой изоляцией либо сухие).
  4. По способу установки и размещения:
    • для наружной установки;
    • для внутренней;
    • для комплектных РУ.
  5. По классу точности: по нормируемым величинам погрешностей.

Виды трансформаторов напряжения

Рассмотрим несколько трансфомраторов напряжения разных производителей:

Трансформатор напряжения ЗНОЛ-НТЗ-35-IV-11

Производиель — Невский трансформаторный завод «Волхов».

Назначение и область применение ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий.Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

Рисунок — Габаритные размеры трансформатора

Рисунок — схемы подключения обмоток трансформаторов

Характеристики:

  1. Класс напряжения по ГОСТ 1516.3, кВ — 27 35 27
  2. Наибольшее рабочее напряжение, кВ — 30 40,5 40,5
  3. Номинальное напряжение первичной обмотки, кВ — 15,6 20,2 27,5
  4. Номинальное напряжение основной вторичной обмотки, В — 57,7 100
  5. Номинальное напряжение дополнительной вторичной обмотки, В — 100/3, 100 127
  6. Номинальные классы точности основной вторичной обмотки — 0,2; 0,5; 1; 3

Ещё одно интересное видео о работе трансформаторов тока:


Трехфазная антирезонансная группа трансформаторов напряжения 3хЗНОЛПМ(И)

Производитель «Свердловский завод трансформаторов тока»

Назначение 3хЗНОЛПМ(И)

Трансформаторы предназначены для установки в комплектные устройства (КРУ), токопроводы и служат для питания цепей измерения, защиты, автоматики, сигнализации и управления в электрических установках переменного тока частоты 50 или 60 Гц в сетях с изолированной нейтралью.

Трансформаторы изготавливаются в климатическом исполнении «УХЛ» категории размещения 2 по ГОСТ 15150.

Рабочее положение — любое.

Расположение первичного вывода возможно как с лицевой так и с тыльной стороны трансформатора.

Трехфазная группа может комплектоваться в 4-ех вариантах:

  • из трех трансформаторов ЗНОЛПМ — 3хЗНОЛПМ-6 и 3хЗНОЛПМ-10;
  • из трех трансформаторов ЗНОЛПМИ — 3хЗНОЛПМИ-6 и 3хЗНОЛПМИ-10;
  • из одного трансформатора ЗНОЛПМ (устанавливается по середине) и двух трансформаторов ЗНОЛПМИ (устанавливаются по краям) — 3хЗНОЛПМ(1)-6 и 3хЗНОЛПМ(1)-10;
  • из двух трансформаторов ЗНОЛПМ (устанавливаются по краям) и одного трансформатора ЗНОЛПМИ (устанавливается по середине) — 3хЗНОЛПМ(2)-6 и 3хЗНОЛПМ(2)-10.

Для повышения устойчивости к феррорезонансу и воздействию перемежающейся дуги в дополниетльные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4А.

Внимание! При заказе трансформаторов напряжения для АИСКУЭ обязательно заполнение опросного листа.

Гарантийный срок эксплуатации — 5 (пять) лет со дня ввода трансформатора в эксплуатацию, но не более 5,5 лет с момента отгрузки с завода-изготовителя.

Срок службы — 30 лет.


НАМИТ-10-2

Производитель ОАО «Самарский Трансформатор»

Назначение и область применения

Трансформатор напряжения НАМИТ-10-2 УХЛ2 трехфазный масляный антирезонансный является масштабным преобразователем и предназначен для выработки сигнала измерительной информации для измерительных приборов в цепях учёта, защиты и сигнализации в сетях 6 и 10 кВ переменного тока промышленной частоты с изолированной нейтралью или заземлённой через дугогасящий реактор. Трансформатор устанавливается в шкафах КРУ(Н) и в закрытых РУ промышленных предприятий

Технические параметры трансформатора напряжения НАМИТ-10-2
  1. Номинальное напряжение первичной обмотки, кВ — 6 или 10
  2. Наибольшее рабочее напряжение, кВ — 7,2 или 12
  3. Номинальное напряжение основной вторичной обмотки (между фазами), В — 100 (110)
  4. Ннапряжение дополнительной вторичной обмотки (аД — хД), не более, В — 3
  5. Класс точности основной вторичной обмотки — 0,2/0,5

Рисунок — Габаритные размеры и схема подключения

pue8.ru

Принцип действия трансформатора напряжения

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Обслуживание и ремонт

Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.

Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:

  • Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
  • Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
  • Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
  • Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
  • Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
  • Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).

После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.

Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.

Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.

Трансформаторы напряжения предназначены для измерения напряжения, питания цепей автоматики, сигнализации и релейной защиты линий электропередач от замыкания на землю.

Классификация трансформаторов напряжения

Трансформаторы напряжения различаются:

По числу фаз – однофазные и трёхфазные; По числу обмоток – двухобмоточные и трёхобмоточные;

По классу точности, т.е. по допускаемым значениям погрешностей – согласно таблице 2.3;

По способу охлаждения:

трансформаторы с масляным охлаждением (масляные); трансформаторы с естественным

воздушным охлаждением (сухие и с литой изоляцией).

По роду установки:

для внутренней установки; для наружной установки.

Трансформатор напряжения (ТН) по принципу действия и конструктивному выполнению аналогичен обычному силовому трансформатору и состоит из стального сердечника (магнитопровода), собранного из тонких пластин трансформаторной стали, и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника.

Устройство и принцип действия трансформатора напряжения

Устройство и схема включения трансформатора напряжения изображены на рисунке 2.14.

Первичная обмотка W1, имеющая очень большое число витков, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке W2, имеющей меньшее число витков, подключаются параллельно измерительные приборы и реле:

Рисунок 2.14 – Устройство и схема включения ТН.

Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней э.д.с. Е, равную при разомкнутой вторичной обмотке (холостой ход трансформатора) напряжению на её зажимах U2хх.

Напряжение U2хх, меньше первичного напряжения U1 во столько раз, во сколько раз число витков вторичной обмотки W2 меньше числа витков первичной обмотки W1:;

Отношения чисел витков обмоток называется коэффициентом трансформации и обозначается nн:

; Следовательно, можно записать:

Если ко вторичной обмотке подключена нагрузка в виде приборов и реле, то напряжение на её зажимах

U2 будет меньше э.д.с. на величину падения напряжения в сопротивлении вторичной обмотки. Однако

это падение напряжения невелико и им можно пренебречь, тогда: U1 = U2nн и ;

В паспортах на трансформаторы напряжения их коэффициенты трансформации указываются дробью, в

числителе которой – номинальное первичное напряжение, а в знаменателе – номинальное вторичное

напряжение. Для правильного соединения обмоток ТН между собой и правильного подключения к ним реле направления мощности, ваттметров и счётчиков выводы обмоток маркируются определенным образом: начало первичной обмотки – А, конец – Х; начало основной вторичной обмотки – a, конец – х;

12. Схемы соединения трансформаторов напряжения.

Однофазные трансформаторы напряжения в зависимости от назначения соединяются между собой в различные схемы.

На рисунке 2.16 приведены основные схемы соединения однофазных ТН.

Рисунок 2.16 – Схемы соединения обмоток однофазных трансформаторов напряжения с одной вторичной обмоткой.

На рисунке а) представлена схема включения одного ТН на междуфазное напряжение АС.

Эта схема применяется, когда для защиты или измерений нужно только одно междуфазное напряжение.

На рисунке б) приведена схема соединения 2-х ТН в открытый треугольник (или неполную звезду). Эта схема применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рисунке в) приведена схема соединения трёх однофазных ТН в звезду. Эта схема получила широкое распространение и применяется когда для защиты и измерений нужны фазные напряжения или же одновременно фазные и междуфазные напряжения.

Соединение 3-х однофазных ТН по схеме треугольник – звезда представлена на рисунке г). Эта схема обеспечивает напряжение на вторичной стороне, равное

На рисунке д) представлена схема соединения обмоток 3‑х однофазных ТН в фильтр напряжения нулевой последовательности. В этой схеме первичные обмотки ТН соединяются в звезду с заземлённой нейтралью, а вторичные обмотки соединяются последовательно, образуя разомкнутый (не замкнутый) треугольник. Напряжение на зажимах разомкнутого треугольника равно геометрической сумме напряжений нулевой последовательности вторичных обмоток:

;

Так как сумма 3‑х фазных напряжений равна утроенному напряжению нулевой последовательности, то

;

Следовательно, на зажимах схемы разомкнутого треугольника получается напряжение, пропорциональное напряжению нулевой последовательности.

В нормальных режимах и при к.з. без земли Up=0, т.к. векторы напряжений не содержат нулевой последовательности.

При к.з. на землю в сетях с заземлённой нейтралью и при замыканиях на землю в сетях с изолированной нейтралью геометрическая сумма фазных напряжений не равна нулю за счёт появления напряжения нулевой последовательности. На зажимах разомкнутого треугольника появится напряжение нулевой последовательности 3U.

Таким образом, рассмотренная схема является фильтром напряжений нулевой последовательности.

Следует отметить, что обязательным условием работы рассмотренной схемы д) в качестве фильтра U является заземление нейтрали первичных обмоток ТН, так как при отсутствии заземления первичным обмоткам ТН будут подводиться не фазные напряжения относительно земли, а фазные напряжения относительно изолированной нейтрали, сумма напряжения которых не содержит U. Их сумма всегда равна нулю и при замыканиях на землю напряжение на выходе схемы будет отсутствовать.

На рисунке 2.17 представлена схема соединения трансформатора напряжения, имеющего две вторичные обмотки. Здесь первичная и основная вторичная обмотки соединены в звезду, а дополнительная вторичная обмотка соединена в схему разомкнутого треугольника (на сумму фазных напряжений – для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных к.з. в сетях с заземлённой нейтралью, а также для устройств контроля изоляции действующих на сигнал в сетях с изолированной нейтралью).

Рисунок 2.17 – Схема соединений обмоток ТН с двумя вторичными обмотками.

Как известно, сумма 3-х фазных напряжений в нормальном режиме, а также при 2-х и 3-х фазных к.з. равна нулю. Поэтому в этих условиях напряжение на выводах разомкнутого треугольника будет равно нулю.

Обычно на выводах разомкнутого треугольника в нормальном режиме (при отсутствии замыкания на землю) имеется небольшое напряжение величиной 0,5-2 В, которое называется напряжением небаланса.

При однофазном.к.з. в сети с заземлённой нейтралью фазное напряжение повреждённой фазы становится равным нулю, а геометрическая сумма фазных напряжений 2-х неповрежденных фаз оказывается равной фазному напряжению.

При однофазных замыканиях на землю в сети с изолированной нейтралью напряжения неповреждённых фаз становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. В этом случае, чтобы на реле напряжение не превосходило номинального значения, равного 100 В, у ТН, предназначенных для работы в сетях с изолированными нейтралями, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют повышенный в 3 раза коэффициент трансформации (например, . Следует иметь в виду, чтопри включении первичных обмоток ТН на фазные напряжения они должны соединяться в звезду, нулевая точка которой обязательно должна соединяться с землёй. Заземление первичных обмоток необходимо для того, чтобы при однофазном.к.з или замыканиях на землю в сети, где установлен ТН, приборы и реле, включенные на его вторичную обмотку, правильно измеряли напряжения фаз относительно земли.

Заземление вторичных обмоток также обязательно независимо от их схемы соединения т.к. это заземление является защитнымобеспечивает безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется один из фазных проводов (как правило, фаза В) или нулевая точка звезды.

Первичные обмотки ТН до 35 кВ подключаются к сети через высоковольтные предохранители для быстрого отключения от сети повреждённого ТН.

Для защиты обмоток ТН при повреждениях во вторичных цепях устанавливаются автоматические выключатели (или предохранители) низкого напряжения.

Вторичные цепи ТН должны выполняться с высокой степенью надёжности, исключающей обрывы и потерю контактов для исключения исчезновения напряжения на защитах, так как исчезновение напряжения будет восприниматься защитами как понижение напряжения при к.з. в защищаемой сети и может привести к их неправильному действию. Исчезновение напряжения от ТН вследствие неисправностей или перегорания предохранителей также будет восприниматься защитами как потеря напряжения и также может привести к их неправильному действию. Поэтому защиты, реагирующие на понижение напряжения, выполняются так, что отличают к.з. от неисправности во вторичных цепях, либо снабжаются специальными устройствами – блокировками при неисправностях в цепях напряжения.

Принцип работы трансформаторов

Принцип работы трансформатора связан с принципом электромагнитной индукции. Ток поступающий на первичную обмотку создает в магнитопроводе магнитный поток.

Работа трансформатора основана на явлении электромагнитной индукции. На одну из обмоток, называемую первичной обмоткой подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе, сдвинутый по фазе, при синусоидальном токе, на 90° по отношению к току в первичной обмотке. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° по отношению к магнитному потоку. Когда вторичные обмотки ни к чему не подключены (режим холостого хода), ЭДС индукции в первичной обмотке практически полностью компенсирует напряжение источника питания, поэтому ток через первичную обмотку невелик, и определяется в основном её индуктивным сопротивлением. Напряжение индукции на вторичных обмотках в режиме холостого хода определяется отношением числа витков соответствующей обмотки w2 к числу витков первичной обмотки w1: U2=U1w2/w1.

При подключении вторичной обмотки к нагрузке, по ней начинает течь ток. Этот ток также создаёт магнитный поток в магнитопроводе, причём он направлен противоположно магнитному потоку, создаваемому первичной обмоткой. В результате, в первичной обмотке нарушается компенсация ЭДС индукции и ЭДС источника питания, что приводит к увеличению тока в первичной обмотке, до тех пор, пока магнитный поток не достигнет практически прежнего значения. В этом режиме отношение токов первичной и вторичной обмотки равно обратному отношению числа витков обмоток (I1=I2w2/w1,) отношение напряжений в первом приближении также остаётся прежним.

Схематично, выше сказанное можно изобразить следующим образом:

U1 > I1 > I1w1 > Ф > ε2 > I2.

Магнитный поток в магнитопроводе трансформатора сдвинут по фазе по отношению к току в первичной обмотке на 90°. ЭДС во вторичной обмотке пропорциональна первой производной от магнитного потока. Для синусоидальных сигналов первой производной от синуса является косинус, сдвиг фазы между синусом и косинусом составляет 90°. В результате, при согласном включении обмоток, трансформатор сдвигает фазу приблизительно на 180°. При встречном включении обмоток прибавляется дополнительный сдвиг фазы на 180° и суммарный сдвиг фазы трансформатором составляет приблизительно 360°.

Опыт холостого хода

Для испытания трансформатора служит опыт холостого хода и опыт короткого замыкания.

При опыте холостого хода трансформатора его вторичная обмотка разомкнута и тока в этой обмотке нет (/2—0).

Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой обмотке будет протекать ток холостого хода I0, который представляет собой малую величину по сравнению с номинальным током трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5— 10% номинального тока. В трансформаторах малых мощностей этот ток достигает значения 25—30% номинального тока. Ток холостого хода I0 создает магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покрытие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами.

Так как реактивная мощность при холостом ходе трансформатора значительно больше активной мощности, то коэффициент мощности cos φ его весьма мал и обычно равен 0,2-0,3.

По данным опыта холостого хода трансформатора определяется сила тока холостого хода I0, потери в стали сердечника Рст и коэффициент трансформации К.

Силу тока холостого хода I0 измеряет амперметр, включенный в цепь первичной обмотки трансформатора.

При испытании трехфазного трансформатора определяется фазный ток холостого хода.

О потерях в стали сердечника Pст судят по показаниям ваттметра, включенного в цепь первичной обмотки трансформатора.

Коэффициент трансформации трансформатора равен отношению показаний вольтметров, включенных в цепь первичной и вторичной обмоток.

Устройство и принцип работы трансформатора

Трансформаторомназывается статическое электромагнитное уст­ройство, предназначенное для преобразования переменного тока одного напря­жения в переменный ток другого напряжения той же частоты.

Трансформаторы с одной первичной и с одной вторичной обмоткой назы­вают двухобмоточным. Если трансформатор имеет несколько первичных и вто­ричных обмоток, то такие трансформаторы называются многообмоточными.

По числу фаз трансформаторы бывают однофазными и трехфазными, а также с дру­гими числами фаз. Такие трансформаторы используются в специальных устройствах.

Трансформаторы можно подразделить на силовые и специальные. Силовые трансформаторывыполняются на большие мощности и применяют в энерго­системах при передаче электроэнергии от электростанций к по­требителям. Для электропитания различных радиоэлектронных и коммутационных систем применяют специальные трансформаторы питания небольшой мощности.

Специальные трансформаторы(автотрансформаторы, трансформа­торы для преобразования числа фаз и частоты, выпрямительные, изме­рительные, вра­щающиеся и др.) используют в самых разнообразных системах радиоэлектроники и телекоммуникации, а также системах в автоматизации и управления.

Основными частями трансформатора являются магнитопровод и обмотки.

Магнитопровод(сердечник) служит для усиления электромагнит­ной связи между обмотками. Сердечники трансформаторов собирают из листов элек­тротехнической стали или из ленты холоднокатаной ста­ли, целью умень­шения потерь энергии от вихревых токов и гистерезис. При изготовлении маг­нитопроводов для маломощных трансформаторов применяют электротехниче­ские ста­ли толщиной 0,35 – 0,5 мм.

Обмоткитрансформаторов состоят из первичной и вторичной обмотки, которые выполняются из медных проводов круглого или прямоугольного се­чения. Чаще всего для обмоток маломощных трансформаторов применяют про­вод с эмалевой изо­ляцией марок, а также с хлопчатобумажной изоляцией марки ПБД. Обмотки выполняют в виде многовитковых цилиндриче­ских катушек и располагают на каркасе, изготовленной из элек­тротехнического картона или другого изоляционного материала. Конструкция обмоток трансформатора должна удовлетворять условиям вы­сокой электрической и механической прочности, а также нагревостойкости. В высоковольтных трансформаторах обмотки состоят из двух катушек. При этом достигается хоро­шая изоляция обмоток друг от друга. Недостаток такого расположения обмоток – большое рассеяние магнитного потока.

В броневом трансформаторе используют одну катушку вместо двух. При этом получается высо­кий коэффициент заполнения окна и обмотки будут защищены от меха­нических повреждений. На ка­ждом стержне размещают катушку с двумя обмотками – первичной и вторичной.

Обмотку, подключаемую к источнику питания, называют первичной, а к нагрузке – вторичной(в многообмоточном транс­форматоре может быть несколько вторичных обмоток). На рисунке 2.1 представлена схема одно­фазного трансформатора подключенного к нагрузке.

Принцип работы трансформатора заключается в следующем. При подключении первичной обмотки трансформатора к сети синусоидальным на­пряжением в обмотке возникает ток . который создает изменяющийся маг­нитный поток . замыкающийся по сердечнику.

Рисунок 3.1 – Схема трансформатора под нагрузкой

Поток согласно закону электромагнит­ной индукции наводит ЭДС как в первичной, так и во вторичной обмотке. При подключении ко вторичной об­мотке нагрузки в этой обмотке будет протекать ток и на ее зажимах устанавли­вается некоторое напряжение . Следует отметить, что магнитный поток создается токами обоих обмоток.

185.154.22.117 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Трансформатор напряжения

Трансформатор напряжения – статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования переменного напряжения одного значения в переменное напряжение другого значения.

Устройство и принцип работы трансформатора напряжения. Конструктивно простейший силовое трансформатор представляет собой магнитопровод (сердечник), набранный из изолированных (в целях снижения вихревых токов) листов электротехнической стали и расположенных на нем не менее двух обмоток. Устройства с одной обмоткой называются автотрансформаторами .

Переменное напряжение U1 от источника тока подается на одну из обмоток (первичную), преобразованное напряжение U2 с выводов вторичной обмотки поступает на нагрузку (потребитель ).

В основе принципа преобразования напряжения в трансформаторе лежит явление электромагнитной индукции. При подаче напряжения на первичную обмотку протекающий в ее витках переменный ток i1 создает в сердечнике магнитный поток Ф .

Замыкаясь по сердечнику, этот поток индуцирует в первичной и вторичной обмотках переменные ЭДС (е1, е2). величины которых зависят от количества витков первичной (w1) и вторичной (w2) обмоток и скорости изменения этого магнитного потока (dФ/dt) .

Исходя из этого, мгновенные значения ЭДС в обмотках могут быть выражены формулами:

Отсюда выведем значения мгновенных и действующих ЭДС в обмотках:

Из выражений видно, что что ЭДС отличаются друг от друга числом витков обмоток, в которых они наводятся. Не учитывая ввиду относительной незначительности потери в обмотках, справедливы будут следующие приближенные равенства:

где U1 и U2 – первичное и вторичное напряжения трансформатора.

Отношение ЭДС обмотки первичного напряжения к ЭДС обмотки вторичного (или количества их витков) является одной из важных характеристик трансформатора и называется коэффициентом трансформации (k) .

Таким образом, используя обмотки с определенным соотношением количества витков, можно изготовить трансформатор на любое требуемое отношение напряжений U1 и U2 .

Имея свойства обратимости – возможности понижать и повышать напряжение, трансформаторы, как правило используются по одному назначению.

Виды трансформаторов напряжения и их применение. В зависимости от назначения, устройства можно разделить на следующие основные виды:

Силовые – трансформаторы большой мощности, используемые в электроснабжении. Могут быть повышающими напряжение – для его передачи на большие расстояния и понижающими – уменьшающими напряжение до рабочих значений определенных категорий электропотребителей.

Технологического назначения – устройства большой мощности, используемые в технологических целях (электросоварочные, печные и пр.).

Трансформаторы небольшой мощности. предназначенные для питания радиотехнической аппаратуры, бытовой техники, использования в схемах различных электронных устройств.

Измерительные – применяются в измерительных целях и служат для расширения пределов измерения приборов.

vi-pole.ru

Трансформатор напряжения что это – назначение и принцип действия

Давайте разберемся, для чего нужен трансформатор напряжения и какие функции он выполняет? Данное устройство необходимо службам, занимающимся учетом электроснабжения. Функция электросетей – выработка энергии, передача ее на большие расстояния и перераспределение электрической энергии между потребителями. Именно для этих целей существует данный прибор.

Трансформаторы промышленного типа широко используются на электроподстанциях. Более мелких размеров трансформаторы находят свое применение во многих цепях бытовых электроприборов. Такие устройства изменяют напряжение – увеличивают либо понижают его. Появления трансформатора стало возможным после того, как Майкл Фарадей открыл в 1831 году электромагнитную индукцию.

В статье информация о всех особенностях трансформаторов напряжения, описаны их технические характеристики. В качестве бонуса, в статье содержится видеоролик о трансформаторах, а также материл на данную тему.

Трансформатор напряжения.

Расшифровка аббревиатур устройств

Различаются и по способу изоляции, сухая, она же литая и масляной. У каждого свое, буквенное обозначение трансформатора. Есть на разные классы напряжения, такие как, нтми-10,  ном-10, зном-35, ном-35, нкф-110, нами-10. В предыдущем предложении, цифры означают номинальное напряжение. Начнём с самой важной буквы, которая находится в самом начале практически всех аббревиатур, это буква Н. Она как раз и означает трансформатор напряжения. Кстати говоря, его сокращённо называют просто ТН.

Следующие по списку и по важности буква это, Т и О, которые означаю количество фаз. Трехфазный и однофазный соответственно. У буквы Т есть ещё одно значение, она означает что, трансформатор трёх обмоточный. Следующие буквы, относятся к изоляции и способам охлаждения. Она может быть, литой (Л), С сухой, Естественное мысленно охлаждение, маркируется буквой М.

Следующие значения, можно отнести к дополнительным функциям. Для подключения измерительных приборов, наносится (И).  Если видим (К), следует понимать, что в трансформаторе напряжения есть дополнительная обмотка, которая уменьшает угловую погрешность или каскад. «З» – наличие заземляющего вывода. Активную часть, часто помещают в фарфоровую покрышку, поэтому присутствует символ «Ф». (У) — относится к установки в умеренно климате. Д, Е – делитель, имеет определённую ёмкость.

Расшифровка аббревиатур.

Виды и их особенности

Кроме рассмотренных выше понижающих и повышавших приборов выпускаются и другие модели:

  • тяговые;
  • лабораторные, в которых возможно регулировать напряжение;
  • для выпрямительных установок;
  • источники питания для радиоаппаратуры.

Все они относятся к одной большой группе трансформаторов – силовым. Есть еще одна разновидность такого оборудования. Это устройства, используемые для подключения к цепям высокого напряжения различных электроизмерительных приборов. Они получили название измерительных трансформаторов напряжения. Также эти приборы находят широкое применение при электросварке. Имеют отличия и в конструктивном исполнении. В зависимости от этого различают двух и многообмоточные измерительные трансформаторы тока и напряжения. Такие приборы используются для проведения измерений и питания цепей автоматики, релейной защиты. Они могут быть одно- или трехфазные с масляным или воздушным охлаждением.

Влияет на классификацию, и форма магнитопровода. Он может быть:

  1. стержневой;
  2. броневой;
  3. тороидальный.

При этом различают два вида конструкции обмоток:

  • Концентрический;
  • Дисковый.

По классу точности устройства подразделяются на 4 категории:

Еще одним параметром, влияющим на специфику применения измерительных трансформаторов тока и напряжения, является способ установки. В зависимости от него изделия бывают следующих типов:

  • внутренние;
  • наружные;
  • для КРУ.

Виды трансформаторов.

Критерии выбора оборудования

Трансформатор напряжения состоит из двух обмоток и сердечника. Обмотки также подразделяются на первичную и вторичную. Вот тут и начинаются различия, если сравнивать трансформатор напряжения с трансформатором тока. Первичная обмотка трансформатора напряжения содержит значительно больше витков, чем вторичная.

На первичную обмотку подается напряжение, которое нам нужно измерить а к вторичной обмотке подсоединяется вольтметр. Обычно приобретая оборудование ориентируются не его основные параметры. Для трансформатора таковыми являются:

  • напряжения обмоток, которые указываются на щитке;
  • коэффициент трансформации;
  • угловой погрешности.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Необходимо также ориентироваться на условия эксплуатации. Поэтому самыми важными параметрами при выборе оказываются нагрузка, сфера применения и напряжение короткого замыкания трансформатора. На первом этапе необходимо убедиться в том, что мощности модели будет достаточно для того чтобы справиться не только с поставленной задачей, но и возможными перегрузками. Неплохо иметь прибор, параметры которого могут быть изменены в процессе эксплуатации.

Но ориентироваться только на эти характеристики недопустимо. Так как для эффективной работы трансформатора напряжения 110 кВ важны и его технические характеристики:

  1. частота тока;
  2. фазность;
  3. способ установки;
  4. место расположения;
  5. нагрузка.

Кроме этого нужно определить подходит ли вам цена устройства, а также стоимость его дальнейшего обслуживания. Параметры выбора трансформаторов тока приведены в таблице ниже.

Таблица выбора трансформаторов тока.

Как работает

После того, как в первичной обмотке появится переменное напряжение U1, в магнитопроводе возникает переменный магнитный поток Ф, который возбуждает напряжение во вторичной обмотке U2. Это наиболее простое и краткое описание принципа работы трансформатора напряжения. Самым главным параметром трансформаторов является «коэффициент трансформации» и обозначается латинской «n».  Он вычисляется делением напряжение в первичной обмотке на напряжение во вторичной обмотке или количества витков в первой катушки на количество витков во второй катушке.

Этот коэффициент позволяет рассчитать необходимые параметры вашего трансформатора для выбранного устройства. Например, если первичная обмотка имеет 2000 витков, а вторичная -100 витков, то n=20. При напряжении сети 240 вольт, на выходе устройства должно быть 12 вольт. Так же, можно определить количество витков при заданных, входном и выходном, напряжениях.

Чем отличаются

По определению эти устройства предназначены для работы с разными электрическими величинами, как основными и соответственно, схемы включения будут различными. Например, трансформатор тока питается от источника тока и не работает, даже может выйти из строя, если его обмотки не нагружены и через них не идет электрический ток. Трансформатор напряжения питаются от источников напряжения и, наоборот, не может долго работать в режиме с большими токовыми нагрузками.

Измерительные трансформаторы

При эксплуатации оборудования с высокими рабочими напряжениями и большими токами потребления встает вопрос их измерения и контроля. Здесь на помощь приходят измерительные трансформаторы. Они обеспечивают гальваническую развязку измерительного оборудования от цепей с повышенной опасностью и снижение измеряемой величины до уровня, необходимого для замеров.

Прежде чем покупать трансформатор напряжение, нужно проанализировать все требования, выдвигаемые к устройству.  Необходимо учитывать не только рабочие напряжения, но и токи нагрузки при использовании трансформатора в различных приборах.

Трансформаторы напряжения можно изготовить самому, но если вам нужен простой бытовой трансформатор с напряжением на 220 вольт и понижением до 12 вольт, то лучше его приобрести. Сколько стоят трансформаторы напряжения можно узнать на любом интернет-сайте, как правило, на бытовые понижающие трансформаторы напряжения цены не очень высоки.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Феррорезонанс и способы защиты от него

Феррорезонансный контур в сети с изолированной нейтралью — это контур нулевой последовательности с нелинейной характеристикой намагничивания. Трехфазный заземляемый трансформатор напряжения, по конструктиву, это три однофазных трансформатора, соединенные по схеме звезда/звезда, с обособленной магнитной системой. При перенапряжениях в сети индукция в магнитопроводе увеличивается, как минимум в 1,73 раза.

В таких режимах возможно насыщение магнитопровода и, как следствие, возникновение феррорезонанса в сети. По данным служб энергоснабжения, ежегодно в эксплуатации повреждается 7–9% трансформаторов напряжения по причине феррорезонанса.

Существует множество способов защиты ТН от резонансных явлений в сети:

  • изготовление ТН с максимально уменьшенной рабочей индукцией;
  • включение в цепь ВН и НН дополнительных демпфирующих сопротивлений;
  • изготовление трехфазных трансформаторов напряжения с единой магнитной системой в пятистержневом исполнении;
  • применение специальных устройств, включаемых в цепь разомкнутого треугольника;
  • заземление нейтрали трехфазного трансформатора напряжения через токоограничивающий реактор;
  • применение специальных компенсационных обмоток и т.д.;
  • применение специальных релейных схем, для защиты обмотки ВН от сверхтоков.

Все эти меры в той или иной степени защищают измерительный трансформатор напряжения, но не решают проблему в корне.

Заземляемые устройства

Заземляемые трансформаторы напряжения применяются в сетях с изолированной нейтралью. Заземление нейтрали ТН позволяет осуществлять контроль изоляции сети с помощью дополнительных вторичных обмоток, соединенных по схеме звезда/треугольник. На наш взгляд, это основная функция заземляемых трансформаторов, функция измерения и учета — дополнительная.

Зачастую, в электрических сетях эксплуатируются заземляемые трансформаторы напряжения, у которых защитные обмотки не используются. Применение заземляемых трансформаторов без использования функции контроля изоляции сети — неоправданный риск. Это связано с тем, что:

  • заземляемые трансформаторы напряжения подвержены влиянию феррорезонансных явлений;
  • изоляцию обмотки ВН невозможно испытать в условиях эксплуатации приложенным одноминутным напряжением промышленной частоты.

Незаземляемые приборы

Для решения всех вопросов, связанных с эксплуатацией заземляемых трансформаторов напряжения в сетях с изолированной нейтралью, на нашем предприятии разработана новая трехфазная группа. Трехфазная 3хНОЛ.08-6(10)М группа, состоящая из трех незаземляемых трансформаторов, соединенных по схеме треугольник/треугольник. Основное преимущество 3хНОЛ.08-6(10)М — отсутствие заземляемого вывода с ослабленной изоляцией.

Это значит, что трансформатор не подвержен влиянию феррорезонанса и не требует дополнительных защит от его воздействия. Также изоляцию этого трансформатора возможно испытать приложенным одноминутным напряжением промышленной частоты в условиях эксплуатации, так как в этом случае нет необходимости в источнике повышенной частоты.

Интересный материал для ознакомления: полезная информация о трансформаторах тока.

У незаземляемых трансформаторов нет высоковольтных выводов с ослабленной изоляцией, что так-же позволит избежать нарушений, которые зачастую случаются в эксплуатации, при определении сопротивления изоляции вывода «Х», так как есть разночтения в нормативной документации. На сегодняшний день большое количество пунктов коммерческого учета (ПКУ) имеют в своем составе заземляемые трансформаторы напряжения со встроенными предохранителями (ЗНОЛП). При однофазных замыканиях на землю, а они как указывалось выше, случаются достаточно часто в воздушных распределительных сетях, срабатывает встроенное защитное предохранительное устройство (ЗПУ). Встраиваемое ЗПУ, прежде всего, предназначено для защиты трансформатора напряжения от коротких замыканий во вторичных цепях.

Так как ток срабатывания предохранителя достаточно мал, то при различных перенапряжениях, вызванных, в том числе, и однофазными замыканиями на землю, — происходит отключение ТН. ЗПУ защищает обмотку ВН от сверхтоков, которые возможны при различных технологических нарушениях в электрических сетях. При срабатывании предохранителя учет электроэнергии будет отсутствовать. Для восстановления учета, необходимо заменить плавкую вставку ЗПУ.

Ремонт оборудования

Что касается ремонтных работ, то для их проведения прибор должен быть отключен от сети. Запрещено эксплуатировать трансформатор с незаземленным цоколем, а все неисправности должны устраняться специалистами. Исправное оборудование в процессе работы издает равномерный звук без треска и резких шумов. Кроме того, в сетях до 10 кВ случаются резонансные повышения напряжения. Причиной их появления считается многократные разряды емкости, получающиеся в результате дугового замыкания. Это в свою очередь приводит к образованию феррорезонанса в трансформаторе напряжения и выходу его из строя. Избежать этого можно при заземлении нейтрали через резистор.

Заключение

В данной статье были рассмотрены основные особенности трансформаторов  напряжения и трансформаторов тока. Больше информации можно найти в скачиваемой версии учебника по электромеханике “Различия трансформаторов напряжения и трансформаторов тока”. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.generatorvolt.ru

www.elec.ru

www.popayaem.ru

www.podvi.ru

www.leg.co.ua

www.energytik.net

electroinfo.net

0 comments on “Принцип действия трансформатора напряжения – 11. Трансформаторы напряжения. Назначение и классификация. Принцип действия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *