Продольная дифференциальная защита линий
Продольная дифференциальная защита линий применяется в тех случаях, когда требуется высокое быстродействие и абсолютная селективность при КЗ в любой точке линии. Продольной дифференциальной защитой называют защиту, в измерительном органе которой непосредственно сравниваются электрические данные, собранные со всех концов защищаемого элемента. Для протяженных элементов (ЛЭП) в зависимости от их длины применяют кабельные линии связи (до 15 км) или высокочастотные каналы связи.
На рис. 11.3.2 показан принцип действия продольной дифференциальной защиты линий. Трансформаторы тока, установленные по концам защищаемой линии включаются между собой через линию связи и токовое дифференциальное реле КА, включенное на разность токов. При нагрузке или внешнем КЗ в точке К1 токи I1 и I2через реле равны по величине и направлены встречно. В этом случае без учета погрешностей ТТ результирующий ток в реле:
Iр= I
и защита не работает.
При КЗ в зоне действия (между ТТ) ток I2 меняет свое направление (или будет равен нулю при одностороннем питании). Результирующий ток в реле равен сумме токов:
Iр= I1 + I2
и, если его величина превысит порог срабатывания реле, то защита сработает и отключит линию с обеих сторон.
Рис. 13.2. Принцип действия продольной дифференциальной защиты линий. Пунктирной линией показано направление токов при внешнем КЗ (точка К1), сплошной – при КЗ в зоне действия дифференциальной защиты.
На схеме рис.13.2 показана однолинейная схема линии связи с одной парой проводов. Для передачи сигналов трехфазной сети потребуется минимум 4 провода. Сопротивление проводов линии связи оказывается намного больше допустимого для ТТ по условию 10% погрешности. Поэтому ДЗЛ, например типа ДЗЛ-2, намного сложней.
В реальных схемах ТТ имеют погрешности по величине и по фазе из-за неидентичности характеристик намагничивания ТТ. Поэтому, несмотря на равенство первичных токов, вторичные токи I1 и I2при нормальной работе и внешних КЗ не одинаковы по величине и по фазе и в реле появляется ток небаланса Iнб. Для исключения ложной работы ДЗЛ ток срабатывания реле должен выбираться с учетом токов небаланса:
Iср= Кзап Iнб макс расч,
где Кзап=1.3, учитываетнеидентичность характеристик намагничивания ТТ.
При определении Iнб макс расч исходят из того, что ТТ в схеме выбраны так, что полная погрешность ε не превышает 10% при заданной вторичной нагрузке и предельной кратности К10.
Определение Iнб макс расч производят по выражению:
Iнб макс расч= ε Капер К одн IКЗ внеш макс/100 КI,
где: Капер = 2 учитывает наличие апериодической составляющей в токе КЗ;
К одн = 0.5-1.0 – коэффициент однотипности ТТ
КI — коэффициент трансформации ТТ.
Чувствительность защиты определяется минимальным током в измерительном органе при КЗ в защищаемой зоне:
Кч = I(2) мин /Iсз ≥ 2,
где I(2) мин – минимальный ток КЗ при повреждении в защищаемой ДЗЛ зоне.
В случае, если измерительных органов два (по одному на каждой подстанции), то значение тока I(2)минделят на два.
Чувствительность защиты, как правило, оказывается недостаточной. Поэтому в реальных защитах применяют измерительные органы, представляющие собой реле с быстронасыщающимися трансформаторами и тормозными обмотками.
Оценка ДЗЛ.ДЗЛ не требует отстройки по токуи по времениот защит смежных участков, не реагирует на качания, обеспечивает селективное отключение поврежденного участка любой конфигурации.
Для участков небольшой длины ДЗЛ получается простой, надежной и чувствительной. С увеличением длины защищаемой зоны ДЗЛ приобретает отрицательные свойства, которые обусловлены влиянием на надежность ее работы длинных вспомогательных каналов проводных или оптоволоконных связи.
При обрыве провода в линии связи ДЗЛ ложно срабатывает от тока нагрузки или внешнего КЗ. Поэтому для контроля исправности линии по проводам пропускается постоянный ток и в случае его исчезновения при обрыве провода ДЗЛ автоматически блокируется.
Очевидно, что иметь только одну дифференциальную защиту по условию надежности недостаточно. Это еще объясняется и тем, что дифференциальная защита не может резервировать защиты смежных линий или шин подстанции. Поэтому наряду с основной дифференциальной защитой обязательно предусматривается установка резервной защиты с относительной селективностью, например, МТЗ или дистанционной защиты.
Защита типа ДЗЛ и аналогичные ей цифровые продольные дифференциальные защиты применяются на коротких линиях 110-220 кВ длиной до 15-20 км.
Похожие статьи:
poznayka.org
применение и принцип действия, преимущества и недостатки
Для обеспечения долговременной эксплуатации электрооборудования применяются разнообразные виды защит. Дифференциальная защита получила широкое распространение благодаря высокому быстродействию. Применяется в сетях с глухозаземленной нейтралью для безопасного функционирования линий электропередач, электродвигателей, сборных машин, трансформаторов, автотрансформаторов и генераторов от коротких замыканий, а также для домашнего использования.
Виды и особенности работы
Дифференциальная защита является одним из видов релейной защиты, которая отличается абсолютной селективностью и очень высокой скоростью срабатывания. Существуют такие виды дифзащиты: поперечная и продольная. Выбор соответствующей дифзащиты зависит напрямую от ситуации, а для того чтобы уметь безошибочно ее применять, необходимо знать, в каких случаях она применяется, принцип действия, а также основные недостатки и ограничения.
Продольная защита
Продольную дифзащиту необходимо устанавливать в роли основной для защиты мощных трансформаторов и автотрансформаторов.
Основные требования:
- Одиночные трансформаторы и автотрансформаторы с мощностью от 6300 кВА.
- Параллельно работающие трансформаторы и автотрансформаторы с мощностью от 4000 кВа.
- Надежная и помехозащищенная линия связи между 2-мя трансформаторами.
- Трансформаторы и автотрансформаторы с мощность от 1000 кВА (токовая отсечка не может добиться необходимой чувствительности при коротком замыкании на выводах с высоким напряжением, при этом максимальная защита должна быть не более 0,5 секунд).
Схема 1 — Продольная дифзащита трансформатора:
Принцип действия дифзащиты сводится к сравнению значений токов фаз, протекающиех по защищенным участкам соответствующих линий. Применяются трансформаторы тока, которые служат для измерения силы тока на защищенном участке цепи. Вторичные обмотки этих трансформаторов соединены с токовыми реле, в результате на обмотку реле попадает разница токов.
При нормальной работе разность значения токов в цепи токового реле будет равна нулю. Однако при коротком замыкании в обмотку реле поступит не разница, а сумма токов. Контакты реле замыкаются, и выдается команда на полное отключение поврежденного участка цепи.
Однако это все прекрасно работает только в теории. В реальном случае через обмотку токового реле будет протекать ток, который не равен нулю. Этот ток называется током небаланса.
Основные причины появления тока небаланса на обмотке токового реле:
- Характеристики трансформаторов тока чаще имеют немного разные характеристики. На предприятии-изготовителе их выпускают попарно, предварительно проверяют и подгоняют их характеристики (изменение количества витков обмоток для соблюдения соответствия коэффициента трансформации трансформатора, который необходимо защитить).
- Возникновение намагничивающего тока, который появляется в обмотках защищенного трансформатора. В нормальном режиме значение этого тока достигает до 5% от номинального . При холостом ходе трансформатора этот ток на непродолжительное время может превышать значение номинального в несколько раз.
- Разные соединения первичной и вторичной обмоток трансформатора (звезда и треугольник). В этой интерпретации вектора токов в первичной и вторичной обмотках будут смещены на 30 градусов, что затруднит подбор количества витков. Это легко компенсировать с помощью соединения обмоток должным образом (на стороне звезды соединяют треугольником, а на стороне треугольника — звездой).
Необходимо учесть, что современные устройства, построенные на базе микропроцессоров, способны компенсировать самостоятельно и для этого нужно просто указать в настройках этого устройства.
Поперечная защита
Применяется только на высоковольтных линия. Поперечная дифференциальная защита выбирает и обесточивает одну поврежденную линию.Она состоит из токового реле направления мощности, которое подключается, как и в продольной дифзащите, с соответствующего участка на разность токов.
Ток подается на реле через последовательно соединенные контакты для автоматического вывода защиты при отключении проблемной линии, во избежание ее действия при КЗ (коротком замыкании). Вращающий момент у реле направления мощности зависит напрямую от тока, напряжения, а также от угла между этими векторными величинами.
При коротком замыкании значение тока на одной из линий будет больше, чем на другой, и ток в реле будет иметь такое же направление, как и в первой линии. Следовательно, реле замкнет свой контакт (силы тока будет достаточно для притягивания сердечника), и дифзащита отключит линию с большим значением тока. То же самое произойдет и при повешении значения номинального тока во второй линии, но разомкнется уже другая контакторная группа.
Схема 2 — Поперечная дифзащита трансформатора
Принцип действия поперечной защиты примерно такой же, как и у продольной, но есть главное отличие: трансформаторы тока следует установить на концы отдельных линий, которые подключены к данному участку.
Преимущества и недостатки
Несмотря на широкое применение благодаря высокой скорости срабатывания, каждый из видов дифференциальных защит имеет свои плюсы и минусы.
Преимущества продольной дифзащиты:
- Абсолютная селективность.
- Возможность применения с другими видами защит.
- Отлично подходит для линий электропередач (ЛЭП) небольшой длины.
- Отключение аварийного участка сети без задержки.
К недостаткам продольной защиты можно отнести:
- Снижается эффективность при проектировании длинных ЛЭП.
- Необходимы устройства контроля за отказом вспомогательных проводов для корректировки дифзащиты.
- Возникновение тока небаланса.
- Высокая стоимость при использовании реле (реле с торможением).
- Очень сложная реализация (дополнительно сооружаются линии связи для трансформаторов токов).
Преимущества поперечной дифзащиты:
- Высокая селективность (100%).
- Не оказывает влияние на работу других реле в схемах.
- Мгновенное срабатывание.
Недостатки поперечной защиты:
- Возрастает необходимость повторного запуска защиты при срабатывании.
- Не применяется в виде основной и единственной защит.
- Необходимо учитывать мертвые зоны, которых несколько.
- Не может защитить концы линии и ошиновку подстанции.
- Не может определить место короткого замыкания.
- Не применяется для ЛЭП, где требуется отключить лишь поврежденные участки.
- Не применяется с автоматическими выключателями.
- Необходимо полностью отключать линию с повреждением.
Применение в быту
Эти виды защиты возможно применять для жилых зданий в сетях напряжением от 230 до 400 вольт, однако эти устройства называются дифаппаратами. Они бывают двух типов: дифференциальные автоматы и устройства защитного отключения. Принцип их действия основан на следствии из закона Кирхгофа (I закон), который подразумевает следующее правило: значения входящего и исходящего токов должны быть равны. Если образуется ток утечки, то величины не совпадают, и происходит отключение защищенного участка.
Основные причины возникновения тока утечки:
- Прикосновение к частям аппаратуры, которая находится под напряжением человека или животных.
- Пробои в изоляции линии проводки или аппаратуры.
В некоторых случаях автоматика (дифаппарат) срабатывает при отсутствии нагрузки (подключенных потребителей электроэнергии). Основная причина — неисправность аппарата или утечка тока в самой распределительной коробке. Однако если аппарат исправен, то в этом случае необходимо полное отключение всех автоматов после дифаппарата, и проверяются все элементы цепи на предмет пробоя на корпус. Для выбора дифзащиты необходимо учесть помещения и особенности электрических цепей, которые подлежат защите.
Дифзащита — оптимальный выбор для квартир с проводкой без заземления. Для обеспечения наибольшей эффективности необходимо ставить 3-уровневую защиту (несколько устройств на 10, 30 и100−300мА).
Для обеспечения техники безопасности ее необходимо проверять нажатием кнопки «Тест» не реже 2 раз в месяц, желательно это делать регулярно.
Дифавтоматы — более качественная защита, которая выполняет функции УЗО и выключателя. Если в жилом помещении имеется генератор, который получил широкое распространение, то для него также можно применить этот вид защиты. Схема включает в себя токовое реле, которое подключается к трансформатору тока. Реле необходимо установить на статоре между нулевыми точками, включенными звездой. При нормальной работе защита не срабатывает, но при возникновении межвиткового замыкания появляется разница магнитных потоков токового реле и защита срабатывает.
Дифзащиту можно также применять и для защиты от многофазных КЗ. Для этого необходимо приобрести специальный дифаппарат для многофазной защиты.
Повышение эффективности дифзащиты
Несмотря на огромный ряд преимуществ перед другими видами защит, дифзащита требует повышения эффективности ее срабатывания в аварийной ситуации при эксплуатации генераторов. Для этого необходимо соблюдать следующие правила:
- Включение добавочных резисторов к измерительным токовым реле.
- Минимизация апериодических величин и настройка отсечек для переходных токов небаланса.
- Применение реле с задержкой времени срабатывания.
Таким образом, дифзащита широко применяется для обеспечения стабильной работы электрооборудования и ЛЭП, защиты от пожаров и возгораний, непредвиденных финансовых затрат, а также для сохранения жизни и здоровья человека.
220v.guru
Продольная дифференциальная защита
Основной защитой генератора от междуфазных к.з. в обмотке статора генератора и на его выводах является продольная дифференциальная защита.
Принцип действия продольной дифференциальной защиты основан на сравнении величин и фаз токов по концам защищаемой зоны.
С
хема, поясняющая принцип действия защиты представлена на рис.7-2.
Рис. 7-2. Принцип действия продольной диф.защиты генератора
а) токораспределение при внешнем к.з.
б) токораспределение при к.з. в зоне.
Реле защиты подключается на разность токов трансформаторов тока с одинаковыми коэффициентами трансформации установленных со стороны главных выводов и со стороны нейтрали генератора, поэтому в зону действия защиты входят обмотка и выводы (главные и нулевые) статора генератора.
При внешнем к.з. (К1) и в нагрузочных режимах токи в первичных обмотках трансформаторов тока (II и III) равны по величине и направлены в одну сторону (к месту к.з.), а ток в реле Ip=IIB—IIIB равен нулю поэтому защита не работает.
При к.з. в зоне действия защиты (К2) первичные токи к.з. направлены встречно (противоположны по фазе), ток в реле суммируется Ip=IIB+IIIB и реле срабатывает если Ip>Iс.з.
Продольная дифференциальная защита должна действовать на отключение генераторного выключателя и развозбуждение генератора (отключение автомата гашения поля – АГП).
В действительности из‑за погрешностей трансформаторов тока в реле появляется ток небаланса Ip=Iнб. Для исключения ложной работы защиты ток срабатывания продольной диф. защиты генератора выбирается по условию отстройки от тока небаланса, проходящего в реле при внешних к.з.:
Ic.з.=КнIнб.макс
где: | ||||
Кн=1,2 | — | коэффициент надёжности; | ||
Iнб.макс | — | расчётный максимальный ток небаланса, определяемый по выражению: Iнб.макс=ККоднfi Iк.з.макс. |
где: | ||||||
К=12 | — | коэффициент апериодичности, учитывающий наличие апериодической составляющей в токе к.з. | ||||
К=1,5 | — | для реле тока типа РТ-40 | ||||
К=2,0 | — | для реле тока прямого действия типа РТМ | ||||
Кодн=0,51,0 | — | коэффициент однотипности характеристик ТТ | ||||
fi=0,1 | — | относительная величина погрешности ТТ | ||||
Iк.з.макс. | — | наибольшее начальное действующее значение тока 3-х фазного к.з. на выводах генератора. |
Чтобы уменьшить ток небаланса для продольной дифференциальной защиты подбираются трансформаторы тока с одинаковыми характеристиками намагничивания. При расчёте тока небаланса это учитывается коэффициентом однотипности.
С этой же целью рекомендуется выравнивать сопротивления плеч продольной дифференциальной защиты подбором соответствующих сечений жил соединительных кабелей и включать последовательно с токовыми реле добавочные сопротивления величиной 5-10 Ом.
Для повышения чувствительности дифференциальной защиты наиболее целесообразно использовать реле с быстро насыщающимися трансформаторами типа РНТ, а также использовать диф. реле с торможением типа ДЗТ.
На генераторах, работающих на шины генераторного напряжения, применяются две схемы продольной диф. защиты (рис. 7-3).
В схеме на рис. 7-3, а, которая применяется на генераторах малой мощности (до 30 МВт), используются два токовых реле и четыре трансформатора тока. Существенным недостатком этой схемы защиты является то, что она не будет срабатывать при двойном замыкании на землю (одно в сети, другое в обмотке статора генератора, на фазе в которой отсутствуют трансформаторы тока). Обычно схему в 2-х фазном исполнении с реле тока типа РТ-40 применяют на генераторах, имеющих защиту от замыканий на землю, действующую на отключение генератора без выдержки времени при двойных замыканиях на землю. При отсутствии земляной защиты применяют схемы диф. защиты в 3-х фазном исполнении.
Рис. 7-3. Схемы продольной диф.защиты генератора
а) в 2-х фазном исполнении на реле РТ-40
б) в 3-х фазном исполнении на реле РНТ.
Защита может ложно сработать при обрывах проводов в её плечах, так как при этом в реле одной фазы появляется ток, соответствующий току нагрузки генератора. Поэтому ток срабатывания защиты выполненной с использованием реле тока РТ-40 определяют по выражению:
Iс.з.=1,3Iг.ном
при этом чувствительность защиты существенно уменьшается.
Схема продольной диф. защиты на реле РНТ (рис. 7-3, б) используется на генераторах мощностью выше 30 МВт, при этом защита выполняется, как правило, в 3-х фазном исполнении независимо от наличия защиты от замыканий на землю, действующей на отключение.
При использовании реле типа РНТ с быстронасыщающимся трансформаторами (БНТ) дифференциальная защита имеет задержку на срабатывание на время присутствия в токе к.з. значительной апериодической составляющей. При этом Кa=1. Наличие в схеме БНТ позволяет эффективно отстраиваться от бросков тока небаланса при внешних к.з., но приводит к увеличению на 1,01,5 периода времени действия защиты при внутренних к.з. Кроме того, наличие выравнивающих обмоток у реле РНТ позволяет скомпенсировать неравенство токов в плечах диф. защиты.
Ток срабатывания защиты с использованием реле РНТ определяется по выражению:
Iс.з.=(0,5-0,6) Iг.ном.
при этом чувствительность защиты выше, чем в защите с токовыми реле РТ‑40.
Для сигнализации обрыва соединительных проводов токовых цепей диф. защиты в нулевой провод токовых цепей включается токовое реле Т0, ток срабатывания которого устанавливается равным (0,20,3) Iг.ном.
На рис. 7-4 представлена упрощённая схема продольной диф. защиты генератора с использованием реле подключенных через быстронасыщающиеся трансформаторы с торможением (с использованием реле ДЗТ) с током срабатывания
Рис. 7-4. Упрощённая схема продольной диф. защиты генератора на реле ДЗТ
При использовании дифференциальных реле с торможением типа ДЗТ в которых сочетается два принципа отстройки защиты от тока небаланса: применение быстронасыщающегося трансформатора для ограничения Iнб, поступающего в реле и торможения, при котором ток срабатывания реле автоматически увеличивается с ростом тока к.з. При этом Iс.з.=(0,1-0,2) Iг.ном.
Реле ДЗТ имеют тормозную (Wт) и рабочую (Wр) обмотки. Тормозная обмотка, как правило, включается на ток трансформаторов тока со стороны главных выводов генератора, а рабочая – по дифференциальной схеме на разность токов через быстронасыщающийся трансформатор.
Чувствительность продольной дифференциальной защиты генератора проверяют по току 2-х фазного к.з. на выводах отключённого от сети генератора:
Следует отметить, что продольная дифференциальная защита является быстродействующей защитой с абсолютной селективностью, так как работает без выдержки времени, а селективность её действия обеспечивается самой схемой защиты (защита действует только при к.з. внутри защищаемой зоны – в зоне между ТТ установленных на главных и нулевых выводах обмотки статора генератора).
Кроме того, продольная диф. защита генератора не действует при замыканиях между витками одной и той же фазы обмотки статора, а также при междуфазных к.з. вблизи нулевой точки генератора (в мёртвой зоне). Однако, из-за небольших потенциалов в этой части цепи статора генератора, вероятность возникновения там к.з. незначительна.
Выводы:
Продольная дифференциальная защита является основной защитой генератора от междуфазных к.з. в обмотке статора и на его выводах.
Продольная дифференциальная защита является защитой с абсолютной селективностью, обладает необходимыми быстродействием и надёжностью; селективность действия обеспечивается её принципом действия основанном на сравнении величин и фаз токов по концам защищаемой зоны.
Высокая чувствительность защиты обеспечивается соответствующим выбором трансформаторов тока, применением дифференциальных реле с БНТ, а также диф. реле с торможением.
Недостатком продольной диф. защиты с БНТ является наличие некоторого замедления её действия при к.з. в зоне (до 0,060,1 с).
studfile.net
Принцип действия продольной дифференциальной защиты и поперечной токовой дифференциальной защиты
Принцип действия продольной дифференциальной токовой защиты
Эта защита основана на сравнении токов в начале и конце защищаемого элемента. Для выполнения защиты линии на ее концах устанавливаются измерительные трансформаторы тока с одинаковыми коэффициентами трансформации.
Вторичные обмотки трансформаторов тока одноименных фаз и обмотка реле соединяются так, чтобы при коротком замыкании вне зоны, ограниченной измерительными трансформаторами, ток в реле отсутствовал, а при повреждении внутри зоны был равен току короткого замыкания.
Применяются две возможные схемы выполнения дифференциальной защиты: с циркулирующими токами и с уравновешенными напряжения. С циркулирующими токами: схема получается путем параллельного соединения вторичных обмоток трансформаторов тока ТАI, ТAII и обмотки реле тока КА. При этом ток в реле İр определяется с учетом принятых условных положительных направлений токов İ1I и İ1II по концам защищаемой линии Л.
С учетом положительных направлений в нормальном режиме, а также при внешних коротких замыканиях ток в реле равен геометрической разности вторичных токов:
İp= İ2I– İ2II .
При равенстве первичных токов İ1I и İ1II и отсутствии погрешностей измерительных трансформаторов вторичные токи İ2I = İ2II , поэтому ток в реле Iр = 0 и защита не срабатывает. В этом случае вторичные токи İ2I и İ2II циркулируют только по вспомогательным проводам, соединяющим вторичные обмотки трансформаторов тока.
При повреждении в зоне токи İ1II и İ2II при показанном условном положительном направлении становятся отрицательными, вследствие чего токи İ2I и İ2II в обмотке реле складываются: İр= İ2I + İ2II =İ2к . При одностороннем питании один из токов, например İ2II , равен нулю. При этом ток İ2I не может замыкаться через вторичную обмотку второго трансформатора тока, так как трансформатор тока работает в режиме источника тока (сопротивление обмотки реле во много раз меньше внутреннего сопротивления трансформатора тока). Весь ток İ2I проходит через реле. Таким образом, при коротком замыкании в зоне ток в реле İр определяется током İк в точке повреждения. При этом защита срабатывает, если IР> Icp.
Следовательно, продольная дифференциальная защита действует при повреждениях в зоне и не реагирует на внешние короткие замыкания и токи нормальной работы, т.е. она обладает абсолютной селективностью. Эта принципиальная особенность дает возможность выполнять защиту без выдержки времени, а при выборке тока срабатывании — не учитывать токов нагрузки.
В действительности трансформаторы тока имеют погрешности. Поэтому, несмотря на равенство первичных токов, вторичные токи İ2I и İ2II при нормальной работе и внешних коротких замыканиях не одинаковы по абсолютному значению и не совпадают по фазе и в реле появляется ток, называемый током небаланса Iнб . Для исключения неправильной работы дифференциальной защиты ток срабатывания реле должен выбираться с учетом токов небаланса.
Поперечная дифференциальная токовая защита
Принцип действия защиты и выбор тока срабатывания.
Эта защита основана на сравнении токов одноименных фаз параллельных цепей с мало отличающимися параметрами. Для осуществления защиты используют трансформаторы тока с одинаковыми коэффициентами трансформации, установленные со стороны питающих шин А. Реле тока КА включается на разность токов двух одноименных фаз сдвоенной линии по схеме с циркулирующими токами. При принятом условном положительном направлении токов от шин в линию ток в реле İр = İ2I – İ2II . Поэтому, как и в продольной дифференциальной защите, при нормальной работе и внешних коротких замыканиях (за пределами сдвоенной линии в точке K1) по обмотке реле проходит только ток небаланса.
Ток срабатывания реле тока выбирается по условию Iс.р = kзап Iнб.рсч.max при kзап = 1,3. Максимальный расчетный ток небаланса для защиты линий с одинаковыми параметрами определяется по выражению :
Iнб.рсч.max= 0,1kодн kап I(3)к.вн.max /(2KI).
Учитывая изложенное о возможных погрешностях трансформаторов тока и о апериодической составляющей, можно принять kоднkап =1,0.
При коротком замыкании на одной из линий равенство токов İ2I и İ2II нарушается, в реле появляется ток. Если İр = | İ2I – İ2II | > İc.p, то реле срабатывает и отключает выключатель Q линии.
Мертвая зона защиты.
При удалении точки короткого замыкания от места установки защиты ток в поврежденной линии уменьшается, а в неповрежденной возрастает, вследствие чего ток Iр в обмотке реле уменьшается так, что при повреждении вблизи шин противоположной подстанции, он становится меньше тока срабатывания. При этом защита отказывает в действии. Длина участка lм.з , при повреждении в пределах которого защита не работает из-за недостаточного тока в реле, называется мертвой зоной поперечной дифференциальной токовой защиты.
lм.з = (İс.з / İк )lл .
Согласно требованиям, длина мертвой зоны не должна превышать lм.з < 0,1lл .
Оценка защиты.
Защита по принципу действия не защищает сборки сдвоенной линии и шины подстанции, а в случае отключения одной из цепей должна выводиться из действия, так как ее ток срабатывания в общем случае оказывается не отстроенным от тока оставшейся в работе цепи и защита не имеет выдержки времени. Это, а также наличие мертвой зоны являются недостатком защиты, исключающим возможность ее применения в качестве единственной защиты сдвоенных линий.
Поперечная дифференциальная токовая защита не способна определить, на какой из параллельных цепей имеется повреждение, поэтому она не может быть использована для параллельных линии с выключателями на каждой из них, когда требуется и имеется возможность отключать только поврежденную линию. Такая возможность появляется и на сдвоенной линии, если разъединители в ее параллельных цепях снабжены приводами с дистанционным управлением. В этом случае действие защиты может быть согласовано с работой устройства АПВ линии. При повреждении любой параллельной цепи защита сначала отключает выключатель Q , после этого отключается разъединитель QS1 или QS2 поврежденной цепи, а затем выключатель включается.
energetik.com.ru
принцип действия, устройство, схема. Дифференциальная защита трансформатора. Продольная дифференциальная защита линий
В статье вы узнаете о том, что такое дифференциальная защита, как она работает, какими положительными качествами обладает. Также будет рассказано о том, какие имеются недостатки у дифзащиты линий электропередач. Также вы ознакомитесь с практическими схемами защиты устройств и линий электропередач.
Дифференциальный тип защиты на данный момент считается самым распространенным и быстродействующим. Он способен обезопасить систему от межфазных замыканий. А в тех системах, в которых используется глухозаземленная нейтраль, он может без труда предотвратить возникновение однофазных КЗ. Дифференциальный тип защиты применяется для того, чтобы обезопасить линии электропередач, электродвигатели повышенной мощности, трансформаторы, генераторы.
Всего имеется два типа дифзащиты:
- С напряжениями, уравновешивающими друг друга.
- С циркулирующим током.
В этой статье будут рассмотрены оба этих типа дифзащиты, чтобы узнать как можно больше о них.
Дифзащита с использованием циркулирующих токов
Принцип заключается в том, что сравниваются токи. А если быть точнее, то происходит сравнение параметров в начале элемента, защита которого осуществляется, а также в конце. Используется данная схема при осуществлении продольного типа и поперечного. Первые используются для обеспечения безопасности одиночной линии электропередачи, электромоторов, трансформаторов, генераторов. Продольная дифференциальная защита линий очень распространена в современной электроэнергетике. Второй тип дифзащиты применяется при использовании линий электропередач, функционирующих параллельно.
Продольная дифференциальная защита линий и устройств
Чтобы осуществить защиту продольного типа, необходимо с обоих концов установить одинаковые трансформаторы тока. Их вторичные обмотки должны быть соединены друг с другом последовательно при помощи дополнительных электропроводов, которыми необходимо подключать токовые реле. Причем эти токовые реле необходимо соединять со вторичными обмотками параллельно. При нормальных условиях, а также при наличии внешнего короткого замыкания в обеих первичных обмотках трансформаторов будет протекать одинаковый ток, который окажется равным как по фазе, так и по величине. По обмотке электромагнитного тока реле будет протекать немного меньшее его значение. Вычислить его можно по простой формуле:
Ir=I1-I2.
Предположим, что токовые зависимости трансформаторов будут полностью совпадать. Следовательно, вышеупомянутая разность значений токов близко или равна нулю. Другими словами, Ir=0, а защита в это время не работает. Во вспомогательной электропроводке, которая соединяет вторичные обмотки трансформаторов, происходит циркуляция тока.
Схема продольного типа дифференциальной защиты
Такая схема дифференциальной защиты позволяет получить по величине равные значения токов, которые протекают по вторичной цепи трансформаторов. Исходя из этого, можно сделать вывод, что эту схему защиты назвали так из-за принципа действия. При этом в зону защиты попадает тот участок, который находится непосредственно между токовыми трансформаторами. В том случае, если имеется короткое замыкание, в зоне защиты при питании с одной стороны от трансформатора по обмотке электромагнитного реле протекает ток I1. Направляется он во вторичную цепь трансформатора, который установлен на другой стороне линии. Необходимо обратить внимание на то, что во вторичной обмотке очень большое сопротивление. Следовательно, ток практически не протекает через нее. По такому принципу работает дифференциальная защита шин, генераторов, трансформаторов. В том случае, когда I1 окажется равным или большим, нежели Ir, начинает срабатывать защита, производя размыкания контактной группы выключателей.
Короткое замыкание и защита цепи
В случае короткого замыкания внутри защищенной зоны, с обеих сторон через электромагнитное реле протекает ток, равный сумме токов каждой обмотки. В этом случае также включается защита, размыкая контакты выключателей. Все вышеизложенные примеры предполагают, что все технические параметры трансформаторов полностью одинаковы. Следовательно, Ir=0. Но это идеальные условия, в реальности из-за небольших различий при выполнении магнитных систем первичных токов, электроприборы существенно отличаются друг от друга, даже однотипные. Если имеются различия в характеристиках токовых трансформаторов (когда реализуется дифференциально-фазная защита конструкции), то величины токов вторичных цепей будут различаться, даже если первичные абсолютно одинаковы. Теперь нужно рассмотреть, как работает схема дифференциальной защиты при внешнем коротком замыкании на линии электропередач.
Внешнее короткое замыкание
При наличии внешнего короткого замыкания через электромагнитное реле дифзащиты будет проходить ток небаланса. Его значение напрямую зависит от того, какой ток проходит по первичной цепи трансформатора. В режиме нормальной нагрузки его значение невелико, но при наличии внешнего КЗ он начинает увеличиваться. Его значение зависит также от времени после начала КЗ. Причем максимального значения он должен достичь в первые несколько периодов после начала замыкания. Именно в это время по первичным цепям трансформаторов протекает весь I КЗ.
Стоит также отметить, что сначала I КЗ состоит из двух типов тока – постоянного и переменного. Их еще называют апериодическими и периодическими составляющими. Устройство дифференциальной защиты таково, что при этом наличие в токе апериодической составляющей всегда должно вызывать чрезмерное насыщение магнитной системы трансформатора. Следовательно, разность потенциалов небаланса резко увеличивается. Когда ток короткого замыкания начинает уменьшаться, снижается и значение небаланса системы. По такому принципу осуществляется дифференциальная защита трансформатора.
Чувствительность защитных конструкций
Все типы дифзащиты быстродействующие. И они не работают при наличии внешних КЗ, поэтому необходимо выбирать электромагнитные реле, учитывая максимально возможный ток небаланса в системе при наличии внешнего короткого замыкания. Стоит обратить внимание на то, что у защиты такого типа получается крайне низкая чувствительность. Чтобы ее повысить, необходимо соблюсти множество условий. Во-первых, нужно применять трансформаторы тока, у которых не происходит насыщения магнитопроводов в момент, когда по первичной цепи протекает ток (независимо от его значения). Во-вторых, желательно использовать электроприборы быстронасыщающегося типа. Их нужно подключать к вторичным обмоткам элементов, защита которых производится. Электромагнитное реле подключается к быстронасыщающемуся трансформатору (дифференциальная токовая защита становится максимально надежной) параллельно его вторичной обмотке. Именно так работает дифференциальная защита генератора или трансформатора.
Увеличение чувствительности
Допустим, произошло внешнее КЗ. При этом по первичным цепям защитных трансформаторов протекает некоторый ток, состоящий из апериодической и периодической составляющих. Такие же «компоненты» присутствуют в токе небаланса, который протекает по первичной обмотке быстронасыщающегося трансформатора. При этом апериодическая составляющая тока значительно насыщает сердечник. Следовательно, трансформация тока при этом во вторичную цепь не происходит. При затухании апериодической составляющей происходит значительное уменьшение насыщения магнитопровода, и постепенно во вторичной цепи начинает появляться некоторое значение тока. Но максимальный уровень тока небаланса окажется намного меньшим, нежели в случае отсутствия быстронасыщающегося трансформатора. Следовательно, увеличить чувствительность можно путем установки значения тока защиты меньше или равным максимальному значению разности потенциалов небаланса.
Положительные качества дифференциальной защиты
Во время первых периодов магнитопровод насыщается очень сильно, трансформация практически не происходит. Но после того как затухнет апериодическая составляющая, периодическая часть начинает трансформироваться во вторичной цепи. Стоит обратить внимание на то, что у нее очень большое значение. Следовательно, электромагнитное реле срабатывает и производит отключение защищаемой цепи. Очень низкий уровень трансформации первые примерно полтора периода времени замедляет действие цепи защиты. Но это не играет большой роли при построении практических схем защиты электроцепей.
Дифференциальная защита трансформатора не срабатывает в случаях, если имеются повреждения электрической цепи вне зоны защиты. Поэтому временная выдержка и селективность не требуется. Время срабатывания защиты колеблется в интервале от 0,05 до 0,1 секунды. Это огромное преимущество такого типа дифзащиты. Но есть еще одно преимущество — очень высокая степень чувствительности, в особенности при использовании быстронасыщающегося трансформатора. Среди более мелких преимуществ стоит отметить такие, как простота и очень высокая надежность.
Отрицательные свойства
Но как продольная, так и поперечная дифференциальная защита имеет и недостатки. Например, она не способна защитить электрическую цепь при воздействии коротких замыканий извне. Также она не способна разомкнуть электрическую цепь при воздействии сильной перегрузки.
К сожалению, защита может сработать при повреждении вспомогательной электроцепи, к которой произведено подключение вторичной обмотки. Но все преимущества дифзащиты с циркулирующим током перебивают эти мелкие недостатки. Но они способны защитить линии электропередач очень маленькой протяженности, не более километра.
Они очень часто используются при реализации защиты проводов, с помощью которых запитываются разнообразные устройства, необходимые для функционирования электрических станций, генераторов. В том случае, если длина электролинии очень большая, например составляет несколько десятков километров, защиту по данной схеме выполнить очень сложно, так как необходимо использовать провода с очень большим сечением для соединения электромагнитных реле и вторичной обмотки трансформаторов.
В том случае, если использовать стандартные провода, то нагрузка на трансформаторы тока окажется чересчур большой, равно как и ток небаланса. А вот что касается чувствительности, то она оказывается крайне низкой.
Конструкции реле защиты и область применения схем
В электролиниях очень большой протяженности используется схема, в которой находится защитное реле, имеющие особую конструкцию. С его помощью можно обеспечить нормальный уровень чувствительности, а соединительные провода применить стандартные. Поперечная дифзащита срабатывает при помощи сравнения тока в двух линиях по фазам и величинам.
Дифзащита быстродействующая применяется в линиях электропередач, в которых протекает напряжение в диапазоне 3-35 тыс. вольт. При этом обеспечивается надежная защита от межфазного КЗ. Дифзащита выполняется как двухфазная по причине того, что электросеть с вышеупомянутыми рабочими напряжениями не заземлена нейтралями. Либо же нейтраль соединена с заземлением посредством дугогасящей катушки.
Вспомогательные провода в конструкции защитных цепей
Трансформаторы тока находятся в относительной близости друг к другу. Следовательно, вспомогательные провода имеют довольно малую длину. При использовании проводов маленького диаметра на трансформаторы будет воздействовать относительно низкая нагрузка. Что касается тока небаланса, то он также небольшой. А вот степень чувствительности оказывается весьма высокой. В случае отключения какой-либо линии дифзащита становится токовой, временной выдержки и селективности нет. Чтобы исключить ложные срабатывания, блок-контакты линий разъединяют цепь.
Поперечно направленная дифзащита цепей
Поперечно направленная защита широко используется при разработке систем линий, функционирующих параллельно. С обеих сторон линии устанавливаются выключатели. Суть в том, что такие по конструкции линии очень сложно защитить при помощи простых схем. Причина – невозможно достичь нормального уровня селективности. Чтобы улучшить селективность, необходимо тщательно подбирать выдержку времени. Но в случае использования поперечно направленной дифзащиты выдержка времени не нужна, селективность довольно высокая. У нее есть основные органы:
- Направление мощности. Зачастую применяются реле направления мощности с двусторонним действием. Иногда используют пару реле дифференциальной защиты с односторонним действием, которые работают при различных направлениях мощности.
- Пусковой – как правило, в его роли используют быстродействующие реле с максимально возможным током.
Конструкция системы такова, что на линиях производится установка трансформаторов тока со вторичными обмотками, соединенными в схему с циркулирующим током. А вот все токовые обмотки включаются последовательно, после чего их соединяют при помощи дополнительных проводов к трансформаторам тока. Чтобы работала дифференциально-фазная защита, к реле подводится напряжение при помощи сборных шин установок. Именно на них производится монтаж всего комплекта. Если посмотреть на схему включения вторичных цепей трансформаторов и защитного реле, то можно сделать вывод о том, почему ее называют «направленной восьмеркой». Вся система выполнена двумя комплектами. На каждом конце линии находится один комплект, благодаря которому обеспечивается дифференциальная токовая защита линии электропередач.
Схема с однофазным реле
Напряжение к реле защиты подводится обратным по фазе тому, что нужно для отключения одной линии с повреждением. В нормальной работе (в том числе при наличии внешнего короткого замыкания) по обмоткам реле проходит лишь ток небаланса. Чтобы не произошло ложных отключений, нужно, чтобы пусковые реле имели ток срабатывания больше, нежели ток небаланса. Рассмотрим работу защиты двух линий.
В момент начала короткого замыкания в зоне защиты второй линии протекает некоторый ток. Стоит обратить внимание на то, что:
- Пусковое реле срабатывает.
- Со стороны одной подстанции реле направлений мощности размыкает контакты выключателя.
- Со стороны второй подстанции также происходит отключение линии при помощи выключателей.
- В реле направления мощности момент вращения отрицательный, следовательно, контакты разомкнуты.
В обмотках реле защиты первой линии изменяется направление движения тока (относительно первой линии) во время короткого замыкания. Реле направлений мощности удерживает контактную группу в разомкнутом состоянии. Выключатели со стороны обеих подстанций размыкаются.
Только такая дифференциальная защита линии может нормально функционировать лишь при параллельной работе обеих линий. В том случае, если отключается одна из них, нарушается принцип работы дифзащиты. Следовательно, в дальнейшем защита приводит к неселективности отключения второй линии во время внешних коротких замыканий. В этом случае она становится обычной направленной токовой, причем она не имеет временной выдержки. Чтобы избежать этого, поперечно направленная защита во время отключения одной линии автоматически выводится при помощи разрыва блок-контактом цепи.
Дополнительные типы защиты
Токи срабатывания пусковых реле должны быть больше, чем токи небаланса во время внешнего короткого замыкания. Чтобы избежать ложных срабатываний при отключении одной из линий и прохождении по оставшейся максимального тока нагрузки, необходимо, чтобы он был больше разности потенциалов небаланса. При наличии на линии дифзащиты поперечно направленного типа необходимо предусмотреть дополнительные степени.
Они позволят проводить защиту одной линии при отключении параллельно работающей. Как правило, они используются для защиты от сверхтока перегрузки во время внешнего короткого замыкания (в этом случае не происходит реагирование дифференциальной защиты). Ко всему прочему, допзащита является резервной к дифференциальной (в том случае, если последняя отказала).
Зачастую применяются направленные и ненаправленные токовые защиты, отсечки и т. д. Поперечно направленная дифференциальная защита проста по конструкции, весьма надежна и получила широкое применение в электросетях с напряжением от 35 тыс. вольт. Вот так и функционирует дифференциальная защита, принцип действия ее довольно простой, но все равно нужно знать хотя бы основы электротехники, чтобы разобраться во всех тонкостях.
fb.ru
Дифференциальная защита — это… Что такое Дифференциальная защита?
Дифференциа́льная защи́та — один из видов релейной защиты, отличающийся абсолютной селективностью и выполняющейся быстродействующей (без искусственной выдержки времени). Применяется для защиты трансформаторов, автотрансформаторов, генераторов, генераторных блоков, двигателей, линий электропередачи и сборных шин (ошиновок). Различают продольную и поперечную дифференциальные защиты.
Продольная дифференциальная защита
Принцип действия
Дифференциальная защита силового трансформатораПринцип действия продольной дифференциальной защиты основан на сравнении токов, протекающих через участки между защищаемым участком линии (или защищаемом аппаратом). Для измерения значения силы тока на концах защищаемого участка используются трансформаторы тока(TA1, TA2). Вторичные цепи этих трансформаторов соединяются с токовым реле(KA) таким образом, чтобы на обмотку реле попадала разница токов от первого и второго трансформаторов.
В нормальном режиме (1) значения величины силы тока вычитаются друг из друга, и в идеальном случае ток в цепи обмотки токового реле будет равен нулю. В случае возникновения короткого замыкания (2) на защищаемом участке, на обмотку токового реле поступит уже не разность, а сумма токов, что заставит реле замкнуть свои контакты, выдав команду на отключение поврежденного участка.
В реальном случае через обмотку токового реле всегда будет протекать ток отличный от нуля, называемый током небаланса. Наличие тока небаланса объясняется рядом факторов:
- Трансформаторы тока имеют недостаточно идентичные друг другу характеристики. Чтобы снизить влияние этого фактора, трансформаторы тока, предназначенные для дифференциальной защиты, изготавливают и поставляют попарно, подгоняя их друг к другу еще на стадии производства. Кроме того, при использовании дифференциальной защиты, например, трансформатора, у измерительных трансформаторов тока изменяют число витков, в соответствии с коэффициентом трансформации защищаемого трансформатора.
- Некоторое влияние на возникновение тока небаланса может оказывать намагничивающий ток, возникающий в обмотках защищаемого трансформатора. В нормальном режиме этот ток может достигать 5 % от номинального. При некоторых переходных процессах, например при включении трансформатора с холостого хода под нагрузку, ток намагничивания на короткое время может в несколько раз превышать номинальный ток. Для того, чтобы учесть влияние намагничивающего тока, ток срабатывания реле принимают большим, чем максимальное значение намагничивающего тока.
- Неодинаковое соединение обмоток первичной и вторичной стороны защищаемого трансформатора (например, при соединении обмоток Y/Δ) так же влияет на возникновение тока небаланса. В данном случае во вторичной цепи защищаемого трансформатора вектор тока будет смещён относительно тока в первичной цепи на 30°. Подобрать такое число витков у трансформаторов тока, которое позволило бы компенсировать эту разницу, невозможно. В этом случае угловой сдвиг компенсируют с помощью соединения обмоток: на стороне звезды обмотки трансформаторов тока соединяют треугольником, а на стороне треугольника соответственно звездой.
Следует отметить, что современные микропроцессорные устройства защиты способны учитывать эту разницу самостоятельно, и при их использовании, как правило, вторичные обмотки измерительных трансформаторов тока соединяют звездой на обоих концах защищаемого участка, указав это в настройках устройства защиты.
Дифференциальная защита трёхфазного трансформатора, обмотки которого соединены по схеме Y/Δ)Область применения
Дифференциальная защита устанавливается в качестве основной для защиты трансформаторов и автотрансформаторов. Одним из недостатков такой защиты является сложность её исполнения: в частности, требуется наличие надёжной, помехозащищённой линии связи между двумя участками, на которых установлены трансформаторы тока. В связи с этим, дифференциальную защиту применяют для защиты одиночно работающих трансформаторов и автотрансформаторов мощностью 6300 кВА и выше, параллельно работающих трансформаторов и автотрансформаторов мощностью 4000 кВА и выше и на трансформаторах мощностью 1000 кВА и выше, если токовая отсечка не позволяет добиться необходимой чувствительности при коротком замыкании на выводах высокого напряжения, а максимальная токовая защита имеет выдержку времени более, чем 0,5 с.
<></>== Поперечная дифференциальная защита ==
Принцип действия
Принцип действия поперечной дифференциальной защиты так же заключается в сравнении значений токов, но в отличие от продольной, трансформаторы тока устанавливаются не на разных концах защищаемого участка, а на разных линиях, отходящих от одного источника (например, на параллельных кабелях, отходящих от одного выключателя). Если произошло внешнее короткое замыкание, то данная защита его не почувствует, так как разность значений силы тока, измеряемых на этих линиях, будет практически равна нулю. В случае же короткого замыкания непосредственно на одном из защищаемых кабелей разница токов не будет равняться нулю, что даст основание для срабатывания защиты.
Область применения
Данная защита устанавливается только как дополнительная, что связано с серьёзным её недостатком: в случае выведения из эксплуатации одной из линий, защита перестаёт быть селективной, поэтому её приходится отключать. Однако, этот вид защиты довольно прост в исполнении, а также позволяет производить селективное отключение в тех сетях, где нет возможности установить токовую отсечку. Поперечную защиту применяют для защиты кабельных линий, генераторов
Направленная поперечная защита
Применяется для защиты параллельных линий, присоединенным через самостоятельный выключатель.
Защита выбирает и отключает только одну поврежденную линию.
Защита состоит из пускового органа (токовое реле), которое включается также, как и в поперечной дифференциальной защите с участка направления мощности, включенного на разность токов защищаемых линий и на напряжение шин подстанции.
Оперативный ток подается на реле защиты через последовательное соединение вспомогательных контактов защищаемых линий для того, чтобы защита автоматически выводилась из действия при отключении одной из линий, во избежание ее не селективного действия при внешнем КЗ.
Значение и знак вращающего момента у реле направления мощности зависит от значения тока, напряжения и угла между ними.
При КЗ на линии 1 ток в линии 1 будет больше тока в линии 2, поэтому их разность, т.е. ток в реле, будет иметь такое же направление, как и ток в линии 1. Реле направления мощности замкнет контакт KW1 и защита отключит поврежденную линию 1.
При повреждении на линии 2 ток в ней будет больше тока в линии 1, и ток в реле изменит направление на противоположное. Замкнется контакт KW2 и защита отключит поврежденную линию 2.
Источники
- Голанцов Е.Б., Молчанов В. В. Дифференциальные защиты трансформаторов с реле типа ДЗТ-21 (ДЗТ-23). Москва, Энергоатомиздат, 1990
- «Релейная защита распределительных сетей» Издание второе, переработанное и дополненное. Я. С. Гельфанд Москва. Энергоатомиздат 1987.
- «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. Энергоатомиздат 1998
- «Руководящие указания по релейной защите. Вып. 13А(Б). Релейная защита понижающих трансформаторов и автотрансформаторов 110-500 кВ» Составитель Т.Н. Дороднова: Энергоатомиздат 1985,-96 с., ил.
dic.academic.ru
Продольная дифференциальная защита линий | Обслуживание устройств релейной защиты и автоматики
Страница 5 из 14
Защита основана на принципе сравнения значений и фаз токов в начале и конце линии. Для сравнения вторичные обмотки трансформаторов тока с обеих сторон линии соединяются между собой проводами, как показано на рис. 7.17. По этим проводам постоянно циркулируют вторичные токи I 1 и I 2. Для выполнения дифференциальной защиты параллельно трансформаторам тока (дифференциально) включают измерительный орган тока ОТ .
Ток в обмотке этого органа всегда будет равен геометрической сумме токов, приходящих от обоих трансформаторов тока: I Р = I 1 + I 2 Если коэффициенты трансформации трансформаторов тока ТА1 и ТА2 одинаковы, то при нормальной работе, а также внешнем КЗ (точка K1 на рис. 7.17, а ) вторичные токи равны по значению I 1 =I2 и направлены в ОТ встречно. Ток в обмотке ОТ I Р = I 1 + I 2 =0 , и ОТ не приходит в действие. При КЗ в защищаемой зоне (точка К2 на рис. 7.17, б ) вторичные токи в обмотке ОТ совпадут по фазе и, следовательно, будут суммироваться: I Р = I 1 + I 2 . Если I Р >I сз , орган тока сработает и через выходной орган ВО подействует на отключение выключателей линии.
Таким образом, дифференциальная продольная защита с постоянно циркулирующими токами в обмотке органа тока реагирует на полный ток КЗ в защищаемой зоне (участок линии, заключенный между трансформаторами тока ТА1 и ТА2 ), обеспечивая при этом мгновенное отключение поврежденной линии.
Практическое использование схем дифференциальных защит потребовало внесения ряда конструктивных элементов, обусловленных особенностями работы этих защит на линиях энергосистем.
Во-первых, для отключения протяженных линий с двух сторон оказалось необходимым подключение по дифференциальной схеме двух органов тока: одного на подстанции 1 , другого на подстанции 2 (рис. 7.18). Подключение двух органов тока привело к неравномерному распределению вторичных токов между ними (токи распределялись обратно пропорционально сопротивлениям цепей), появлению тока небаланса и понижению чувствительности защиты. Заметим также, что этот ток небаланса суммируется в ТО с током небаланса, вызванным несовпадением характеристик намагничивания и некоторой разницей в коэффициентах трансформации трансформаторов тока. Для отстройки от токов небаланса в защите были применены не простые дифференциальные реле, а дифференциальные реле тока с торможением KAW , обладающие большей чувствительностью.
Во-вторых, соединительные провода при их значительной длине обладают сопротивлением, во много раз превышающим допустимое для трансформаторов тока сопротивление нагрузки. Для понижения нагрузки были применены специальные трансформаторы тока с коэффициентом трансформации n , с помощью которых был уменьшен в п раз ток, циркулирующий по проводам, и тем самым снижена в n2 раз нагрузка от соединительных проводов (значение нагрузки пропорционально квадрату тока). В защите эту функцию выполняют промежуточные трансформаторы тока TALT и изолирующие TAL . В схеме защиты изолирующие трансформаторы TAL служат еще и для отделения соединительных проводов от цепей реле и защиты цепей реле от высокого напряжения, наводимого в соединительных проводах во время прохождения по линии тока КЗ.
Рис. 7.17. Принцип выполнения продольной дифференциальной защиты линии и прохождение тока в органе тока при внешнем КЗ (а ) и при КЗ в защищаемой зоне (б )
Рис. 7.18. Принципиальная схема продольной дифференциальной защиты линии:
ZA — фильтр токов прямой и обратной последовательностей; TALT — промежуточный трансформатор тока; TAL — изолирующий трансформатор; KAW — дифференциальное реле с торможением; Р — рабочая и T — тормозная обмотки реле
Распространенные в электрических сетях продольные дифференциальные защиты типа ДЗЛ построены на изложенных выше принципах и содержат элементы, указанные на рис. 7.18. Высокая стоимость соединительных проводов во вторичных цепях ДЗЛ ограничивает область се применения линиями малой протяженности (10-15 км).
Контроль исправности соединительных проводов. В эксплуатации возможны повреждения соединительных проводов: обрывы, КЗ между ними, замыкания одного провода на землю.
При обрыве соединительного провода (рис. 7.19, а ) ток в рабочей Р и тормозной Т обмотках становится одинаковым и защита может неправильно сработать при сквозном КЗ и даже при токе нагрузки (в зависимости от значения Ic з .
Замыкание между соединительными проводами (рис. 7.19, б ) шунтирует собой рабочие обмотки реле, и тогда защита может отказать в работе при КЗ в защищаемой зоне.
Для своевременного выявления повреждений исправность соединительных проводов контролируется специальным устройством (рис. 7.20). Контроль основан на том, что на рабочий переменный ток, циркулирующий в соединительных проводах при их исправном состоянии, накладывается выпрямленный постоянный ток, не оказывающий влияния на работу защиты. Две секции вторичной обмотки TAL соединены разделительным конденсатором С1 , представляющим собой большое сопротивление для постоянного тока и малое для переменного. Благодаря конденсаторам С1 в обоих комплектах защит создается последовательная цепь циркуляции выпрямленного тока по соединительным проводам и обмоткам минимальных быстродействующих реле тока контроля КА . Выпрямленное напряжение подводится к соединительным проводам только на одной подстанции, где устройство контроля имеет выпрямитель VS , получающий в свою очередь питание от трансформатора напряжения TV рабочей системы шин. Подключение устройства контроля к той или другой системе шин осуществляется вспомогательными контактами шинных разъединителей или. реле-повторителями шинных разъединителей защищаемой линии.
Замыкающие контакты КЛ контролируют цепи выходных органов защиты.
При обрыве соединительных проводов постоянный ток исчезает, и реле контроля КА снимает оперативный ток с защит на обеих подстанциях, и подастся сигнал о повреждении. При замыкании соединительных проводов между собой подается сигнал о выводе защиты из действия, но только с одной стороны — со стороны подстанции, где нет выпрямителя.
Рис. 7.19. Прохождение тока в обмотках реле KAW при обрыве (а ) и замыкании между собой соединительных проводов (б ):
К1 — точка сквозного КЗ; К2 — точка КЗ в защищаемой зоне
В устройстве контроля имеется приспособление для периодических измерений сопротивления изоляции соединительных проводов относительно земли. Оно подаст сигнал при снижении сопротивления изоляции любого из соединительных проводов ниже 15-20 кОм.
Если соединительные провода исправны, ток контроля, проходящий по ним, не превышает 5-6 мА при напряжении 80 В. Эти значения должны периодически проверяться оперативным персоналом в соответствии с инструкцией по эксплуатации защиты.
Оперативному персоналу следует помнить, что перед допуском к любого рода работам на соединительных проводах необходимо отключать с обеих сторон продольную дифференциальную защиту, устройство контроля соединительных проводов и пуск от защиты устройства резервирования при отказе выключателей УРОВ.
После окончания работ на соединительных проводах следует проверить их исправность. Для этого включается устройство контроля на подстанции, где оно не имеет выпрямителя, при этом должен появиться сигнал неисправности. Затем устройство контроля включают на другой подстанции (на соединительные провода подают выпрямленное напряжение) и проверяют, нет ли сигнала о повреждении. Защиту и цепь пуска УРОВ от защиты вводят в работу при исправных соединительных проводах.
leg.co.ua