Программа определения емкости конденсатора – C 1.2 (Windows)

обозначение конденсаторов программа — Boomle.ru

raschet.info > Программа для определения

Определение ёмкости конденсатора по цифровой маркировке

Цифровая маркировка на малогабаритных конденсаторах чаще всего она встречается виде трёх цифр.Первые две из них определяют ёмкость в единицах пФ, третья цифра соответствует…

radioaktiv.ru > Определение ёмкости

Cкачать Конденсатор 1.2 (Windows)

Конденсаторпрограмма предназначена для определения емкости конденсатора по разным маркировкам. На данный момент доступна только цветовая маркировка, включающая в…

softportal.com > Cкачать Конденсатор 1.2

Маркировка конденсаторов. Программа. — Радиолюбитель RA4A

Большой справочник радиолюбителя. Программа. Скачать.

Программы.Маркировка радиодеталей (Сборник из 7 книг). Электронный справочник радиолюбителя.

ra4a.ru > Маркировка конденсаторов.

Маркировка конденсаторов | Интересные программы

Бесплатная программа электронный справочник для определения емкости конденсаторов. База данных программы Конденсатор включает в себя информацию о 12 видах…

loadboard.ru > Маркировка конденсаторов |

Универсальная программа радиоинженера | Электрические схемы

Кодовая маркировка конденсаторов. Цоколевка и цветовая маркировка отечественных варикапов. Программа для прошивки AVR микроконтроллеров.

esxema.ru > Универсальная программа

Программа RC 3.2. Цветовая маркировка

резисторов… | NiceTV

Небольшая программа RC 3.2 (92 кб) для определения параметров резисторов и конденсаторов по их цветовой маркировке (3 — 5 цветных полосок или точек)…

nice.artip.ru > Программа RC 3.2. Цветовая

Кодовая и цифровая маркировка конденсаторов — справочники…

ЦВЕТОВАЯ МАРКИРОВКА. На практике для цветового кодирования постоянных конденсаторов используются несколько методик цветовой маркировки. * Допуск 20%; возможно сочетание…

x-shoker.ru > Кодовая и цифровая

Калькулятор обозначений SMD конденсаторов | turbo-blog.ru

turbo-blog.ru > Калькулятор обозначений SMD

Цифровая маркировка конденсаторов

• О проекте • Обратная связь • Полезные ссылки • Полезные программы

• Друзья сайта.Цифровая маркировка конденсаторов. Код. Пикофарады (пФ, pF).

avrki.ru > Цифровая маркировка

Цифровая маркировка на малогабаритных конденсаторах

На малогабаритных конденсаторах цифровая маркировка в основном встречается в виде трёх цифр. Из них первая и вторая цифры определяют величину ёмкости в единицах измерения пФ…

radiofanatic.ru > Цифровая маркировка на

Калькулятор обозначений SMD конденсаторов | turbo-blog.ru

turbo-blog.ru > Калькулятор обозначений SMD

Маркировка радиоэлементов программа

Конденсатор – бесплатная программа (маленькая база конденсаторов) которая поможет определить емкость конденсаторов по различным маркировкам.

BlogoSoft.com > Маркировка радиоэлементов

Программы для радиолюбителя | Форум

Кодовое и полное обозначение номиналов конденсаторов.Конденсатор v1.0 Программа предназначена для определения ёмкости конденсатора по разным маркировкам.

forum.oldradio.org.ua > Программы для

Маркировка конденсаторов | Полезный сайт

2. Маркировка четырьмя цифрами. Эта маркировка аналогична описанной выше, но вИногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в…

gamesdraw.ru > Маркировка конденсаторов |

Цветовая маркировка конденсаторов

Цветовая маркировка конденсаторов | On-line Калькулятор, Конденсаторы. Хоть конденсаторы с цветовой маркировкой

(будь то полосы, кольца или точки) встречаются…

best-chart.ru > Цветовая маркировка

Цифровая маркировка конденсаторов

• О проекте • Обратная связь • Полезные ссылки • Полезные программы • Друзья сайта.Цифровая маркировка конденсаторов. Код. Пикофарады (пФ, pF).

avrki.ru > Цифровая маркировка

Кодовая, цифровая маркировка конденсаторов (2016) WEBRip

nemalo.net > Кодовая, цифровая

[ekalk] Кодировка конденсаторов 3-мя цифрами

квадратная индуктивная петля. частота,волна,период. кодировка конденсаторов 3-мя цифрами.балластный конденсатор для ламп ‘U’. оптическая видимость антенн.

ekalk.eu > [ekalk] Кодировка

Color and Code — цветовая маркировка резисторов…

Цветовая и кодовая

маркировка конденсаторов Имеется возможность определять по номинал конденсатора, как по цветным кольцам, так и по цифровому обозначению.

radiohome.ru > Color and Code — цветовая

Программа расшифровки цветовой маркировки конденсаторов

Программа расшифровки цветовой маркировки элементов — Color and Code 10.6.Также проста в использовании, русский интерфейс.Программа имеет свою базу элементов и после…

audio-cxem.ru > Программа расшифровки

Кодовая или цифровая маркировка конденсаторов | kavmaster

kavmaster.ru > Кодовая или цифровая

Маркировка конденсаторов » Электрик

Nikolai4, спасибо за программу. Полезная вещь! Иной раз такой конденсатор попадётся, что и не знаешьУ меня есть инфа в формате DOC , но эта программа

будет всегда под рукой.

bezkz.su > Маркировка конденсаторов

Онлайн калькулятор расшифровки цветовой маркировки

C каждым годом конденсаторы с цветовой маркировкой попадаются все реже и реже, но все же с ними мы иногда сталкиваемся, и узнать их параметры без специальных приборов…

cxemok.ru > Онлайн калькулятор

Программа для определение емкости конденсаторов по цветной…

Всего в программу было включено 12 типов конденсаторов различныхРис.1. Скачать программу для определение емкости конденсаторов по цветной и кодовой маркировке — zip…

qrx.narod.ru > Программа для определение

Маркировка конденсаторов и формулы расчета емкости, памятка

Справочный лист в виде картинки, который поможет запомнить типичные

маркировки конденсаторов, формулы расчета емкости.

RadioStorage.net > Маркировка конденсаторов

Кодовая маркировка конденсаторов | Мастер Винтик. Всё своими…

Главная » Справочная » Маркировки радиоэлем. » Кодовая маркировка конденсаторов. Кодовая маркировка конденсаторов. Добавил: STR2013,Дата: 19 Янв 2015.

MasterVintik.ru > Кодовая маркировка

Программа Color and Code — цветовая маркировка… | joyta.ru

Программа Color and Code имеет обширный сервис и позволяет решать комплекс задачОписание программы Color and Code. В программе имеется возможность определять…

joyta.ru > Программа Color and Code —

Программа Color and Code — цветовая

маркировка радиодеталей

Цветовая и кодовая маркировка конденсаторов.Кодовая и цветовая маркировка транзисторов. Можно определять тип транзистора по двум и четырем цветным точкам.

pikabu.ru > Программа Color and Code —

www.boomle.ru

Описание измерительной программы RLC-meter | ldsound.ru

Программа для измерения сопротивления, индуктивности и емкости неизвестных электронных компонентов. Требует изготовления простейшего переходника для подключения к звуковой карте компьютера (два штекера, резистор, провода и щупы).

2 версии программы можно скачать в разделе Software.

Это еще один вариант, пополняющий и без того обширную коллекцию аналогичных программ. Здесь не воплощены все задумки, работа над которыми продолжается. Функционирование «основы» вы можете оценить прямо сейчас.

В основу заложен общеизвестный принцип определения амплитудных и фазовых соотношений между сигналами с известного (образцового) компонента, и с компонента, параметры которого надо определить. В качестве тестового используется сигнал синусоидальной формы, генерируемый звуковой картой. В первой версии программы использовалась только одна фиксированная частота 11025 Гц, в следующей версии к ней добавилась вторая (в 10 раз меньшая). Это позволило расширить верхние границы измерений для емкостей и индуктивностей.

Выбор именно этой частоты (четверть от частоты сэмлинга) является главной «инновацией», отличающей этот проект от остальных. На такой частоте алгоритм интегрирования по-Фурье (не путать с БПФ – быстрым преобразованием Фурье) максимально упрощается, а нежелательные побочные эффекты, приводящие к росту шума в измеряемом параметре, полностью пропадают. В итоге кардинально улучшается быстродействие и снижается разброс показаний (особо ярко выраженный на краях диапазонов). Это позволяет расширить диапазоны измерений и обойтись только одним образцовым элементом (резистором).

Собрав схему согласно рисунку и установив регуляторы уровня Windows в оптимальное положение, а также произведя начальную калибровку по закороченным между собой щупам («Cal.0»), можно сразу же приступать к измерениям. С такой калибровкой без труда ловятся низкие сопротивления, в том числе ESR, порядка 0,001 ом, а СКО (среднеквадратическое отклонение) результатов измерений в этом случае составляет порядка 0,0003 ом. Если зафиксировать положение проводов (чтобы не менялась их индуктивность), то можно «ловить» индуктивности порядка 5 нГн. Калибровку «Cal.0» желательно проводить после каждого старта программы, поскольку положение регуляторов уровня в среде Windows может быть, в общем случае, непредсказуемым.

Схема подключения к звуковой карте:

 

Окно программы:

 

Чтобы расширить диапазон измерений в область больших R, L и малых C, требуется учитывать входное сопротивление звуковой карты. Для этого служит кнопка «Cal.^», нажимать на которую надо при разомкнутых между собой щупах. После такой калибровки можно достичь следующих диапазонов измерений (при нормировании случайной составляющей погрешности на краях диапазонов на уровне 10%):

 по R – 0.01 ом … 3 Мом,

 по L – 100 нГн … 100 Гн,

 по C – 10 пФ … 10 000 мкФ

         (для версии с двумя рабочими частотами)

Минимальная погрешность измерения определяется допуском образцового резистора. Если предполагается использование обычного ширпотребовского резистора (и даже с номиналом, отличным от указанного), в программе предусмотрена возможность его калибровки. Соответствующая кнопка «Cal.R» становится активной при переходе в режим «Ref.» Величина резистора, который будет использоваться в качестве эталонного, задается в файле *.ini в качестве значения параметра «CE_real». После калибровки уточненные характеристики образцового резистора запишутся в виде новых значений параметров «CR_real» и «CR_imag» (в 2-х частотной версии параметры измеряются на двух частотах).

С регуляторами уровня программа напрямую не работает – пользуйтесь стандартным микшером Windows или аналогичным. Шкала «Level» служит для настройки оптимального положения регуляторов.

 

Здесь можно порекомендовать такую методику настройки:

 

1. Определиться, какой регулятор отвечают за уровень воспроизведения, а какой – за уровень записи. Остальные регуляторы желательно заглушить для минимизации вносимых ими шумов. Регуляторы балланса – в среднее положение.

2. Исключить прегрузку по выходу. Для этого, установив регулятор записи в положение ниже среднего, с помощью регулятора воспроизведения найти ту точку, где ограничивается рост столбика «Level», а затем немного отступить назад. Скорее всего перегрузки вообще не будет, но для надежности регулятор лучше не выводить на отметку «макс».

3. Исключить прегрузку по входу – регулятором уровня записи сделать так, чтобы столбик «Level» не доходил до конца шкалы (оптимальное положение – 70…90%) в отсутствии измеряемого компонента, т.е. при разомкнутых щупах.

4. Замыкание щупов между собой не должно приводить к сильной просадке уровня. Если это так, то выходные усилители звуковой карты слишком слабы для данной задачи (иногда решается настройками карты).

 

Требования к системе

 

 – ОС семейства Windows (тестировалась под Windows XP),

         – поддержказвука 44,1 ksps, 16 bit, stereo,

         – наличие одного аудио устройства в системе (если окажется несколько, то программа будет работать с первым из них, и не факт, что у веб-камеры окажутся гнезда «Line In» и «Line Out»).

 

Особенности измерений, или чтобы не попасть впростак

 

Любой измерительный инструмент требует знания его возможностей и умения правильно интерпретировать результат. Например, при использовании мультиметра стоит задуматься, а какое переменное напряжение он, собственно, меряет (при отличии формы от синусоидальной)?

В нашем случае неизвестный компонент рассматривается как последовательно включенные активное и реактивное сопротивления, значения которых программа пытается определить. И если у компонента окажутся дополнительные паразитные параметры (например – сопротивление утечки у электролитического конденсатора), то результаты будут искажены. В примере с конденсатором сопротивление утечки пересчитается в последовательное, что в сумме с истинным последовательным сопротивлением даст завышенный результат. У катушек собственная емкость обмотки приведет к занижению индуктивности, вплоть до получения отрицательных значений (свойственно катушкам с очень большим числом витков, например – обмоткам трансформаторов). Так что критически относитесь к результатам измерений!

В 2-х частотной версии для измерения больших емкостей и индуктивностей используется низкая (1,1 кГц) частота. Граница перехода отмечена сменой цвета шкалы с зеленого на желтый. Аналогично меняется и цвет показаний – с зеленого на желтый при переходе к измерениям на низкой частоте.

Стереофонический вход звуковой карты позволяет организовать «четырехпроводную» схему подключения только для измеряемого компонента, схема же подключения эталонного резистора остается «двухпроводной». При таком раскладе любая нестабильность контакта разъема (в нашем случае – земляного) может исказить результат измерения. Ситуацию спасает относительно большая величина сопротивления эталонного резистора по сравнению к нестабильностью сопротивления контакта – 100 ом против долей ома.

И последнее. Если измеряемый компонент – конденсатор, то он может оказаться заряженным! Даже разряженный электролитический конденсатор со временем может «собрать» оставшийся заряд. Схема не имеет защиты, так что вы рискуете вывести из строя свою звуковую карту, а в худшем случае – сам компьютер. Сказанное относится и к тестированию компонентов в устройстве, тем более – не обесточенном.

 

Источник: antiradio.narod.ru

ldsound.ru

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.  Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания. Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен. Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева. Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Есть хорошая книга по рассмотрению электрической ёмкости различных фигур. Для любопытных рекомендую поискать на просторах Интернета: Расчет электрической ёмкости в авторстве Ю.Я.Иоселль 1981 года

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.

Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 

Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Полученные характеристики плоского конденсатора
Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

 

Ёмкость такого сооружения определяется следующей формулой.

 

где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

Еще интереснее выглядит формуа такого «слоёного» конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

 

S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)

d- расстояние между обкладками

С- ёмкость конденсатора

Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора

d = 1 милиметр 
e = 1.00059 
C = 350 нанофарад 
S = 39.524703024086 м2 

 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

     
Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

 

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

 

  • Расчет понижающего конденсатора >>

abakbot.ru

Расчёт блока питания с гасящим конденсатором + онлайн-калькулятор — radiohlam.ru

Осторожно, текст под спойлером перегружен физикой!

Итак, процессы в этой схеме будут достаточно нелинейны, поэтому при рассчётах придётся делать различные упрощения и допущения.

Для начала давайте будем считать, что ёмкость конденсатора C2 достаточна для полного сглаживания пульсаций напряжения после моста, то есть напряжение на конденсаторе C2 = const. Далее попробуем нарисовать пару графиков, — напряжение на входе моста (UM) и ток через конденсатор C1 (IC1), опираясь на график сетевого напряжения UС(t). Будем считать, что сетевое напряжение у нас изменяется по синусоидальному закону и имеет амплитуду Uca (вообще-то рисовать мы будем косинусоиду, нам так будет удобнее, но это по сути одно и то же, только косинусоида сдвинута относительно синусоиды на π/2).

Рассуждаем следующим образом: в каждый момент времени полное напряжение и полный ток в этой цепи можно описать следующими уравнениями:

UC=UC1+UМ (1), iC=iC1+iМ (2)

В момент времени t0 уравнение напряжения примет вид: Uca=UC1+UМ. Поскольку Uca — это максимальное значение сетевого напряжения, то UC1 и UМ также в этот момент должны иметь максимальные значения (здесь в логике есть небольшой провал, максимум суммы — это не всегда сумма максимумов, функции могут быть сдвинуты по фазе, но… в общем, мы потом всё экспериментально проверим).

Максимальное значение UМ равно Uвых, поскольку если бы напряжение на мосту поднималось выше, то и конденсатор C2 заряжался бы до большего напряжения (мост бы открылся и к конденсатору C2 потёк бы зарядный ток, увеличивая напряжение на нём).

Токи через конденсатор и мост в момент t0 равны нулю. Про мост я выше уже написал (если бы через него тек ток, то конденсатор C2 заряжался бы дальше), а через C1 ток не течёт, поскольку ток через конденсатор — это первая производная от напряжения, которая в точках экстремума обращается в ноль (значит когда напряжение на конденсаторе максимально — ток равен нулю).

Далее сетевое напряжение (UC) начинает уменьшаться. При этом напряжение на C1 не меняется (тока-то через мост нет, заряд на C1 не меняется), следовательно вместе с падением UC уменьшается напряжение на входе моста.

В момент, когда сетевое напряжение упадёт до значения Uca-2Uвых (момент времени t1) — напряжение на входе моста достигнет значения -Uвых (находим с помощью формулы 1), диоды моста откроются и в первичной цепи (через мост и конденсатор C1) потечёт ток. При этом напряжение на входе моста перестанет меняться (помните, мы договорились, что ёмкость C2 достаточно большая для того, чтобы полностью сгладить пульсации).

Обратите внимание, что напряжение на входе моста в этот момент равно -Uм, так что ток потечёт в обратную сторону от того направления, в котором он тёк до момента времени t0. Этот ток, поскольку он течёт в обратную сторону, начнёт перезаряжать конденсатор C1.

К моменту времени t3 напряжение в сети достигнет максимума, только с противоположной относительно момента t0 полярностью. Соответственно, для этого момента экстремума сетевого напряжения будут справедливы все те же рассуждения касательно напряжений и токов, которые мы использовали для момента t0. То есть, к этому моменту конденсатор C1 полностью перезарядится (напряжение на нём достигнет максимального значения отрицательной полярности), а ток через C1 и мост упадёт до нуля.

Далее, по мере роста сетевого напряжения, напряжение на конденсаторе C1 будет оставаться неизменным, а напряжение на входе моста будет расти.

В момент времени t4, когда сетевое напряжение вырастет до значения -(Uca-2Uвых), напряжение на входе моста достигнет значения Uвых, диоды моста откроются и в первичной цепи (через мост и конденсатор C1) снова потечёт ток. Этот ток снова будет перезаряжать конденсатор C1, но уже напряжением положительной полярности.

В момент t6 напряжение на конденсаторе C1 достигнет максимального значения положительной полярности, а ток через C1 и мост упадёт до нуля.

Далее весь цикл повторится с самого начала.

Теперь давайте вспомним закон сохранения заряда. В соответствии с этим законом за один полный цикл через конденсатор C1, мост и нагрузку должно протекать одинаковое количество заряда. Поскольку ток нагрузки у нас постоянный, то количество заряда, протекающего через нагрузку за один цикл, можно найти по формуле Q=Iн*tцикла=Iн/fc, где fc — частота питающего сетевого напряжения. Количество заряда, протекающего через конденсатор C1, будет равно площади под графиком тока (заштрихованная площадь графика IC1(t)). Остаётся только найти эту площадь, приравнять её к заряду, протекающему за один цикл через нагрузку, и выразить из полученного выражения необходимую ёмкость конденсатора C1 в зависимости от тока нагрузки.

Подробные математические расчёты можно найти под вторым спойлером.

[свернуть]

radiohlam.ru

Измерение электрического сопротивления, емкости, индуктивности с помощью обычного ПK

КомпьюFerra, Игорь Зубаль,
E-mail zi12 (at) inbox.ru
Дата: 01.11.2002

Радиолюбители знают, как важно иметь под рукой средство для измерения емкости конденсаторов и индуктивности дросселей, меньше проблем возникает при измерении сопротивления резисторов. Это нужно при как при подстройке электронных схем, так и для проверки деталей. К тому же у производителей уже давно вошло в моду не ставить маркировку на корпусах множества радиодеталей. Со временем скапливается огромное количество не промаркированных конденсаторов и дросселей с неизвестной индуктивностью. На вид они могут быть абсолютно одинаковые, а номиналы отличаются в тысячи раз. Определить это можно только измерением параметров. При этом обычно не требуется какая-то исключительная точность, достаточно той, с которой маркируется большинство радиодеталей, чаще всего 10%. В былые времена таких приборов хоть сколь приличного качества в продаже не было. Теперь появилась масса импортной измерительной техники. Но что-то мне не попадались мультиметры способные измерять емкость и индуктивность стоимость которых была бы по карману. Однако оказалось, что эту проблему можно решить совершенно неожиданным путем — с помощью оригинальной идеи переложить все бремя измерений на компьютер, даже ничего не меняя в его конструкции.

Тем, что компьютер может стать главным звеном в измерительной или аналитической аппаратуре уже никого не удивишь. Обычно для этих целей используются специальные модули или платы расширения — редкое и дорогостоящее оборудование. Совсем другое дело превратить в цифровой мультиметр самый обычный компьютер, в его стандартной конфигурации, без каких либо дополнительных аппаратных доработок и финансовых затрат. Оригинальная идея программиста, нестандартный подход к стандартному оборудованию ПК и совсем незначительные ухищрения с аппаратной частью позволяют воплотить эту возможность в жизнь. Измерительный прибор из ПК получается с помощью одних только программных средств. Но для начала стоит разобраться с физикой данного вопроса, возможно после экскурса к слегка призабытым знаниям, подобная реализация ПК уже не будет казаться чем-то фантастическим.

Существует два вида электрического сопротивления: активное и реактивное. Активное сопротивление (R) — это обычные резистор, сопротивление которого, в общем-то, не зависит от рода тока. Реактивное сопротивление — это сопротивление катушек индуктивности (дросселей) и конденсаторов. Величина реактивного сопротивления уже зависит от частоты тока. Так на постоянном токе реактивное сопротивление конденсатора устремляется к бесконечности, а дросселя наоборот — к нулю (без учета активной составляющей сопротивления провода).1

С изменением частоты тока электрическое сопротивление конденсатора изменяется, по закону:

Xc = 1/2pfC2
где Xc — сопротивление, Ом; f — частота, Гц; С — емкость, Ф.

Электрическое сопротивление конденсатора переменному току можно измерить. Зная сопротивление и частоту тока, легко по формуле вычислить емкость. Кроме того, если в электрической цепи стоит конденсатор происходит сдвиг фаз напряжения и тока. Причем ток опережает напряжение на величину 90°.

Реактивное сопротивление катушки индуктивности с увеличением частоты возрастает:

XL = 2pfL
где XL — сопротивление катушки, Ом; f — частота, Гц; L — индуктивность, Гн.

Индуктивность дросселя легко вычисляется по известному сопротивлению и заданной частоте тока. При этом фазы напряжения и тока на катушке индуктивности сдвигаются относительно друг друга, и теперь ток отстает от напряжения на 90°.

Для измерения реактивного сопротивления емкости и индуктивности потребуется, прежде всего, переменный ток синусоидальной формы. С задачей программного генератора с легкостью может справиться звуковая плата компьютера. Другая проблема — определение величины электрического сопротивления измеряемого элемента. Но оказывается и эту задачу можно решить программным путем, с помощью той же звуковой платы, не прибегая к специальным аналого-цифровым преобразователям.

Все это делает программа Multi Meter, используя весьма оригинальный способ для измерения электрического сопротивления, емкости и индуктивности. Работает под управлением Windows9X в минимальной конфигурации CPU 486DX4, 16M RAM. Программа бесплатна и найти ее и описание к ней можно по адресу www.i-adrian.home.ro.

В качестве измерительного преобразователя Multi Meter используется обычная звуковая карта. Принцип действия прост. Так как звуковая карта не является полноценным АЦП, — хорошо чувствуя форму сигнала, она совершенно не приспособлена для определения его амплитуды, прямым путем, конечно. Но оказалось, что это ограничение можно обойти, используя сравнение уровней двух независимых сигналов. Генерируемый сигнал переменного тока с выхода Line-Out поступает на линейный вход Line-In. По одной цепи сигнал с Line-Out идет напрямую, без всякого сопротивления на левый линейный вход звуковой карты — это эталонный сигнал. По другой цепи тот же выходной сигнал поступает на правый линейный вход, но уже через измеряемый элемент (рис.1).

Рис. 1.

Так же вводится дополнительный резистор (R serial), который устанавливается снаружи корпуса системного блока и соединяется одним концом на корпус. Понятно, что уровень сигнала с правого входа Line-In, прошедшего через сопротивление, будет меньше, чем с левого. Программа измеряет соотношение уровней сигналов с левого и правого входов, и по нему вычисляется активное сопротивление для обычного резистора. Для реактивной нагрузки емкости и индуктивности алгоритм несколько усложняется, используется две частоты, кроме ослабления сигнала так же учитывается сдвиг фаз. Емкость конденсаторов и индуктивность дросселей определяется путем решения системы из двух уравнений. Для подсоединения к разъемам звуковой карты понадобится два штекера, разводка которых показана на (рис.2).

Рис. 2.

Multi Meter состоит из одного исполнимого файла (212кб) и не требует инсталляции, ее интерфейс прост и понятен (рис.3). Слева в области задаются режимы калибровок и измерений. Сначала программа калибруется. В режиме запускается с замкнутой накоротко измерительной цепью (точки А и Б), без всякого сопротивления. При этом нужно подождать некоторое время, пока в окне не установиться наименьшее числовое значение. Таким же способом калибровка проделывается в режиме , но уже при разомкнутой измерительной цепи. Режим используется для измерения сопротивления резисторов. В положении измеряется емкость или индуктивность.

Рис. 3.

В левых верхних окнах пользователем задаются значения генерируемых для измерения частот и сопротивление установленного дополнительного резистора R serial. Эти параметры могут быть разными для различных режимов и величин измерений, что будет уточнено ниже. В левых нижних окнах выводятся числовые значения для измеряемых величин: сопротивление (Ом), емкость (микрофарад), индуктивность (миллигенри). Теоретически каждый электрический элемент может обладать заметными величинами одновременно сопротивления, емкости и индуктивности, что и будет отображаться во всех трех окнах программы. Однако действительным будет только то значение, которое соответствует роду измеряемой величины.

Значения частот Multi Meter могут лежать в интервале 50:1000 Гц. При измерении сопротивления обычного резистора подбор частоты не так важен. Обе частоты применяются в режиме , при этом разница между ними (левом/правом окне), согласно рекомендациям разработчика, не должна быть меньше 10% и больше 200%. Хотя последнее условие и не является обязательным. Сопротивление резистора R serial может находиться в пределах 20:1000 Ом (чаще 20:100 Ом), в зависимости от режима и диапазона измерений. Величина сопротивления R serial должна указываться в окне программы с большой точностью. Как показывает практика, при погрешности указанного значения от действительного сопротивления более чем на 1% резко возрастет конечная погрешность измерений Multi Meter. Надо учитывать, что маркировка резисторов обычно наносится с погрешностью 5; 10%, поэтому реальные сопротивления для набора резисторов R serial нужно определить с помощью другого точного прибора или использовать высокоточные детали.

Автор программы дает следующие рекомендации по подбору сопротивления R serial и частот сигнала (Yamaha 724) для Multi Meter v.0.03:

  • При измерении емкости конденсаторов номиналом 0,22мкф и выше рекомендуется R serial 20 Ом и частоты 100/1000 Гц. Для измерения конденсаторов меньших номиналов рекомендуется увеличивать частоты и сопротивление R serial, но не более чем 1000 Ом.

  • Для измерения резисторов номиналом от 1 Ом до 10 кОм рекомендуется R serial 20 Ом, частоты не оговариваются. Насчет измерения индуктивности никаких рекомендаций нет.

  • Уровень сигнала на линейном входе и выходе в микшере Windows рекомендуется поставить на середину, но не выше 3/4. Хотя может оказаться, что эти уровни нуждаются в более скрупулезной настройке.

Я со своей стороны провел всесторонние практические испытания Multi Meter 0.03, перемерив огромное количество радиоэлементов. На основе собственного опыта были определены оптимальные значения R serial и наборы частот для тех или иных режимов и диапазонов. Так же на практике были установлены возможности Multi Meter в связке с саундкартой Yamaha 724 производства Genius. Определялись диапазоны значений, в которых программа еще могла нормально работать, а так же погрешности измерений. При этом для соединения использовались не экранированные провода длиной около 80 см с зажимами типа на концах. Уровни микшера Line-Out, Line-In были выставлены на 50%.

Начнем с резисторов. Измерения проводились в режиме . Частоты 300/500, хотя в данном случае их значения не имеют большого значения. Измерение резисторов проводились при различных сопротивлениях R serial: 20:500 Ом. При установке R serial 20 Ом оптимальный интервал для измерения сопротивлений соответствовал 1:20000 Ом. В этом диапазоне максимальная погрешность была не хуже 5%. Данные сверялись с показаниями аппаратного цифрового мультиметра. Этот результат можно считать хорошим, учитывая, что резисторы для ширпотреба маркируются с 5% и 10% точностью. Увеличить верхний предел измерений удается увеличением R serial. При значении R serial 100 Ом верхний предел можно поднять уже до 150 кОм. Еще выше поднять верхний предел — до 500 кОм удается с помощью R serial 300 Ом. Хотя в последнем случае уже начинает расти погрешность низкоомных резисторов, этот режим рекомендуется применять для резисторов номиналом не ниже 200 Ом. Дальнейшее увеличение сопротивления R serial уже ник чему не приводило.

Емкость конденсаторов с помощью Multi Meter удавалось измерять в диапазоне от 1 нф до 1000 мкф независимо от типа. Режим программы — . Для диапазона от 10 нф и выше рекомендуется использовать R serial 20 Ом и частоты 100/1000. К сожалению я не располагал каким либо другим точным прибором для измерения емкости, по которому можно было бы сверять результаты для определения погрешности измерений Multi Meter’ом. По моему субъективному заключению погрешность измерения емкости в этом режиме не хуже 5:6%. Для конденсаторов меньшей емкости лучше использовать R serial 100 Ом и частоты 500/1000: погрешность здесь в интервале 1:10 нф — около 10%; а от 10 нф до 200 мкф — те же 5:6%; для более высоких номиналов этот режим не рекомендуется. Таким образом Multi Meter охватывает большую часть диапазона наиболее часто используемых конденсаторов, причем, с хорошей точностью измерений, учитывая, что обычные конденсаторы маркируются с 10% и 20% точностью, а электролиты чаще с 20%. В случае конденсаторов с емкостью более 1000 мкф, начиная с 2000 мкф, у меня программа давала завышенные показания примерно на 20:25%. Так же показания Multi Meter плохо согласуются с параллельными соединениями конденсаторов.

Индуктивность дросселей мне удавалось довольно точно измерять в диапазоне от 4 мкГн до 120мГн (выше просто не было чего измерять). Опять же не было точного прибора, с помощью которого можно было бы сравнивать показания. Для тех трех десятков дросселей, что были у меня, я думаю, максимальная погрешность была не хуже 5%. При этом был установлен R serial 20 Ом и частоты 700/1000. При индуктивности ниже 4 мкГн Multi Meter давал сначала заниженные показания, а потом и вовсе нули. Нижний предел можно еще попробовать опустить где-то до 2 мкГн, установив частоты 900/1000, однако здесь падает общая стабильность.

Недостатком Multi Meter является зависимость результатов измерений от уровней Line-Out, Line-In сигнала. Сказываются слишком завышенные или заниженные уровни. Надо учитывать, что у разных звуковых карт уровни могут существенно отличаться. Предусмотренная в программе калибровка по короткозамкнутой и разомкнутой измерительной цепи в этом случае ничего не дает. Поэтому калибровать Multi Meter приходится вручную, выставляя в микшере уровни Line-Out, Line-In, сверяясь по известным номиналам измеряемых элементов. В моем случае, практика показала, что, выставив уровни сигнала входа/выхода по резисторам, программа давала действительные результаты и в случае емкостей и индуктивности. Все полученные результаты относятся к системе со звуковой картой на чипе Yamaha 724 производства Genius, под Windows 98SE на довольно мощной машине. Я не могу обещать, что на других платах, ввиду индивидуальных особенностей их схемных решений, результаты в точности повторятся. Наверное, придется поэкспериментировать и подобрать другие параметры уровней Line-Out, Line-In, возможно, частот и сопротивлений R serial.

Выводы. Программа Multi Meter может стать чрезвычайно полезным приобретением для радиолюбителей и людей связанных с радиоэлектроникой. Мои первые сомнения о том, можно ли с помощью обычной звуковой карты ПК добиться высокой точности измерений, постепенно рассеялись во время многочисленных экспериментов. Оригинальный подход Multi Meter вполне оправдывает себя. Нужно только знать в каких граничных диапазонах измерений реально может работать та или иная звуковая карта. Конечно, точность Multi Meter не прецизионная, но достаточно хорошая — это, еще смотря, с чем сравнивать. Если для сопротивления резисторов можно купить достаточно точный цифровой прибор (порядка 10$), то с емкостью и индуктивностью не так все просто. Такие приборы либо очень дороги, либо дают диапазон и погрешность еще хуже программы Multi Meter и тоже стоят денег. Так обстоят дела с дешевыми стрелочными тестерами, у которых имеются шкалы для L и C. Кроме того, последние берут сигнал переменного тока с розетки 220 В, что небезопасно для человека и самого прибора. Я остался очень доволен тем результатом, который был получен. Стоит отдать должное автору Multi Meter за оригинальность подхода.

От редакции

Мы рекомендуем использовать для подобных измерений не линейный выход звуковой карты (он обычно имеет достаточно высокое выходное сопротивление, что плохо скажется на точности измерений с эталонным резистором Rserial меньше 100 Ом), а выход звуковой карты на наушники (его выходное сопротивление меньше 1 Ома, что достаточно для подобных измерений). В дешевых звуковых картах линейный выход иногда уже является и выходом на наушники (имеется встроенный усилитель). Видимо, так и обстояло дело в указзанной автором статьи карте Genius.

При измерениях небольших индуктивностей и емкостей рекомендуем использовать как можно более короткие внешние провода (в идеале — подлючать элементы прямо к миниджеку, воткнутому в линейный вход карты.)


1. Имеется ввиду синусоидальный (гармонический) сигнал переменного тока. [вернуться]

2. p — число =3,1415926. [вернуться]

www.qrz.ru

Калькулятор Радиолюбителя.

«Калькулятор Радиолюбителя» поможет провести расчеты при проектировании любительских радиоэлектронных устройств. Программа бесплатна и свободна для некоммерческого распространения.

Скачать программу на русском языке RadioAmCalc 1.20 Free.

С помощью Калькулятора можно:

  • рассчитать трансформатор при различных исходных данных
    (в большинстве программ невозможно, например, поменять магнитную проницаемость сердечника)
  • рассчитать однослойные и многослойные катушки индуктивности
  • определить сопротивление резистора по цветным полоскам
  • определить сопротивление SMD-резистора
  • определить емкость конденсатора по цветным полоскам
  • рассчитать пассивный LC и RC фильтры нижних и верхних частот
  • провести электротехнические расчеты по формулам


В последующих версиях:
  • базы данных по транзисторам и микросхемам
  • просмотр Международной системы единиц (СИ)
  • перевод величин из одних систем в другие
  • Ваши предложения

Свои замечания и пожелания о работе программы Вы можете высказать в гостевой книге или в письме.

www.radioamcalc.narod.ru

ESR конденсатора | Описание, как измерить, таблица ESR

ESR  – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Реальные параметры конденсатора

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем “Прогресс”. Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

где

r – это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  – эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r – сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С – емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) – последовательная индуктивность – это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

Где “прячется” ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ – это удельное сопротивление проводника

l – длина проводника

S – площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок 😉 Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?

На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).

Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:

где, ХС  – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14 

F – частота, измеряется в Герцах

С – емкость,  измеряется в Фарадах

Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:

P=I2xR

где

I – это сила тока, в Амперах

R – сопротивление резистора ESR, в Омах

Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.

Догоняете о чем я вам толкую? 😉

Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора,  как ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже “плавает” емкость, то вслед за ней “плывет” и схема.

ESR электролитических конденсаторов

В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.

У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной ( ну той, которая написана на самом конденсаторе)

Чаще всего они вспухают в импульсных блоках питания и на материнках, обычно рядом с процессором (там выше на них нагрузка, да и тепло от процессора, вероятно, свою роль играет). Один из характерных симптомов: техника (комп, монитор) начинает включаться всё хуже и хуже. Либо с паузой (до нескольких часов после включения в сеть), либо с -дцатой попытки.

Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) – то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту – очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).

Таблица ESR

Как я уже сказал, ESR в основном проверяют именно у электролитических конденсаторов, потому что они используются в импульсных блоках питания. Вот небольшая табличка для максимально допустимых значений ESR для новых электролитических конденсаторов в зависимости от их рабочего напряжения:

Как измерить ESR

Давайте замеряем некоторые наши китайские конденсаторы на ESR. Для этого берем наш многофункциональный универсальный R/L/C/Transistor-metr и проведем несколько замеров:

Первым в бой идет конденсатор на 22 мкФ х 25 Вольт:

Емкость близка к номиналу. ESR=1,9 Ом. Если посмотреть по табличке, то максимальный ESR=2,1 Ом. Наш конденсатор вполне укладывается в этот диапазон. Значит его можно использовать в высокочастотных цепях.

Следующий конденсатор 100 мкФ х 16 Вольт

ESR=0,49 Ом, смотрим табличку… 0,7 максимальный. Значит тоже все ОК. Можно тоже использовать в ВЧ цепях.

И возьмем конденсатор емкостью побольше 220 мкФ х 16 Вольт

Максимальный ESR для него 0,33 Ом. У нас же высветило 0,42 Ома. Такой конденсатор уже не пойдет в ВЧ часть радиоаппаратуры. А в простые схемки, где гуляют низкие частоты (НЧ)  сгодится в самый раз! ;-).

Конденсаторы с низким ESR

В нашем бурно-развивающемся мире электроника все больше строится именно на ВЧ части. Импульсные блоки питания почти полностью одержали победу над громоздкими трансформаторными блоками питания. Это мы, радиолюбители, до сих пор пользуемся самопальными блоками питания, сделанные из трансформаторов, которые нашли на помойке.

Но раз почти вся техника уходит в ВЧ диапазон, то и разработчики радиокомпонентов тоже не спят. Они создают  конденсаторы, у которых низкий ESR и называются такие конденсаторы LOW ESR, что значит кондеры с низким ESR. На некоторых это пишут прямо на корпусе:

Отличительной чертой таких конденсаторов является то, что они вытянуты в длину. Также, по моим наблюдениям, на них чаще всего есть полоска золотого цвета:

Сейчас все чаще используют миниатюрные полимерные алюминиевые конденсаторы с низким ESR:

Где же их можно чаще всего увидеть?  Конечно же, разобрав свой персональный компьютер. Можно найти их в блоке питания, а также на  материнской плате компьютера.

На фото ниже мы видим материнскую плату компа , которая сплошь утыкана  конденсаторами с LOW ESR, некоторые из них я отметил в красном прямоугольнике:

Самым маленьким ESR обладают керамические и SMD-керамические конденсаторы

Заключение

Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток ;-). Не поленитесь также купить или собрать прибор ESR-метр. Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.

Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов  с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.

www.ruselectronic.com

0 comments on “Программа определения емкости конденсатора – C 1.2 (Windows)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *