Простейшие автотрофы – Автотрофы в биологии — определение и примеры автотрофных организмов

Автотрофы в биологии — определение и примеры автотрофных организмов

Все живые существа по типу питания можно разделить на два вида: автотрофы и гетеротрофы.

Каждый организм нуждается в питании для поддержания своей жизнедеятельности. Именно автотрофы составляют основу пищевой пирамиды, обеспечивая питательными веществами гетеротрофов.

Тем не менее подобное деление в биологии весьма условно – между ними не всегда существует четкая грань. Некоторые организмы способны питаться и тем, и другим способом. Их называют миксотрофами.

Кто такие автотрофы

Автотрофы — это организмы, синтезирующие органические вещества из неорганических соединений. Все вещества, необходимые для развития и жизнедеятельности, они способны получить из окружающей среды.

Важнейший элемент, входящий в состав клеток любой формы жизни – углерод и его соединения. Для организмов, использующих автотрофный тип питания, его источником является углекислый газ.

Характеристика автотрофов

Для протекания процессов метаболизма живому существу необходима энергия, получаемая извне. Этот источник должен быть доступен, поскольку в связи со своим строением, большинство автотрофов практически неподвижны.

Таким образом, источником энергии для них является солнечный свет или эффект химических реакций. По такому признаку все автотрофы делятся на фототрофов и хемотрофов.

Фототрофам для создания органических соединений необходим свет. Благодаря присутствию в клетках хлоропластов, данный вид автотрофов способен фотосинтезировать. В этом процессе кванты света в ходе сложного химического взаимодействия превращаются в питательные вещества.

Хемотрофы получают энергию другим способом – из реакций окисления некоторых химических соединений.

Какие организмы относятся к автотрофам

Энергия света и углекислого газа обеспечивает жизнь подавляющего количества автотрофов – растений, к которым также относятся и мхи.

Водоросли, представляющие собой наиболее древний и простой тип растений, многообразны, а многих из них можно разглядеть только в микроскоп. Даже одноклеточные водоросли, такие как хлорелла, способны к фотосинтезу.

Содержание хлорофилла в клетках – прерогатива не только растений. Некоторые бактерии также содержат этот пигмент и способны синтезировать питательные вещества из световой энергии.

Цианобактерии – одни из древнейших микроорганизмов, питающихся подобным образом и выделяющих кислород. Возможно благодаря им атмосфера молодой Земли наполнилась кислородом миллиарды лет назад.

Микроскопические водоросли и зеленые бактерии способны вступать в симбиоз с грибами. В результате такого взаимодействия образуется симбиотический организм – лишайник.

Каждый участник симбиоза вносит свой вклад – водоросли и цианобактерии добывают питательные вещества с помощью фотосинтеза, а гриб поглощает готовые элементы.

Совмещение различных типов питания встречается не только у лишайников. Некоторые растения помимо автотрофного питания усваивают полезные вещества из тел других организмов – насекомых, мелких животных.

Такие растения называются плотоядными и используют различные виды ловушек для поимки жертвы.

Венерина мухоловка

Например, росянка использует клейкие волоски на кончиках листьев, листья венериной мухоловки захлопываются, а ловушка непентеса выглядит как кувшин с крышкой.

Некоторые одноклеточные водоросли также являются миксотрофами. К примеру, клеточная поверхность хламидомонады способна поглощать жидкость со всеми микроорганизмами, что там находятся.

Бактериям эвглены зеленой, чья модель поведения зависит от освещенности, может быть присуща автотрофность или гетеротрофность.

Хемотрофный тип питания распространен гораздо меньше. Энергию, которая выделяется как результат реакции окисления, способны поглощать простейшие микроорганизмы. Их уникальность заключается в независимости от энергии Солнца.

Эти микроорганизмы могут приспосабливаться к экстремальным условиям обитания – на дне океана, куда не проникает свет, в телах живых существ, в горячих гейзерах.

Автотрофы и гетеротрофы – сходства и отличия

В связи с различиями в способах питания, организмы серьезно отличаются между собой внешне и на клеточном уровне. Они занимают разные места в пищевой цепочке, используют отличные друг от друга вещества для поддержания своей жизни.

Таблица 1

Сравнительная характеристика автотрофов и гетеротрофов

ПризнакАвтотрофыГетеротрофы
Место в пищевой цепиПродуцент – производит питательные вещества самостоятельно.Консумент – потребляет готовые вещества.

Редуцент – перерабатывает органические элементы до неорганических.

Источник энергии для реакций метаболизмаСолнечная энергия.

Энергия, которая выделяется в результате химической реакции.

Органические вещества
Запас углеводовКрахмалГликоген
Наличие клеточной стенки – оболочки клетки, выполняющей функции защиты.ЕстьНет
Реакция на внешние раздражителиОтсутствуетПрисутствует
Системы органовВегетативные и репродуктивныеСоматические и репродуктивные

Тем не менее, являясь тесно связанными между собой представителями жизни на планете Земля, автотрофы и гетеротрофы имеют также схожие черты – потребность в питании, воде, кислороде, солнечном свете.

Роль автотрофных и гетеротрофных организмов в биосфере

Кормильцы живой природы – подходящее определение для автотрофов. Именно они создают органику из неорганических элементов и тем самым обеспечивают пищей гетеротрофов – человека, животных, грибы, бактерий.

Некоторые микроскопические организмы являются активными хищниками: амеба обыкновенная способна захватывать добычу своими ложноножками.

Обособленно стоят вирусы, чья жизнедеятельность возможна только в живой клетке. Вне ее вирус не проявляет никаких признаков деятельности, что придает ему сходство с паразитическими формами жизни.

Природа существует, основываясь на принципе равновесия — существование всех форм жизни тесно связано между собой.

Автотрофы питают гетеротрофов, создавая питательные элементы. Консументы, в результате своей жизнедеятельности, способствуют размножению первых, перенося споры и семена, опыляя цветы растений.

Завершают цепочку редуценты, разлагающие мертвую органику на неорганические элементы. Этим занимаются грибы, в том числе и микроскопические – пеницилл, дрожжи, некоторые бактерии. Именно они возвращают питательные вещества обратно в биосферу.

Так происходит круговорот веществ и элементов в природе, где каждый организм выполняет свою функцию в пищевой пирамиде.

1001student.ru

Автотрофные и гетеротрофные организмы. Примеры

  1. Главная
  2. Агрономия
  3. Автотрофные и гетеротрофные организмы. Примеры
Елена Голец
21241 По усвоению углерода все организмы делятся на 2 группы — автотрофные и гетеротрофные организмы. Деление организмов по способу питания.

Определение автотрофных и гетеротрофных организмов

Автотрофные организмы питаются органическими веществами, которые образуют сами. Автотрофы способны к фотосинтезу. Они усваивать углерод из углекислого газа, используя для этого солнечную или химическую энергию, и образуют готовые органические вещества, (подробнее: Как влияют внешние факторы на процесс фотосинтеза). Гетеротрофные организмы используют готовые органические соединения животного и растительного происхождения, заключающие в себе потенциальную энергию, сами они не способны образовывать органику. Автотрофные и гетеротрофные организмы.

Автотрофные организмы

К автотрофным организмам относятся все зеленые растения,  от одноклеточных водорослей до высших растений.  Для получения пищи они используют энергию солнечного света,  —  это фотосинтетики,  а так же фотосинтезирующие бактерии (пурпурные) и бактерии, которые могут использовать химическую энергию для усвоения углекислого газа.
Деление бактерий по способу питания.
Хемосинтетики
Усвоение углекислого газа за счет химической энергии в отличие от фотосинтеза называется хемосинтезом. К хемосинтетикам относятся нитрифицирующие бактерии, окисляющие аммиак до азотной кислоты, железобактерии, которые окисляют закисные соли железа до окисных, серобактерии, окисляющие сероводород до серной кислоты.
Продуценты
Автотрофные организмы, способные синтезировать органические вещества из неорганических называют продуцентами.

Гетеротрофные организмы

Остальные организмы усваивают углерод из готовых органических соединений и относятся к гетеротрофам

libtime.ru

Автотрофы — это… Что такое Автотрофы?

Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические соединения из неорганических.

Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная эвглена на свету является автотрофом, а в темноте — гетеротрофом.

Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды, воздуха. При этом почти всегда источником углерода является углекислый газ. При этом одни из них (фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.

Фототрофы

Организмы, для которых источником энергии служит солнечный свет (фотоны, благодаря которым появляются доноры — источники электронов), называются фототрофами. Такой тип питания носит название фотосинтеза. К фотосинтезу способны зелёные растения и многоклеточные водоросли, а также цианобактерии и многие другие группы бактерий благодаря содержащемуся в их клетках пигменту — хлорофиллу. Археи из группы галобактерий способны к бесхлорофилльному фотосинтезу, при котором энергию света улавливает и преобразует белок бактериородопсин.

Хемотрофы

Сообщества микроорганизмов чёрных курильщиков являются хемотрофами и основными продуцентами на дне океанов

Остальные организмы в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофы. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии также могут использовать гетеротрофный тип питания, то есть являются миксотрофами.

См. также

Литература

dal.academic.ru

Автотрофы и гетеротрофы ℹ️ определение, способы питания, чем отличаются, особенности строения, роль и значение в природе, примеры представителей с названиями

Описание автотрофов

Автотрофы — организмы, которые синтезируют из неорганических соединений органические. Другими словами, они получают необходимые питательные компоненты из окружающей среды. А также у них имеются следующие особенности:

  1. Они поглощают солнечную энергию.
  2. Способны выделять кислород на свету.
  3. Потребляют углекислый газ.

Организмы, являющиеся представителями этой группы, играют важную роль в природе.

Они выполняют функцию первичных продуцентов — гетеротрофы используют синтезируемые ими органические компоненты для поддержания своей жизнедеятельности.

Нельзя недооценивать значение автотрофов в экосистеме и пищевой цепочке мира.

Бактерии и растения, относящиеся к этой группе, трансформируют солнечную энергию в молекулярную. Подобный механизм называется «первичной продукцией».

Основные типы

Автотрофы подразделяются на фотосинтезирующие и хемосинтезирующие организмы.

У них имеются отличия:

  • фотосинтезирующие виды получают необходимую энергию за счет фотосинтеза;
  • хемосинтезирующие разновидности подпитываются энергией, вырабатываемой путем химической реакции железа и серы.

Яркий пример хемосинтезирующих автотрофов — продуценты, синтезирующиеся на дне океана из выбросов сероводорода. Они необходимы бактериям, чтобы поддерживать их жизнедеятельность.

К хемосинтетикам относят железобактерии. Уже название говорит, что их отличительная черта — способность окислять двухвалентное железо до трехвалентного. А также выделяют серобактерии. Они могут окислять сероводород до молекулярной серы.

Входят в эту группу и нитрофицирующие бактерии. Они способны окислять аммиак до азотной и азотистой кислот. Взаимодействуя с минералами, находящимися в почве, они образуют нитраты и нитриты.

Энергия, выделяющаяся в процессе подобной реакции, сначала используется для создания макроэнергетической связи. Далее, она применяется для синтеза органических соединений.

Хемосинтетики играют важную роль. Они являются основным звеном природного круговорота азота и серы. А также, благодаря им, почва обогащается нитритами и нитратами.

Свойства гетеротрофов

В биологии гетеротрофы — организмы, неспособные к самостоятельному синтезу органических соединений из неорганических. Они поглощают их извне.

Употребляя растительную и животную пищу, они используют энергию органических компонентов. Из полученных в процессе питания микроэлементов такие организмы строят собственные углеводы, белки, жиры.

К подобной группе относят простейшие, бактерии и грибы, люди и животные.

Благодаря строению, гетеротрофы способны расщеплять получаемые вещества до простых соединений:

  1. У одноклеточных организмов этот процесс происходит в лизосомах.
  2. Многоклеточными организмами пища поедается ртом, а потом расщепляется в желудке за счет ферментов.

Клетки грибов поглощают готовые вещества из внешней среды, как растения. Водоросли всасывают органические соединения вместе с водой.

Растения, относящиеся к гетеротрофам, являются паразитами. Они лишены хлорофилла и питаются за счет хозяина. Примеры — повилика или раффлезия.

Список подвидов

Среди гетеротрофов принято выделять фаготрофов, способных употреблять пищу кусками, проглатывая ее. Кроме того, существуют осмотрофы, которые поглощают органические элементы, являющиеся источником пищи, через клеточные стенки.

Еще одно условие, согласно которому растение или животное относят к гетеротрофам — способность употреблять как живую, так и неживую пищу.

Возможна следующая классификация:

  1. Биотрофы питаются живыми организмами с различной структурой. Травоядные употребляют в пищу растения, а хищники — мясо других животных.
  2. Сапротрофы употребляют мертвые организмы. Пример сапротрофов — дрожжи или грибы.

Для некоторых гетеротрофов источник питания — растения и животные. По-другому их называют всеядными.

Паразиты, в зависимости от хозяина, могут быть как хищными и травоядными. Спорынья паразитирует на растениях, а аскариды на животных.

Сапрофиты могут употреблять в пищу детрит (например, дождевые черви). Шакалы или грифы едят трупы животных. Личинки мух или жуки-скарабеи питаются экскрементами. Это причина, почему их принято относить к подвиду копрофагов.

Отличия миксотрофов

Кроме того, принято выделять организмы, использующие и гетеротрофный, и автотрофный способы питания. Их по-другому называют миксотрофами. Что касается растений, которые одновременно автотрофы и гетеротрофы, примеры следующие:

  1. Эвглена зеленая — на свету она является фототрофом, а в темноте становится гетеротрофом. Тех, кто меняет тип питания в зависимости от условий, называют автогетеротрофами.
  2. Некоторые миксотрофы частично ведут паразитический образ жизни. Они получают пищу из хозяина за счет видоизмененных корней. Как пример, повилика или омела.

Среди миксотрофов можно выделить растения, способные восполнить нехватку азота за счет переваривания насекомых. Например, росянка или венерина мухоловка.

Принято относить к миксотрофам и насекомоядные растения. Подобные организмы не только всасывают из почвы воду и растворенные вещества, но и охотятся на насекомых.

Еще один пример миксотрофов — некоторые бактерии, которые принадлежат к классу хемотрофов. Они получают необходимую энергию в результате окислительно-восстановительных реакций и могут окислять не только неорганические, но и органические микроэлементы.

Способы питания

Автотрофы отличаются от гетеротрофов тем, что последние могут быть не только сапротрофами, миксотрофами и паразитами, но и прибегают к голозойному питанию. Этот термин используется по отношению к диким животным, у которых есть специальный пищеварительный канал.

Основной процесс подобного типа поглощения пищи — заглатывание, обеспечивающее процесс захвата еды. Включает голозойное питание и другие процессы:

  1. Переваривание — расщепление крупных молекул на мелкие. Оно подразделяется на механическое, когда пища переваривается зубами, и химическое (переваривание продуктов с помощью ферментов).
  2. Всасывание — перенос растворившихся молекул в ткани через мембрану.

Голозойное питание включает в себя усвоение, то есть использование для обеспечения организма энергией поглощенных молекул. Последний этап — выделение (выведение продуктов обмена).

Перечень сходств и различий

Основное сходство между обоими видами живых организмов — им необходим кислород и солнечный свет. Кроме того, они нуждаются в полноценном питании и в воде.

Между автотрофами и гетеротрофами, определение которым дается в биологии, имеются и отличия. Они перечислены в таблице:

Свойство Автотрофы Гетеротрофы
Запас углеводов Крахмал Гликоген
Реакция на воздействие внешних раздражителей Имеется Отсутствует
Структура системы органов Есть как репродуктивные, так и вегетативные Помимо репродуктивных, имеются соматические
Положение в пищевой цепи Считаются продуцентами, то есть самостоятельно производят химические элементы Могут быть как консументами, то есть потребляют готовые вещества, так и продуцентами (употребляют в пищу органические компоненты, переработанные до неорганических)

Наконец, в качестве источника энергии для процесса метаболизма автотрофы используют как солнечный свет, так и химические реакции. Гетеротрофы используют органические вещества.


nauka.club

Автотрофы, примеры автотрофных организмов в биологии, чем гетеротрофные организмы отличаются от автотрофных, что значит автотрофное питание

Все живые существа по типу питания можно разделить на два вида: автотрофы и гетеротрофы.

Каждый организм нуждается в питании для поддержания своей жизнедеятельности. Именно автотрофы составляют основу пищевой пирамиды, обеспечивая питательными веществами гетеротрофов.

Тем не менее подобное деление в биологии весьма условно – между ними не всегда существует четкая грань. Некоторые организмы способны питаться и тем, и другим способом. Их называют миксотрофами.

Кто такие автотрофы

Автотрофы это организмы, синтезирующие органические вещества из неорганических соединений. Все вещества, необходимые для развития и жизнедеятельности, они способны получить из окружающей среды.

Важнейший элемент, входящий в состав клеток любой формы жизни – углерод и его соединения. Для организмов, использующих автотрофный тип питания, его источником является углекислый газ.

Характеристика автотрофов

Для протекания процессов метаболизма живому существу необходима энергия, получаемая извне. Этот источник должен быть доступен, поскольку в связи со своим строением, большинство автотрофов практически неподвижны.

Таким образом, источником энергии для них является солнечный свет или эффект химических реакций. По такому признаку все автотрофы делятся на фототрофов и хемотрофов.

Фототрофам для создания органических соединений необходим свет. Благодаря присутствию в клетках хлоропластов, данный вид автотрофов способен фотосинтезировать. В этом процессе кванты света в ходе сложного химического взаимодействия превращаются в питательные вещества.

Хемотрофы получают энергию другим способом – из реакций окисления некоторых химических соединений.

Какие организмы относятся к автотрофам

Энергия света и углекислого газа обеспечивает жизнь подавляющего количества автотрофов – растений, к которым также относятся и мхи.

Водоросли, представляющие собой наиболее древний и простой тип растений, многообразны, а многих из них можно разглядеть только в микроскоп. Даже одноклеточные водоросли, такие как хлорелла, способны к фотосинтезу.

Содержание хлорофилла в клетках – прерогатива не только растений. Некоторые бактерии также содержат этот пигмент и способны синтезировать питательные вещества из световой энергии.

Цианобактерии – одни из древнейших микроорганизмов, питающихся подобным образом и выделяющих кислород. Возможно благодаря им атмосфера молодой Земли наполнилась кислородом миллиарды лет назад.

Микроскопические водоросли и зеленые бактерии способны вступать в симбиоз с грибами. В результате такого взаимодействия образуется симбиотический организм – лишайник.

Каждый участник симбиоза вносит свой вклад – водоросли и цианобактерии добывают питательные вещества с помощью фотосинтеза, а гриб поглощает готовые элементы.

Совмещение различных типов питания встречается не только у лишайников. Некоторые растения помимо автотрофного питания усваивают полезные вещества из тел других организмов – насекомых, мелких животных.

Такие растения называются плотоядными и используют различные виды ловушек для поимки жертвы.

Венерина мухоловка

Например, росянка использует клейкие волоски на кончиках листьев, листья венериной мухоловки захлопываются, а ловушка непентеса выглядит как кувшин с крышкой.

Некоторые одноклеточные водоросли также являются миксотрофами. К примеру, клеточная поверхность хламидомонады способна поглощать жидкость со всеми микроорганизмами, что там находятся.

Бактериям эвглены зеленой, чья модель поведения зависит от освещенности, может быть присуща автотрофность или гетеротрофность.

Хемотрофный тип питания распространен гораздо меньше. Энергию, которая выделяется как результат реакции окисления, способны поглощать простейшие микроорганизмы. Их уникальность заключается в независимости от энергии Солнца.

Эти микроорганизмы могут приспосабливаться к экстремальным условиям обитания – на дне океана, куда не проникает свет, в телах живых существ, в горячих гейзерах.

Автотрофы и гетеротрофы – сходства и отличия

В связи с различиями в способах питания, организмы серьезно отличаются между собой внешне и на клеточном уровне. Они занимают разные места в пищевой цепочке, используют отличные друг от друга вещества для поддержания своей жизни.

Таблица 1

Сравнительная характеристика автотрофов и гетеротрофов

ПризнакАвтотрофыГетеротрофы
Место в пищевой цепиПродуцент – производит питательные вещества самостоятельно.Консумент – потребляет готовые вещества.

Редуцент – перерабатывает органические элементы до неорганических.

Источник энергии для реакций метаболизмаСолнечная энергия.

Энергия, которая выделяется в результате химической реакции.

Органические вещества
Запас углеводовКрахмалГликоген
Наличие клеточной стенки – оболочки клетки, выполняющей функции защиты.ЕстьНет
Реакция на внешние раздражителиОтсутствуетПрисутствует
Системы органовВегетативные и репродуктивныеСоматические и репродуктивные

Тем не менее, являясь тесно связанными между собой представителями жизни на планете Земля, автотрофы и гетеротрофы имеют также схожие черты – потребность в питании, воде, кислороде, солнечном свете.

Роль автотрофных и гетеротрофных организмов в биосфере

Кормильцы живой природы – подходящее определение для автотрофов. Именно они создают органику из неорганических элементов и тем самым обеспечивают пищей гетеротрофов – человека, животных, грибы, бактерий.

Некоторые микроскопические организмы являются активными хищниками: амеба обыкновенная способна захватывать добычу своими ложноножками.

Обособленно стоят вирусы, чья жизнедеятельность возможна только в живой клетке. Вне ее вирус не проявляет никаких признаков деятельности, что придает ему сходство с паразитическими формами жизни.

Природа существует, основываясь на принципе равновесия существование всех форм жизни тесно связано между собой.

Автотрофы питают гетеротрофов, создавая питательные элементы. Консументы, в результате своей жизнедеятельности, способствуют размножению первых, перенося споры и семена, опыляя цветы растений.

Завершают цепочку редуценты, разлагающие мертвую органику на неорганические элементы. Этим занимаются грибы, в том числе и микроскопические – пеницилл, дрожжи, некоторые бактерии. Именно они возвращают питательные вещества обратно в биосферу.

Так происходит круговорот веществ и элементов в природе, где каждый организм выполняет свою функцию в пищевой пирамиде.

tvercult.ru

Автотрофы — Википедия

Материал из Википедии — свободной энциклопедии

Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические вещества из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная водоросль эвглена зелёная на свету является автотрофом, а в темноте — гетеротрофом (см. также: миксотрофы).

Иногда понятия «автотрофы» и «продуценты», а также «гетеротрофы» и «консументы» ошибочно отождествляют, однако они не всегда совпадают. Например, синезеленые (Cyanea) способны и сами производить органическое вещество с использованием фотосинтеза, и потреблять его в готовом виде, причём разлагая до неорганических веществ. Следовательно, они являются продуцентами и редуцентами одновременно.[1]

Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды и воздуха. При этом почти всегда источником углерода является углекислый газ. При этом одни из них (фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.

Фототрофы

Организмы, для которых источником энергии служит солнечный свет (фотоны, благодаря которым появляются доноры — источники электронов), называются фототрофами. Такой тип питания носит название фотосинтеза. К фотосинтезу способны зелёные растения и многоклеточные водоросли, а также цианобактерии и многие другие группы бактерий благодаря содержащемуся в их клетках пигменту — хлорофиллу. Археи из группы галобактерий способны к бесхлорофилльному фотосинтезу, при котором энергию света улавливает и преобразует белок бактериородопсин.

Видео по теме

Хемотрофы

Остальные организмы в качестве внешнего источника энергии (доноров — источников электронов) используют энергию химических связей пищи или восстановленных неорганических соединений — таких, как сероводород, метан, сера, двухвалентное железо и др. Такие организмы называются хемотрофами. Все фототрофы-эукариоты одновременно являются автотрофами, а все хемотрофы-эукариоты — гетеротрофами. Среди прокариот встречаются и другие комбинации. Так, существуют хемоавтотрофные бактерии, а некоторые фототрофные бактерии также могут использовать гетеротрофный тип питания, то есть являются миксотрофами.

См. также

Примечания

  1. Шуйский В. Ф. Основы общей биологии и общей экологии: учебное пособие — СПб.: Изд-во СПГГИ (ТУ), 2001. — 63 с.

Литература

wiki2.red

Автотрофы — Карта знаний

  • Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические вещества из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная водоросль эвглена зелёная на свету является автотрофом, а в темноте — гетеротрофом (см. также: миксотрофы).

    Александр Уголев считал термин «автотроф» неверным, т.к все живые существа нуждаются в экзотрофии и не могут быть полными автотрофами. К примеру фотосинтезирующие организмы не способны самостоятельно усваивать неорганический азот.Им были предложены термины абиотроф и биотроф: первым он назвал организмы потребляющие только неорганические вещества, вторым — органические и неорганические. Но между тем существуют абиотрофные системы по типу азотфиксирующие бактерии — растения. Термин «гетеротроф» он предлагал использовать для описания полных, либо частичных биотрофов.Иногда понятия «автотрофы» и «продуценты», а также «гетеротрофы» и «консументы» ошибочно отождествляют, однако они не всегда совпадают. Например, синезеленые (Cyanea) способны и сами производить органическое вещество с использованием фотосинтеза, и потреблять его в готовом виде, причём разлагая до неорганических веществ. Следовательно, они являются продуцентами и редуцентами одновременно.Автотрофные организмы для построения своего тела используют неорганические вещества почвы, воды и воздуха. При этом почти всегда источником углерода является углекислый газ. При этом одни из них (фототрофы) получают необходимую энергию от Солнца, другие (хемотрофы) — от химических реакций неорганических соединений.

Источник: Википедия

Связанные понятия

Фототрофы (др.-греч. φῶς, φωτός = свет, τροϕή = питание) — это организмы, которые используют свет для получения энергии. Они используют энергию света для поддержания различных метаболических процессов. Существует распространенное заблуждение, что фототрофы должны обязательно фотосинтезировать. Многие, хотя далеко не все, действительно фотосинтезируют: они используют энергию света, чтобы преобразовывать углекислый газ в органический материал, который служит для построения их тела, или в качестве источника… Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1889 году русским учёным С. Н. Виноградским. Микроорганизмы, способные к хемосинтезу, Виноградский называл аноргоксиданты. Название хемосинтез ввёл немецкий химик и ботаник Вильгельм Пфеффер в 1897 году. Гетеротро́фы (др.-греч. ἕτερος — «иной», «различный» и τροφή — «пища») — организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы… Продуце́нты (от лат. producens — «создающий») — организмы, способные производить органические вещества из неорганических, то есть все автотрофы. Это в основном зелёные растения (синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света. Литотрофы (от греч. λίθος ς, «камень» и греч. τροφή , «пища») — организмы, для которых донорами электронов, необходимых для процессов биосинтеза (например, фиксации углерода) или запасания энергии (например, синтеза АТФ), через аэробное или анаэробное дыхание, являются неорганические вещества. Противопоставлены органотрофам. Хемолитотрофия обнаружена только среди архей и бактерий. Фотолитотрофами являются многие протисты и высшие растения, чьи пластиды (потомки цианобактерий) используют в качестве…

Упоминания в литературе

Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы, – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессе хемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода. Гетеротрофы используют органические источники углерода, т. е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно) – росянка, венерина мухоловка или даже гетеротрофно – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые. Все живые организмы могут быть разделены на две группы: автотрофы и гетеротрофы, которые отличаются источниками энергии и необходимых веществ для обеспечения своей жизнедеятельности. Обмен веществ – основа жизнедеятельности каждой клетки и организма в целом. Для всех процессов, протекающих в клетке, нужна дополнительная энергия. Организмы способны использовать только два вида энергии: световую (фотосинтезирующие организмы – фототрофы) и энергию химических связей (хемотрофы). Главным структурным элементом органических молекул является углерод. В зависимости от источников его поступления, организмы делятся на две группы: автотрофы, использующие углерод неорганических соединений (СО2) и гетеротрофы, использующие органические соединения углерода. Процесс потребления вещества и энергии называется питанием. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма (рисунок 4). Химические превращения веществ в организме, сопровождающиеся потреблением энергии, в результате которых осуществляются реакции синтеза, называются процессами анаболизма (фотосинтез, синтез белка и т.д.). Реакции расщепления, идущие с высвобождением энергии называются процессами катаболизма (анаэробное и аэробное дыхание). Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме аденозинотрифосфата (АТФ). В последнее время список известных азотофиксаторов, как свободноживущих, так и симбиотических, значительно расширился. Среди азотофиксирующих микроорганизмов особый интерес представляют организмы, сочетающие в одной клетке фотосинтез и способность к усвоению молекулярного азота, – наиболее «совершенные» автотрофы. К ним относятся фотосинтезирующие (фототрофные) бактерии, которые все садоводы применяли в виде ЭМ-препаратов, но не задумывались об их роли.

Связанные понятия (продолжение)

Миксотро́фы (от др.-греч. μῖξις — смешение и τροφή — пища, питание) — организмы, способные использовать различные источники углерода и доноры электронов. Миксотрофы могут быть одновременно фототрофами и хемотрофами, литотрофами и органотрофами. Миксотрофами являются представители как прокариот, так и эукариот.Примером организма с миксотрофным получением углерода и энергии является бактерия Paracoccus pantotrophus из семейства Rhodobacteraceae — хемооргано-гетеротроф, также способная существовать… Бактериопланктон — бактериальный компонент планктона. Название происходит от древнегреческого слова πλανκτος (planktos), означающего «странник» или «бродяга», и латинского термина bacterium. Бактериопланктон встречается как в морской так и в пресной воде. По размерам примыкает к нанопланктону. Хемотро́фы — организмы, получающие энергию в результате хемосинтеза — окислительно-восстановительных реакций, в которых они окисляют химические соединения, богатые энергией (как неорганические — например, молекулярный водород, серу, так и органические — углеводы, жиры, белки, парафины и более простые органические соединения), в отличие от фототрофов, получающих энергию в результате фотосинтеза. Исключением служат «не-редокс» механизмы, когда протонный электрохимический градиент (PMF, proton motive… Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ. Органотрофы — организмы, для которых донорами электронов являются органические вещества. Противопоставлены литотрофам. Органотрофы могут быть миксотрофами. Зелёные серобактерии (лат. Chlorobiaceae) — семейство облигатно анаэробных (более строгих, чем пурпурные бактерии, в присутствии O2 не растут) фотолитоавтотрофных грамотрицательных бактерий, использующих сероводород (h3S), водород (h3) и элементарную серу (S0) в качестве доноров электронов. По происхождению они принадлежат к надтипу Bacteroidetes-Chlorobi, однако неоднородны и потому их классифицируют как отдельный тип. Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности, процесс связывания углерода является составной частью фотосинтеза. Хромопротеиды (от греч. chroma — краска) — сложные белки, состоящие из простого белка и связанного с ним окрашенного небелкового компонента — простетической группы. Различают гемопротеины (содержат в качестве простетической группы гем), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеиды участвуют в таких процессах жизнедеятельности, как фотосинтез, клеточное дыхание и дыхание всего организма, транспорт кислорода и углекислого газа, окислительно-восстановительные…

Подробнее: Хромопротеины

Консуме́нты (от лат. consume — употреблять) — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических. Пурпурные бактерии (Purple bacteria) — разнородная группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Пурпурные бактерии относятся к классам альфа-, бета-, и гамма-протеобактерий. Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Подробнее: Обмен веществ

Азотоба́ктер (лат. Azotobacter) — род бактерий, живущих в почве и способных в результате процесса азотфиксации переводить газообразный азот в растворимую форму, доступную для усваивания растениями. Аэро́бы (от греч. αηρ — воздух и βιοζ — жизнь) — организмы, которые нуждаются в свободном молекулярном кислороде для процессов синтеза энергии, в отличие от анаэробов. К аэробам относятся подавляющее большинство животных, все растения, а также значительная часть микроорганизмов. Нитрификация — микробиологический процесс окисления аммиака до азотистой кислоты или её самой далее до азотной кислоты, что связано либо с получением энергии (хемосинтез, автотрофная нитрификация), либо с защитой от активных форм кислорода, образующихся при разложении пероксида водорода (гетеротрофная нитрификация). Зелёные несе́рные бакте́рии, или зелёные ни́тчатые серобакте́рии, — филогенетически однородная группа факультативно анаэробных фотогетеротрофных бактерий, осуществляющих аноксигенный фотосинтез, использующих h3S, h3, сахара, аминокислоты и органические кислоты в качестве доноров электронов. В отличие от зелёных серобактерий, зелёные несерные бактерии при окислении сероводорода откладывают элементарную серу вне клеток, за что и получили своё название. Следует отметить, что зелёные несерные бактерии… Азотфикса́ция, или азотофиксация, — фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве. Круговорот азота — биогеохимический цикл азота. Большая его часть обусловлена действием живых существ. Очень большую роль в круговороте играют почвенные микроорганизмы, обеспечивающие азотистый обмен почвы — круговорот в почве азота, который присутствует там в виде простого вещества (газа — N2) и ионов: нитритов (NO2-), нитратов (NO3-) и аммония (Nh5+). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние… Анаэробы — организмы, получающие энергию при отсутствии доступа кислорода путём субстратного фосфорилирования, конечные продукты неполного окисления субстрата при этом могут быть окислены с получением большего количества энергии в виде АТФ в присутствии конечного акцептора протонов организмами, осуществляющими окислительное фосфорилирование. Фотоси́нтез (от др.-греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — сложный химический процесс преобразования энергии света (в некоторых случаях инфракрасного излучения) в энергию химических связей органических веществ при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл у бактерий и бактериородопсин у архей). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения… Метаногенез, биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза… Денитрификация (восстановление нитрата) — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами (причём как бактериями, так и археями) в анаэробных условиях и связана с получением ими энергии. Анаммо́кс (сокр. от англ. anaerobic ammonium oxidation — анаэробное окисление аммония) — один из ключевых микробных процессов в круговороте азота. Бактерии, осуществляющие этот процесс, были открыты в 1999 году, и в своё время описание этого процесса стало большим сюрпризом для научного сообщества. Уравнение процесса… Хитозан — аминосахар, производное линейного полисахарида, макромолекулы состоят из случайно связанных β-(1-4) D-глюкозаминовых звеньев и N-ацетил-D-глюкозамин . Получают хитозан только из хитина, в природе встречается в клеточных стенках клеток грибов отдела Zygomycota (в комплексе с хитином) и панцирях ракообразных. Хитозан — катионный полисахарид основного характера. На сегодня достигнут уровень очистки до 85%. Аноксигенный фотосинтез (англ. anoxygenic «бескислородный») — вариант фотосинтеза (процесса образования органических веществ на свету), при котором, в отличие от оксигенного фотосинтеза, не происходит образования молекулярного кислорода. Для аноксигенного фотосинтеза требуется наличие во внешней среде восстановленных субстратов, например, сероводорода, серы, тиосульфата, органических соединений или молекулярного водорода. Возможность осуществления аноксигенного фотосинтеза доказана К. ван Нилем… Уреаза (от греч. ούρον — моча и -аза — стандартный аффикс биохимической номенклатуры, указывающий на принадлежность вещества к классу ферментов) — гидролитический фермент из группы амидаз, обладающий специфическим свойством катализировать гидролиз мочевины до диоксида углерода и аммиака… Голофитный способ питания клетки — питание без захвата твёрдых пищевых частиц — посредством транспорта (пассивного (осмоса) или активного) растворённых питательных веществ через поверхностные структуры клетки. Может использоваться как при гетеротрофном, так и при автотрофном типе питания. Характерно для клеток фотосинтезирующих растений, клеток грибов, клеток животных и большинства микроорганизмов (исключая гетеротрофных простейших). Противопоставляется голозойному способу. Хи́мия приро́дных соедине́ний (ХПС) — раздел органической химии, изучающий химические соединения, входящие в состав живых организмов, природные пути их превращений и методы искусственного получения. Как наука, химия природных соединений возникла одновременно с органической химией. Необходимость выделить самостоятельную дисциплину, отделить её от классической органической химии, возникла после накопления большого количества данных, выделения и изучения структуры и свойств химических веществ, обнаруженных… Биохимия мышьяка включает в себя биохимические процессы, в которых участвуют мышьяк или его соединения. В структуре наземных биоценозов значительную роль играет почвенная микрофлора. Микроорганизмы способствуют разложению мертвых органических веществ до минеральных, т. е. участвуют в процессе, без которого нормальное существование биоценозов было бы невозможным.

Подробнее: Почвенные микроорганизмы

Хлорофи́лл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет. При его участии происходит фотосинтез. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и близки гему. Химическая эволюция или пребиотическая эволюция — этап, предшествовавший появлению жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми, бесспорно, являются все углеродосодержащие молекулы. Пита́ние (физиологический акт) — поддержание жизни и здоровья живого организма с помощью пищи — процесс поглощения пищи живыми организмами для поддержания нормального течения физиологических процессов жизнедеятельности, в частности, для восполнения запаса энергии и реализации процессов роста и развития. Животные и другие гетеротрофные организмы должны есть, чтобы выжить; их рацион и процесс поглощения питательных веществ зависит от биологического класса, к которому они относятся. У человека и животных… Фитазы (мио-инозитол-1,2,3,4,5,6-гексакисфосфат-фосфогидролазы) – группа ферментов, относящихся к подклассу фосфатаз, осуществляющих высвобождение хотя бы одного фосфат-иона из молекулы фитиновой кислоты. В результате гидролиза фитиновой кислоты образуются низшие, т. е. содержащие менее шести остатков фосфорной кислоты, инозитолфосфаты, инозитол и неорганический фосфат, а также высвобождаются связанные с фитатами катионы.

Подробнее: Фитаза

Актинобактерии (лат. Actinobacteria, от актино- + bacteria бактерии) — тип грамположительных бактерий с высоким содержанием гуанина и цитозина, который включает как одноимённый класс, так и 5 других классов. Могут быть наземными, либо водными обитателями. Актинобактерии — доминантный тип бактерий. Было предложено классифицировать актинобактерии по РНК, либо по анализу глутаминсинтетазы. Азоспири́ллы (лат. Azospirillum) — род бактерий из семейства Rhodospirillaceae класса альфа-протобактерий. Эти бактерии способствуют фиксации азота корнями растений, что отражено в префиксе azo- (с французского — азот), что повышает способность корней удерживать воду и усиливает рост корневой системы в целом, Денитрифицирующие бактерии — бактерии, восстанавливающие нитраты до молекулярного азота (см. Денитрификация). К ним относятся представители более 150 видов из 50 родов (в том числе Pseudomonas, Achromobacter, Bacillus и Micrococcus), не образующие какой-либо особой таксономической единицы. Все денитрифицирующие бактерии — факультативные анаэробы и могут окислять органическое вещество за счёт кислорода воздуха, но, попадая в анаэробные условия, они используют кислород нитратов как акцептор электрона… Цианобакте́рии, или синезелёные во́доросли, или циане́и (лат. Cyanobacteria, от греч. κυανός — сине-зелёный) — отдел крупных грамотрицательных бактерий, способных к фотосинтезу, сопровождающемуся выделением кислорода. Анаэробиоз (от греч. an — отрицательная частица, греч. aēr — воздух и греч. bíos — жизнь), аноксибиоз (лат. oxygenium — кислород) — жизнь в отсутствие свободного кислорода. Для анаэробных организмов, которые получают энергию для жизнедеятельности путем расщепления сложных неорганических (например, нитратов и сульфатов) или органических (например, углеводов) веществ, аноксибиоз — обычное условие их существования.Понятие «анаэробиоз» было введено в 1861 Луи Пастером, показавшим, что микроорганизмы… Гетероцисты — дифференцированные клетки нитчатых цианобактерий, осуществляющие азотфиксацию. При недостатке соединений азота в среде они появляются регулярно вдоль трихомы из вегетативных клеток и акинет. Цианобактерии — фототрофы, осуществляющие оксигенный фотосинтез, однако кислород, атмосферный и выделяемый при фотосинтезе, ингибирует фермент нитрогеназу, необходимую для азотфиксации, поэтому у нитчатых цианобактерий в процессе эволюции возникли специализированные клетки для азотфиксации. Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) — наука о химическом составе живых клеток и организмов, а также о лежащих в основе их жизнедеятельности химических процессах. Термин «биохимия» эпизодически употреблялся с середины XIX века, в классическом смысле он был предложен и введён в научную среду в 1903 году немецким химиком Карлом Нейбергом. Бакте́рии (лат. Bacteria) — домен прокариотических микроорганизмов. Бактерии обычно достигают нескольких микрометров в длину, их клетки могут иметь разнообразную форму: от шарообразной до палочковидной и спиралевидной. Бактерии — одна из первых форм жизни на Земле и встречаются почти во всех земных местообитаниях. Они населяют почву, пресные и морские водоёмы, кислые горячие источники, радиоактивные отходы и глубинные слои земной коры. Бактерии часто являются симбионтами и паразитами растений и животных… Анаэробное окисление метана — процесс окисления метана до углекислого газа, производимый некультивируемыми (англ. VBNC) археями групп ANME-1, ANME-2 и ANME-3, близкими к Methanosarcinales при отсутствии в среде молекулярного кислорода. Биохимия и распространённость процесса в природе изучены пока недостаточно. Метановое брожение (по-другому иногда неверно называется анаэробным брожением) — процесс биодеструкции органических веществ с выделением свободного метана. Фенилалани́н (α-амино-β-фенилпропионовая кислота, сокр.: Фен, Phe, F) — ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах l и d и в виде рацемата (dl). По химическому строению соединение можно представить как аминокислоту аланин, в которой один из атомов водорода замещён фенильной группой. Пищевая ценность — понятие, отражающее всю полноту полезных свойств пищевого продукта, включая степень обеспечения физиологических потребностей человека в основных пищевых веществах, энергию и органолептические свойства. Характеризуется химическим составом пищевого продукта с учётом его потребления в общепринятом количестве.

kartaslov.ru

0 comments on “Простейшие автотрофы – Автотрофы в биологии — определение и примеры автотрофных организмов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *