Измеритель ёмкости конденсаторов схема |
В этой статье приведено элементарную схему измерителя ёмкости на логической микросхеме. Такое классическое и элементарное схемотехническое решение достаточно быстро и просто можно воспроизвести. Потому данная статья будет полезна начинающему радиолюбителю, который задумал собрать себе элементарный измеритель ёмкости конденсатора.
Работа схемы измерителя ёмкости:
Рисунок №1 – Измеритель ёмкости схемаПеречень элементов измерителя ёмкости:
R1- R4 – 47 КОм
R5 – 1,1 КОм
C1 – 5 пФ
C2 –100 пФ
C3 – 1500 пФ
C4 – 12000 пФ
C5 –0,1 мкФ
C изм. – конденсатор ёмкость которого вы хотите измерять
SА1 – галетный переключатель
DA1 – К155ЛА3 или SN7400
VD1-VD2– КД509 или аналог 1N903A
PA1 – Стрелочная индикаторная головка (ток полного отклонения 1 мА, сопротивление рамки 240 Ом)
XS1- XS2 – разъёмы типа «крокодил»
Такой вариант измерителя ёмкости конденсаторов имеет четыре диапазона, которые можно выбирать переключателем SA1. На пример в положении «1» можно промерять конденсаторы с ёмкостью 50 пФ, в положении «2» — до 500 пФ, в положении «3» — до 5000 пФ, в положении «4» — до 0,05 мкФ.
Элементы микросхемы DA1 обеспечивают достаточный ток для заряда измеряемого конденсатора (С изм.). Особенно важно для точности измерения, адекватно подобрать диоды VD1-VD2, они должны иметь одинаковые (наиболее похожие) характеристики.
Настройка схемы измерителя ёмкости:
Настроить такую схему достаточно просто, вам необходимо подключить С изм. с заведомо известными характеристиками (с известной ёмкостью). Выберите переключателем SА1 необходимый диапазон измерения и вращайте ручку построечного резистора до тех пор, пока не добьётесь нужного показания на индикаторной головке PA1 (рекомендую её проградуировать в соответствии с вашими показаниями, это можно сделать путём разбора индикаторной головки и наклеивания новой шкалы с новыми надписями)
P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/
bip-mip.com
Измеритель ёмкости конденсаторов своими руками
В данной статье мы дадим наиболее полную инструкцию, которая позволит сделать измеритель ёмкости конденсаторов своими руками, без помощи квалифицированных мастеров.
К сожалению, аппаратура не редко выходит из строя. Причина чаще всего одна – появление электролитического конденсатора. Все радиолюбители знакомы с так называемым «высыханием», которое появляется из-за нарушения герметичности корпуса прибора. Возрастает реактивное сопротивление из-за снижения номинальной емкости.
Далее, во время эксплуатации начинают происходить электрохимические реакции, они разрушают стыки выводов. В результате контакты нарушаются, образовывая контактное сопротивление, которой исчисляется, порой десятками Oм. То же самое будет происходить при подключении к рабочему конденсатору резистора. Наличие этого самого последовательного сопротивления скажется негативно не работе электронного устройства, в схеме будет искажаться вся работа конденсаторов.
Из-за сильнейшего влияния сопротивления в диапазоне три-пять Ом, приходят в негодность импульсные источники питания, ведь в них перегорают дорогостоящие транзисторы, а также микросхемы. Если детали при сборке прибора были проверены, а при монтаже не допущены ошибки, то с его наладкой не возникнет проблем.
Кстати, предлагаем Вам присмотреть себе новый паяльник на Алиэкспресс — ССЫЛКА (отличные отзывы). Либо присмотреть себе что-нибудь из паяльного оборудования в магазине «ВсеИнструменты.ру» — ссылка на раздел с паяльниками
. к оглавлению ↑Схема, принцип работы, устройство
Данная схема используется с применением операционного усилителя. Прибор, который мы собираемся сделать своими руками, позволит производить измерения ёмкости конденсаторов в диапазоне от пары пикoфарад до одного микрофарада.
Давайте разберемся с приведенной схемой:
- Поддиапазоны. У агрегата есть 6 «поддиапазонов», у них высокие границы равняются 10, 100; 1000 пф, а также 0,01, 0,1 и 1 мкф. Отсчитывается емкость по измерительной сетке микроамперметра.
- Назначение. Основой работы прибора является замер переменного тока, он проходит сквозь конденсатор, который необходимо исследовать.
- На усилителе DА 1 находится генератор импульсов. Колебания их повтора подчиняется емкости С 1- С 6 конденсаторов, а также позиции тумблера «подстроечного» резистора R 5. Частота будет переменной от 100 Гц до 200 кГц. Подстроечному резистору R 1 определяем соразмерную модель колебаний при выходе генератора.
- Указанные на схеме диоды, как D 3 и D 6, резисторы (налаженные) R 7- R 11, микроамперметр РА 1, составляют сам измеритель переменного тока. Внутри микроамперметра сопротивление обязано составлять не больше 3 кОм, с целью, чтобы погрешность при замере не превысила десяти процентов на диапазоне до 10 пФ.
- К другим поддиапазонам параллельно Р A 1 подсоединяют подстроечные резисторы R 7 – R 11. Нужный измерительный поддиапазон настраивают при помощи тумблера S А 1. Одна категория контактов переключает конденсаторы (частотозадающие) С 1 и С 6 в генераторе, второй переключает в индикаторе резисторы.
- Чтобы прибор получал энергию, ему нужен 2-полярный стабилизированный источник (напряжение от 8 до 15 В). У частотозадающего конденсатора могут на 20 % разниться номиналы, однако сами они обязаны иметь высокую стабильность временную и температурную.
Конечно, для обычного человека, не разбирающегося в физике, это всё может показаться сложным, но вы должны понимать, чтобы сделать измеритель ёмкости конденсаторов своими руками, нужно обладать определенными знаниями и навыками. Далее поговорим о том, как наладить прибор.
Наладка измерительного прибора
Чтобы произвести правильную наладку, следуйте инструкции:
- Сперва достигается симметричность колебаний при помощи резистора R 1. «Бегунок» у резистора R 5 находится посередине.
- Следующим действием будет подключение эталонного конденсатора 10 пф к клеммам, отмеченным значком сх. При помощи резистора R 5, переставляют стрелу микроамперметра на соответственную шкалу ёмкости эталонного конденсатора.
- Далее проверяется форма колебания при выходе генератора. Тарировка проводится на всех поддиапазонах, здесь применяют резисторы R 7 и R 11.
Механизм устройства может быть разным. Параметры размеров зависят от типа микроамперметра. Каких-то особенностей при работе с прибором не выделяется.
к оглавлению ↑Создание разных моделей измерителей
Далее поговорим о том, как сделать разные модели измерителей ёмкости конденсаторов.
к оглавлению ↑Модель серии AVR
Сделать такой измеритель можно на базе переменного транзистора. Вот инструкция:
- Подбираем контактор;
- Замеряем выходное напряжение;
- отрицательное сопротивление в измерителя емкости не больше 45 Ом;
- Если проводимость 40 мк, то перегрузка составит 4 Ампера;
- Для повышения точности измерения, нужно использовать компараторы;
- Также есть мнение, что лучше использовать только открытые фильтры, так как для них не страшны импульсные помехи в случае большой загруженности;
- Также рекомендуется использовать полюсные стабилизаторы, а вот для модификации устройства не подходят только сеточные компараторы;
Перед тем, как включать измеритель ёмкости конденсаторов, нужно выполнить замер сопротивления, который должен быть примерно 40 Ом для хорошо сделанных устройств. Но показатель может отличаться, в зависимости от частотности модификации.
к оглавлению ↑Модель на базе PIC16F628A
Сделать такое устройство сложно самостоятельно, но вполне реально. Вот инструкция и правила для сборки:
- Подбираем открытый трансивер;
- Модуль на базе PIC16F628A может быть регулируемого типа;
- Лучше не устанавливать фильтры высокой проводимости;
- Перед тем, как начнем паять, нужно проверить выходное напряжение;
- Если сопротивление слишком высокое, то меняем транзистор;
- Применяем компараторы для преодоления импульсных помех;
- Дополнительно используем проводниковые стабилизаторы;
- Дисплей может быть текстовым, что проще всего и весьма удобно. Ставить их нужно через канальные порты;
- Далее с помощью тестера настраиваем модификацию;
- Если показатели емкости конденсаторов слишком высокие, то меняем транзисторы с малой проводимостью.
Более подробно о том, как сделать измеритель ёмкости конденсаторов своими руками можно узнать из видео ниже.
к оглавлению ↑Видео инструкции
Благодарю за репост, друзья:
Читайте также:
remontgeeks.ru
Измеритель емкости конденсаторов своими руками. Описание и настройка устройства
В электрических цепях применяются конденсаторы разного типа. В первую очередь они отличаются по емкости. Для того чтобы определить этот параметр, используются специальные измерители. Указанные устройства могут производиться с различными контактами. Современные модификации выделяются высокой точностью замеров. Для того чтобы сделать простой измеритель емкости конденсаторов своими руками, необходимо ознакомиться с основными составляющими прибора.
Как устроен измеритель?
Стандартная модификация включает в себя модуль с расширителем. Данные о емкости конденсатора выводятся на дисплей. Некоторые модификации функционируют на базе релейного транзистора. Он способен работать на разных частотах. Однако стоит отметить, что такая модификация не подходит для многих типов конденсаторов.
Устройства низкой точности
Сделать низкой точности измеритель ЭПС емкости конденсаторов своими руками можно при помощи переходного модуля. Однако в первую очередь используется расширитель. Контакты для него целесообразнее подбирать с двумя полупроводниками. При выходном напряжении 5 В ток должен составлять не более 2 А. Для защиты измерителя от сбоев применяются фильтры. Настройку осуществлять следует при частоте 50 Гц. Тестер в данном случае должен показывать сопротивление не выше 50 Ом. У некоторых возникают проблемы с проводимостью катода. В данном случае следует заменить модуль.
Описание моделей высокой точности
Делая измеритель емкости конденсаторов своими руками, расчет точности следует производить исходя из линейного расширителя. Показатель перегрузки модификации зависит от проводимости модуля. Многие эксперты советуют для модели подбирать дипольный транзистор. В первую очередь он способен работать без тепловых потерь. Также стоит отметить, что представленные элементы редко перегреваются. Контактор для измерителя можно использовать низкой проводимости.
Чтобы сделать простой точный измеритель емкости конденсаторов своими руками, стоит позаботиться о тиристоре. Указанный элемент должен работать при напряжении не менее 5 В. При проводимости 30 мк перегруженность у таких устройств, как правило, не превышает 3 А. Фильтры используются разного типа. Устанавливать их следует за транзистором. Также стоит отметить, что дисплей можно подключать только через проводниковые порты. Для зарядки измерителя подойдут батареи на 3 Вт.
Как сделать модель серии AVR?
Сделать измеритель емкости конденсаторов своими руками AVR можно только на базе переменного транзистора. В первую очередь для модификации подбирается контактор. Для настройки модели стоит сразу замерить выходное напряжение. Отрицательное сопротивление у измерителей не должно превышать 45 Ом. При проводимости 40 мк перегрузка в устройствах составляет 4 А. Чтобы обеспечить максимальную точность измерений, используются компараторы.
Некоторые эксперты рекомендуют подбирать только открытые фильтры. Они не боятся импульсных помех даже при большой загруженности. Полюсные стабилизаторы в последнее время пользуются большим спросом. Для модификации не подходят только сеточные компараторы. Перед включением устройства делается замер сопротивления. У качественных моделей данный параметр составляет примерно 40 Ом. Однако в данном случае многое зависит от частотности модификации.
Настройка и сборка модели на базе PIC16F628A
Сделать измеритель емкости конденсаторов своими руками на PIC16F628A довольно проблематично. В первую очередь для сборки подбирается открытый трансивер. Модуль разрешается использовать регулируемого типа. Некоторые эксперты не советуют устанавливать фильтры высокой проводимости. Перед пайкой модуля проверяется выходное напряжение.
При повышенном сопротивлении рекомендуется заменить транзистор. С целью преодоления импульсных помех применяются компараторы. Также можно использовать проводниковые стабилизаторы. Дисплеи часто применяются текстового типа. Устанавливать их стоит через канальные порты. Настройка модификации происходит при помощи тестера. При завышенных параметрах емкости конденсаторов стоит заменить транзисторы с малой проводимостью.
Модель для электролитических конденсаторов
При необходимости можно сделать измеритель емкости электролитических конденсаторов своими руками. Магазинные модели этого типа выделяются низкой проводимостью. Многие модификации производятся на контакторных модулях и работают при напряжении не более 40 В. Система защиты у них используется класса РК.
Также стоит отметить, что измерители данного типа отличаются пониженной частотностью. Фильтры у них применяются только переходного типа, они способны эффективно справляться с импульсными помехами, а также гармоническими колебаниями. Если говорить про недостатки модификаций, то важно отметить, что у них малая пропускная способность. Они показывают плохие результаты в условиях повышенной влажности. Также эксперты указывают на несовместимость с проводными контакторами. Устройства нельзя применять в цепи переменного тока.
Модификации для полевых конденсаторов
Устройства для полевых конденсаторов выделяются пониженной чувствительностью. Многие модели способны работать от прямолинейных контакторов. Устройства чаще всего используются переходного типа. Для того чтобы сделать модификацию своими руками, надо применять регулируемый транзистор. Фильтры устанавливаются в последовательном порядке. Для проверки измерителя применяются сначала конденсаторы малой емкости. При этом тестером фиксируется отрицательное сопротивление. При отклонении свыше 15 % необходимо проверить работоспособность транзистора. Выходное напряжение на нем не должно превышать 15 В.
Устройства на 2 В
На 2 В измеритель емкости конденсаторов своими руками делается довольно просто. В первую очередь эксперты рекомендуют заготовить открытый транзистор с низкой проводимостью. Также важно подобрать для него хороший модулятор. Компараторы, как правило, используются низкой чувствительности. Система защиты у многих моделей применяется серии КР на фильтрах сеточного типа. Для преодоления импульсных колебаний используются волновые стабилизаторы. Также стоит отметить, что сборка модификации предполагает применение расширителя на три контакта. Для настройки модели следует использовать контактный тестер, а показатель сопротивление не должен быть ниже 50 Ом.
Модификации на 3 В
Складывая измеритель емкости конденсаторов своими руками, можно использовать переходник с расширителем. Транзистор целесообразнее подбирать линейного типа. В среднем проводимость у измерителя должна равняться 4 мк. Также перед установкой фильтров важно зафиксировать контактор. Многие модификации также включают в себя трансиверы. Однако данные элементы не способны работать с полевыми конденсаторами. Предельный параметр емкости у них равняется 4 пФ. Система защиты у моделей применяется класса РК.
Модели на 4 В
Собирать измеритель емкости конденсаторов своими руками разрешается только на линейных транзисторах. Также для модели потребуется качественный расширитель и переходник. Если верить экспертам, то фильтры целесообразнее применять переходного типа. Если рассматривать рыночные модификации, то у них может использоваться два расширителя. Работают модели при частоте не более 45 Гц. При этом чувствительность у них часто меняется.
Если собирать простой измеритель, то контактор можно использовать без триода. У него малая проводимость, однако он способен работать при большой загруженности. Также стоит отметить, что модификация должна включать в себя несколько полюсных фильтров, которые будут уделять внимание гармоническим колебаниям.
Модификации с однопереходным расширителем
Сделать измеритель емкости конденсаторов своими руками на базе однопереходного расширителя довольно просто. В первую очередь рекомендуется подобрать для модификации модуль с низкой проводимостью. Параметр чувствительности при этом должен составлять не более 4 мВ. У некоторых моделей имеется серьезная проблема с проводимостью. Транзисторы применяются, как правило, волнового типа. При использовании сеточных фильтров быстро нагревается тиристор.
Чтобы избежать подобных проблем, рекомендуется устанавливать сразу два фильтра на сеточных переходниках. В конце работы останется только припаять компаратор. Для повышения работоспособности модификации устанавливаются канальные стабилизаторы. Также стоит отметить, что существуют устройства на переменных контакторах. Они способны работать при частоте не более 50 Гц.
Модели на базе двухпереходных расширителей: сборка и настройка
Сложить на двухпереходных расширителях цифровой измеритель емкости конденсаторов своими руками довольно просто. Однако для нормальной работы модификаций подходят только регулируемые транзисторы. Также стоит отметить, что при сборке нужно подбирать импульсные компараторы.
Дисплей для устройства подойдет строчного типа. При этом порт разрешается использовать на три канала. Для решения проблем с искажением в цепи применяются фильтры низкой чувствительности. Также стоит отметить, что модификации нужно собирать на диодных стабилизаторах. Настройка модели осуществляется при отрицательном сопротивлении 55 Ом.
fb.ru
РадиоКот :: Измеритель LOW ESR конденсаторов
РадиоКот >Схемы >Аналоговые схемы >Измерения >Измеритель LOW ESR конденсаторов
Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.
Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.
Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..
А это показания исправного конденсатора:
Общий вид измерителя
Цели, которые достигались при проектировании измерителя:
— максимальная простота
— высокая надежность
— измерение на частоте 100 — 110 кГц
— измерение низким напряжением (до 0,2 вольт)
— точность измерения
— растянутая шкала в диапазоне до 0,5 Ома
— низкое энергопотребление
— работа от одного аккумулятора напряжением 1,2 вольта
— длительная работа без зарядки аккумулятора
— отсутствие неудобных проводов витой пары
— мощные щупы для пробивания окислов и лака
— минимум корректирующих настроек
— повторяемость
— минимальная стоимость
Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:
Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.
Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).
Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.
Приведу структурную схему устройства для более понятного назначения каждого компонента:
Схема состоит из автоколебательного блокинг – генератора,
собранного на транзисторе VTI, выпаянном из серверной материнки:
Но можно и любой другой например аналог КТ3102 в smd корпусе.
Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.
Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.
Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.
О трансформаторах.
В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.
Стоит он обычно около выходного строчного транзистора
Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.
Для ТР2 можно ставить без выведенного отвода (таких большинство).
Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.
При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.
Некоторые фото проведенных измерений:
Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.
Шкалу не затирал, а просто дописал значения выше. Фото шкалы.
Настройка:
Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.
Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.
Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.
Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.
Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.
Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.
Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!
P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.
Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).
800
Файлы:
31.jpg — площадка
01.rar — ESR
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
Измерение параметров конденсаторов. Измеритель емкости конденсаторов своими руками. Описание и настройка устройства
ESR метр своими руками . Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический . Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.
Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.
Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность , приводя к сгоранию дорогих микросхем и транзисторов.
Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.
Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать .
Описание ESR метра для конденсаторов
Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.
Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.
Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.
Радиодетали ESR метра расположены на , которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.
Настройка устройства
1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.
К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.
В электрических цепях применяются конденсаторы разного типа. В первую очередь они отличаются по емкости. Для того чтобы определить этот параметр, используются специальные измерители. Указанные устройства могут производиться с различными контактами. Современные модификации выделяются высокой точностью замеров. Для того чтобы сделать простой измеритель емкости конденсаторов своими руками, необходимо ознакомиться с основными составляющими прибора.
Как устроен измеритель?
Стандартная модификация включает в себя модуль с расширителем. Данные о выводятся на дисплей. Некоторые модификации функционируют на базе релейного транзистора. Он способен работать на разных частотах. Однако стоит отметить, что такая модификация не подходит для многих типов конденсаторов.
Устройства низкой точности
Сделать низкой точности измеритель ЭПС емкости конденсаторов своими руками можно при помощи переходного модуля. Однако в первую очередь используется расширитель. Контакты для него целесообразнее подбирать с двумя полупроводниками. При выходном напряжении 5 В ток должен составлять не более 2 А. Для защиты измерителя от сбоев применяются фильтры. Настройку осуществлять следует при частоте 50 Гц. Тестер в данном случае должен показывать сопротивление не выше 50 Ом. У некоторых возникают проблемы с проводимостью катода. В данном случае следует заменить модуль.
Описание моделей высокой точности
Делая измеритель емкости конденсаторов своими руками, расчет точности следует производить исходя из линейного расширителя. Показатель перегрузки модификации зависит от проводимости модуля. Многие эксперты советуют для модели подбирать дипольный транзистор. В первую очередь он способен работать без тепловых потерь. Также стоит отметить, что представленные элементы редко перегреваются. Контактор для измерителя можно использовать низкой проводимости.
Чтобы сделать простой точный измеритель емкости конденсаторов своими руками, стоит позаботиться о тиристоре. Указанный элемент должен работать при напряжении не менее 5 В. При проводимости 30 мк перегруженность у таких устройств, как правило, не превышает 3 А. Фильтры используются разного типа. Устанавливать их следует за транзистором. Также стоит отметить, что дисплей можно подключать только через проводниковые порты. Для зарядки измерителя подойдут батареи на 3 Вт.
Как сделать модель серии AVR?
Сделать измеритель емкости конденсаторов своими руками AVR можно только на базе переменного транзистора. В первую очередь для модификации подбирается контактор. Для настройки модели стоит сразу замерить выходное напряжение. Отрицательное сопротивление у измерителей не должно превышать 45 Ом. При проводимости 40 мк перегрузка в устройствах составляет 4 А. Чтобы обеспечить максимальную точность измерений, используются компараторы.
Некоторые эксперты рекомендуют подбирать только открытые фильтры. Они не боятся импульсных помех даже при большой загруженности. Полюсные стабилизаторы в последнее время пользуются большим спросом. Для модификации не подходят только сеточные компараторы. Перед включением устройства делается замер сопротивления. У качественных моделей данный параметр составляет
electrician-top.ru
Простые измерители емкости | Для начинающих
Простые измерители емкости
Многие современные и некоторые не очень современные мультиметры имеют функцию измерения емкости. Если же такого мультиметра нет, а есть только прибор, которым можно измерять сопротивление и ток, то несложные приспособления к нему позволят проверить работоспособность и узнать емкость неполярных и даже полярных конденсаторов емкостью от единиц или десятков пикофарад до сотен и тысяч микрофарад. О таких приставках и рвссказывает автор публикуемой статьи.
Вначале упомяну так называемый метод баллистического гальванометра, или, как его называют в просторечии, метод отскока стрелки. Под отскоком понимают кратковременное отклонение стрелки. Этот метод вовсе не требует дополнительных приспособлений и позволяет грубо оценить параметры конденсатора, сравнивая его с заведомо исправным. Для этого мультиметр включают на предел измерения сопротивления и щупами дотрагиваются до выводов предварительно разряженного конденсатора (рис. 1). Ток зарядки вызовет кратковременное отклонение стрелки, тем большее, чем больше емкость конденсатора. Пробитый конденсатор имеет сопротивление, близкое к нулевому, а конденсатор с оборванным выводом не вызовет никакого отклонения стрелки омметра.
На пределе «Омы» удается проверять конденсаторы емкостью в тысячи микрофарад. При проверке оксидных конденсаторов надо соблюдать полярность, предварительно определив, на каком из выводов мультиметра присутствует плюсовое напряжение (полярность выводов мультиметра в режиме измерения сопротивлений может и не совпадать с полярностью в режиме измерения токов или напряжений). На пределе «кОм х 1» можно проверять конденсаторы емкостью в сотни микрофарад, на пределе «кОм х 10» — в десятки микрофарад, на пределе «кОм х 100» — в единицы микрофарад и, наконец, на пределе «кОм х 1000» или «МОм» — в доли микрофарады. Но конденсаторы емкостью в сотые доли микрофарады и менее дают слишком малое отклонение стрелки, поэтому судить об их параметpax становится трудно.
На рис. 2 приведена схема измерения емкости с помощью понижающего трансформатора и диодного моста. Так удается измерять емкости от тысячи пикофарад до единиц микрофарад. Отклонение стрелки прибора здесь стабильное, поэтому считывать показания легче. Ток в цепи миллиамперметра РА1 пропорционален напряжению вторичной обмотки трансформатора, частоте тока и емкости конденсатора. При частоте сети 50 Гц, а это наш бытовой стандарт, и вторичном напряжении трансформатора 16 В, ток через конденсатор емкостью 1000 пФ будет около 5 мкА, через 0,01 мкФ — 50 мкА, через 0,1 мкФ — 0,5 мА и через 1 мкФ — 5 мА. Калибровать или проверять показания также можно с помощью заведомо исправных конденсаторов известной емкости.
Резистор R1 служит для ограничения тока до значения 0,1 А в случае короткого замыкания измерительной цепи. Большой погрешности в показания на указанных пределах измерений этот резистор не вносит. Трансформатор понижающий, лучше малогабаритный, подобный тем, что используют в маломощных блоках питания (сетевых адаптерах). На вторичной обмотке он должен обеспечивать переменное напряжение 12…20 В.
Измерить емкость конденсаторов от десятков до тысячи пикофарад позволит устройство, собранное по схеме на рис. 3. Прототипом предлагаемого измерителя послужила схема, предложенная в статье [1]. Фактически, это автогенератор с кварцевым резонатором. Схема возбуждения кварца выбрана иной, чем в прототипе. Сделано это по двум причинам: во-первых, чтобы уменьшить влияние паразитной проходной емкости транзистора между его базой и коллектором на работу генератора, во-вторых, чтобы ослабить вероятность возбуждения генератора на высших гармониках резонатора. Сам же принцип работы прибора прежний, поэтому полезно будет прочитать всю статью [1].
Работает устройство следующим образом. Когда частота колебательного контура L1C2 в цепи коллектора транзистора VT1 оказывается близкой к частоте основного резонанса кварцевого резонатора ZQ1, возбудившийся генератор потребляет минимальный ток. Омметр, который питает устройство энергией, уменьшение тока будет воспринимать как увеличение измеряемого сопротивления. Таким образом, с помощью омметра удается контролировать процесс настройки контура в резонанс конденсатором переменной емкости (КПЕ) С2. Частота генератора определяется резонансной частотой кварцевого резонатора, а емкость и индуктивность колебательного контура при резонансе взаимосвязаны в соответствии с формулой Томсона [2]: f = 1/2WLC. Изменяя индуктивность катушки контура, необходимо добиться, чтобы резонанс наблюдался при емкости КПЕ, близкой к максимальной. Контролируемые конденсаторы подключают параллельно КПЕ, при этом резонанс будет наблюдаться при другом положении ротора КПЕ. Его емкость уменьшится на величину искомой.
КПЕ надо оснастить шкалой, проградуированной в пикофарадах с помощью точных, заведомо исправных конденсаторов. В устройстве можно применить любой маломощный транзистор, способный генерировать на частоте кварцевого резонатора. При использовании р-п-р транзистора полярность питания меняют на противоположную. Конденсатор С1 следует подобрать максимально большой емкости, при которой еще возникает генерация на основной частоте кварцевого резонатора. В этом случае уменьшится вероятность того, чтс кварц будет возбуждаться на высших гармониках. КПЕ лучше использовать трехсекционный, с воздушным диэлектриком, от старых ламповых приемников. Емкость одной секции такого конденсатора изменяется примерно от 12 до 490 пФ. Если все три секции соединить параллельно, то с учетом паразитных емкостей получим КПЕ, изменяющий емкость примерно от 50 до 1500 пФ. Можно применить и двухсекционный конденсатор, соединив его секции параллельно. Максимальная емкость такого конденсатора составит около 1000 пФ. В качестве катушки индуктивности L1 использован дроссель ДПМ-2,4 индуктивностью 20 мкГн. Катушку можно изготовить и самостоятельно. Индуктивность однослойной цилиндрической катушки без магнитопровода определяют по следующей эмпирической формуле: L [мкГн] = DN2/(1000Nh/D+440), где D — диаметр катушки [мм]; N — число витков; h — шаг намотки [мм], а при намотке виток к витку это просто диаметр провода.
Функциональную схему омметра и особенности его подключения можно посмотреть в статье [3]. Желательно выбрать предел, на котором омметр развивает ток короткого замыкания порядка 1 …2 мА, и определить полярность выходного напряжения. При неправильной полярности подключения омметра устройство не заработает, хотя и не выйдет из строя. Измерить напряжение холостого хода, ток короткого замыкания омметра и определить его полярность на различных пределах измерения сопротивления можно с помощью другого прибора. С помощью описанной приставки можно измерять индуктивность катушек в пределах приблизительно 17…500 мкГн. Это при использовании кварцевого резонатора на частоту 1 МГц и КПЕ емкостью 50…1500пФ. Катушку для этого устройства делают сменной и калибруют прибор, используя эталонные индуктивности. Можно также использовать приставку как кварцевый калибратор.
Вместо устройства по схеме рис. 3 можно предложить менее громоздкое, в том отношении, что не потребуются КПЕ, кварц и катушка. Его схема показана на рис. 4. Назову эту приставку «Преобразователь емкости в активное сопротивление с питанием от омметра». Она представляет собой двухкаскадный УПТ на транзисторах VT1 и VT2 разной структуры и непосредственной связью между каскадами. Измеряемый конденсатор Сх включают в цепь положительной обратной связи с выхода на вход УПТ. При этом возникает релаксационная генерация и транзисторы часть времени остаются закрытыми. Этот промежуток времени пропорционален емкости конденсатора.
Пульсации выходного тока фильтрует блокировочный конденсатор С1. Усредненный ток, потребляемый устройством, при увеличении емкости конденсатора Сх становится меньше, и омметр воспринимает это как увеличение сопротивления. Устройство уже начинает реагировать на конденсатор емкостью 10 пФ, а при емкости 0,01 мкФ его сопротивление становится большим (сотни килоом). Если сопротивление резистора R2 уменьшить до 100 кОм, то интервал измеряемых емкостей составит 100 пФ…0,1 мкФ. Начальное сопротивление устройства — около 0,8 кОм. Здесь следует отметить, что оно нелинейное и зависит от протекающего тока. Поэтому на разных пределах измерения и с разными приборами показания будут различаться, и для проведения измерений необходимо сравнивать искомые показания с показаниями, даваемыми образцовыми конденсаторами.
С. Коваленко, г. Кстово Нижегородской обл. Радио 07-05.
Литература:
1. Пилтакян А. Простейшие измерители L и С:
Сб.: «В помощь радиолюбителю», вып. 58, с.61—65. — М.: ДОСААФ, 1977.
2. Поляков В. Теория: Понемногу — обо всем.
Расчет колебательных контуров. — Радио, 2000, № 7, с. 55, 56.
3. Поляков В. Радиоприемник с питанием от… мультиметра. — Радио, 2004, № 8, с. 58.
www.radiomexanik.spb.ru
Измеритель емкости конденсаторов — Меандр — занимательная электроника
Схем приборов для измерения емкости конденсаторов существуют очень много. Они выполнены на самой различной элементной базе, отличаются степенью сложности, доступностью используемых деталей и точностью измерений.
Именно с позиции построения простого устройства для измерения емкости конденсаторов на самых распространенных в настоящее время радиокомпонентах и была разработана схема рис.1. В качестве измерительного прибора используется широко распространенный цифровой мультиметр типа M830-B.
Рис. 1
В принципе, идея построения практически всех распространенных устройств для измерения емкости конденсаторов одинакова. Задающий импульсный генератор формирует последовательность импульсов. Она подается на измеряемый конденсатор. В зависимости от его емкости меняется величина заряда, который он успевает получить. Этот заряд и измеряется. Точнее — измеряется напряжение, до которого заряжается измеряемый конденсатор.
Резистивный делитель R1-R2 напряжения источника +6 В обеспечивает возможность питания микросхемы операционного усилителя DA1 типа КР140УД708 от однополярного источника. Коммутируемые переключателем SA1 RC-цепочки и резистор положительной обратной связи R3 обеспечивают работу ОУ в автоколебательном (генераторном) режиме.
При наличии высокого положительного напряжения на выходе микросхемы DA1 через конденсатор С4 и диод VD1 обеспечивается заряд измеряемого конденсатора Сх. В моменты нулевого напряжения на выходе DA1 конденсаторы Сх и С4 разряжаются через эмиттерно-базовый переход транзистора VT1. Диод VD1 при этом находится в запертом состоянии и на работу схемы в этом режиме влияния не оказывает. Импульс тока коллектора транзистора проходит через резистор R10 и заряжает конденсатор С5. Напряжение на С5 измеряется высокоомным вольтметром тестера М830-В.
Схема измерительной части устройства очень проста. Она известна, в частности, из иностранной печати. Предварительно ее работа была проверена экспериментально на макете.
Следует подчеркнуть, что с изменением величины напряжения питания микросхемы DA1 в этой и аналогичных схемах будут изменяться и показания мультиметра, подключенного к контактам XS2. Чтобы этого не происходило, использован стабилизатор напряжения питания схемы DA2. Его выходное напряжение в данной схеме 6 В, поэтому минимальное напряжение источника, подключаемого к контактам колодки XS3, должна быть не менее 8,5…9 В.
На рис.2 показана топография печатной платы устройства и расположение радиокомпонентов на плате.
Рис. 2
Измеряемый конденсатор Сх подключается к схеме последовательно с конденсатором С4. Это сделано для защиты микросхемы DA1 от выхода из строя при случайном замыкании между собой выводов измеряемого конденсатора или, если он окажется пробитым. Номинал конденсатора С4 не критичен. Главное, чтобы его значение было в несколько раз больше измеряемого конденсатора самого большого номинала. Так, если прибором измерять, например, конденсаторы до 10 мкФ, то емкость С4 должна быть 47…100 мкФ. На более низких пределах измеряемых емкостей это условие будет выполняться автоматически.
При переключении пределов измерений прибора необходимо обеспечить кратность емкостей конденсаторов С1…С3. Если предварительно подобрать эти конденсаторы по емкости, то настройка схемы упростится.
Настройка устройства
Возможная методика настройки состоит в следующем.
К контактам гнезда XS1 подключаем «эталонный» конденсатор емкостью, например, 10 мкФ. Переключатель пределов измерений прибора SA1 «Поддиапазоны» устанавливается положение «3». Подбирая положение движка подстроенного сопротивления R5 добиваются показаний мультиметра РА1 — 1 В.
Аналогично, за счет регулировки значения сопротивления R6 (R8) и подключении калибровочного конденсатора С2 (С3) производят настройку устройства измерения емкостей конденсаторов в поддиапазоне «2» («1»). При этом, естественно, к контактам XS1 подключается эталонный конденсатор другой емкости 0,1 мкФ (1000 пФ).
Измеряемые и эталонные конденсаторы большой емкости, естественно, электролитические. Необходимо лишь соблюдать полярность их включения в схему.
При емкости конденсатора С1 10 мкФ прибор обеспечивает измерение емкостей конденсаторов на «3» поддиапазоне практически от 0,1 мкФ до 10 мкФ.
При емкости конденсатора С2 0,1 мкФ (100 нФ) рабочий диапазон «2» прибора составит 1000 пФ…0,1 мкФ, а при С3 — 1000 пФ — 50 пФ…1000 пФ. Значения вариантов выбора номиналов конденсаторов С1…С3 и достигаемые при этом пределы измерения емкостей конденсаторов Сх показаны в таблице 1.
Таблица 1
№ | Емкость Cn | Пределы измерения Сх |
1 | С3- 1нФ | 50 пФ…1 нФ |
2 | С2-0,1мкФ | 1 нФ…0,1 мкФ |
3 | C1-10мкФ | 0,1…10 мкФ |
При настройке схемы емкости задающих конденсаторов С1…С3 и эталонные измерительные конденсаторы (для проверки рабочих поддиапазонов прибора Сх) проверялись и подбирались с использованием промышленного измерителя емкостей конденсаторов типа СМ 9601А.
Наличие подстроечных сопротивлений R5, R7, R9 в схеме позволяет использовать в качестве С1 …С3 конденсаторы не только указанных на схеме номиналов, но и других близких к ним. При этом, возможно, потребуется лишь подобрать номиналы резисторов R4, R6, R8.
Следует подчеркнуть и тот факт, что фактически в каждом из поддиапазонов измерений можно проверять конденсаторы вдвое большего номинала, чем это было указано ранее. Так, при эксперименте оказалось, что на первом поддиапазоне можно измерять емкость конденсаторов номиналом почти до 20 мкФ.
Расширение диапазона измерений за счет увеличения емкости конденсатора, например С1, в схеме рис.1 теоретически также вполне возможно, но практически мною это не проверялось.
Автор: Андрей Попович, г. Самара
Возможно, вам это будет интересно:
meandr.org