Проверка стабилитронов – Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Как проверить диод мультимтером и отличить его от стабилитрона

Определение пригодности радиодеталей – основная процедура, проводимая при ремонте или обслуживании радиоэлектронной аппаратуры. И если с пассивными элементами все более или менее понятно, то активные требуют специальных подходов. Проверить сопротивление резистора или целостность катушки индуктивности не составляет труда.

С активными компонентами дело обстоит немного сложнее. Необходимо отдельно разобраться в том, как проверить диод мультиметром своими руками, учитывая, что это простейший и наиболее часто встречающийся полупроводниковый элемент электронных схем.

Виды диодов и их предназначение

Вкратце можно сказать, что диод представляет собой полупроводниковый компонент электронной схемы, предназначенный для однонаправленного пропускания тока. Другими словами, прибор пропускает ток в одном направлении, запирая его течение в обратном, образуя своеобразный электрический вентиль.

На принципиальных схемах диод обозначается в виде стрелки-указателя, на конце которой изображена черта, означающая запирание. Стрелка указывает направление течения тока.

Нужно помнить, что в теоретической физике ток образуют позитивно заряженные частицы. Поэтому для открытия p-n перехода положительный потенциал прикладывают к началу стрелки, а отрицательный к ее концу. При таких условиях через прибор потечет прямой ток.

Рассмотрим наиболее распространенные типы диодов, учитывая, что интерес в плане проверки представляют лишь некоторые, а именно:

  • обычные диоды, созданные на основе p-n перехода;
  • с барьером Шоттки, чаще называемые просто диоды Шоттки;
  • стабилитрон, служащий для стабилизации потенциала и другие виды.

Существует еще множество типов диодов – варикапы, светодиоды или фотодиоды, например. Но ввиду сходности проверки работоспособности или малой распространенности эти устройства здесь не рассматриваются.

Определение типа элемента

Хорошо если размер корпуса позволяет нанести на нем хоть сколько-нибудь понятную маркировку. Но чаще всего диоды настолько малы, что их трудно маркировать даже цветом. В этом случае отличить диод от стабилитрона, например, не представляется возможным, ведь они как близнецы-братья.

В подобных ситуациях поможет лишь принципиальная схема аппарата, из которого извлечен элемент. В соответствии с ней можно определить тип компонента и его марку.

Если же отсутствует эта информация, можно попробовать поискать принципиальную схему ремонтируемого аппарата в интернете или сделать фотоснимок элемента и также обратиться в Сеть и провести поиск по изображению.

Проверка диодов мультиметром или другим тестером должна проводиться только после определения их типа и марки, потому что разные виды тестируются по-разному.

Применение тестера

Простейшим, но от этого ничуть не менее эффективным, прибором для тестирования элементов электронных схем, полупроводниковых диодов, в том числе, является тестер радиодеталей.

Более того, этот инструмент наиболее распространен в среде радиомастеров по причине неприхотливости, малых массогабаритных параметров и возможности измерения практически любых характеристик радиоэлементов и цепей, важных при ремонте.

Считается, что цифровые мультиметры, благодаря своей точности и удобству в эксплуатации, постепенно вытесняют аналоговые. Однако не стоит грешить на точность старенькой «цешки».

В ее состав уже входят микросхемы, а мостовые резисторы имеют погрешность 1-2% (это очень высокая точность даже для интегральных микросхем). Поэтому, чтобы проверить исправность диода или транзистора нет необходимости покупать новый мультиметр, при наличии аналогового.

Цифровая индикация прижилась из-за отсутствия механических узлов в мультиметре. Это повысило его удароустойчивость и срок эксплуатации.

Проверка диодов упростилась и с появлением звукового сигнала, позволяющего даже не обращать внимания на дисплей. В большинстве мультиметров существует специальный режим, позволяющий в прямом и переносном смысле прозвонить диод. Он отмечен на корпусе соответствующим знаком.

Достаточно вставить черный штекер в разъем COM, а красный в разъем измерения сопротивления (Ω), установить переключатель на режиме прозвонки диодов, и можно начинать проверку.

Методика проверки

Проверка диодов мультиметром заключается в выяснении работоспособности их p-n перехода. Вообще, в радиоэлектронике бывают лишь две неисправности. Первая представляет собой разрыв цепи (перегорание), когда ток не течет ни в одном из направлений. Вторая же вызвана коротким замыканием (пробой) электродов, что превращает компонент в кусок обычного провода.

Методика тестирования предельно проста. При соединении анода с плюсовым щупом мультиметра, а катода с минусовым, p-n переход должен быть открыт, следовательно, его сопротивление близко к нулю.

Цифровые измерители должны подать характерный сигнал. При обратном подключении p-n переход обязан быть заперт, о чем должно свидетельствовать бесконечное (в теории) его сопротивление.

На дисплее цифрового тестера индицируется цифра 1. Так звонится рабочий диод. Если же ток проходит, вне зависимости от полярности подключения, налицо короткое замыкание. В случае когда прибор не звонится ни в ту ни в другую сторону имеет место разрыв.

Нередко можно услышать вопрос о том, как проверить диод Шоттки. Действительно, эти компоненты принципиально отличаются от прочих.

Дело в том, что p-n переход даже в открытом состоянии имеет сопротивление, хотя и небольшое. Это, в свою очередь, вызывает потери энергии, рассеиваемые в виде тепла.

Для сокращения последних один из полупроводниковых электродов диода был заменен металлом. И хотя ток потерь в этом случае немного увеличивается, но в открытом состоянии сопротивление перехода очень низко, что обуславливает экономичность прибора.

В остальном проверка диода Шоттки с использованием мультиметра ничем не отличается от тестирования обычного p-n перехода.

Стабилитроны

Особняком стоит вопрос о проверке стабилитронов. Проверять их по описанной выше методике нет смысла, разве что можно убедиться в целостности p-n перехода. В отличие от обычного выпрямительного диода, стабилитрон использует обратную ветвь вольтамперной характеристики (ВАХ). Поэтому для исследования стабилизирующих свойств рабочую точку нужно сместить именно на этот участок графика.

Для этого используется простенькая схема из источника питания и токоограничительного резистора. В этом случае мультиметром измеряется не сопротивление перехода, а напряжение, при плавном повышении питающего потенциала.

Стабилитрон считается рабочим, если при повышении напряжения питания разница потенциалов на его электродах остается постоянной и равной заявленной в документации на прибор.

Без выпаивания

Отдельно нужно рассмотреть вопрос о том, можно ли проводить тестирование мультиметром непосредственно на плате, не выпаивая из нее элемент.

Здесь все зависит от сложности схемы и квалификации мастера. Смонтированное на плате изделие может звониться через обмотки трансформатора, резистивные элементы, сгоревший конденсатор или что-то еще. Поэтому получить более или менее адекватные показатели чаще всего не удается.

Разумеется, если мастер читает принципиальную схему как открытую книгу или «набил руку» на подобных аппаратах, он может оценить работоспособность прибора. Существуют даже методики проверок без демонтажа для автомобильного питания, например.

Но лучше все же выпаивать элемент из схемы. К тому же достаточно «повесить в воздух» только одну ножку изделия, что занимает 2-3 секунды. А после тестирования мультиметром за тот же промежуток времени диод возвращается в первоначальное положение на плате.

evosnab.ru

Как проверить стабилитрон мультиметром на плате

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение ( +), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (

), а к катоду положительное ( +), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой ( +), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп ( красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Как проверить диод мультиметром

Обычно выходят из строя силовые, выпрямительные диоды, т. к. через них проходит значительный прямой ток. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними (обрыв) и появлению тока утечки.

Диод является полупроводником, работа которого основана на свойствах p-n перехода. Работа элемента заключается в том, что при прямом направлении анод (+) — катод (-) ток проходит через полупроводниковый переход, так как его сопротивление составляет всего несколько десятков Ом, а в противоположном направлении катод — анод (перевернутый диод) ток отсутствует, т. к. сопротивление перехода достаточно велико.

Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Режим проверки диодов на мультиметре

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, (в случае рабочего элемента). Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления.

Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду. Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника. Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов.

Если щупы перевернуть, то сопротивление p-n перехода будет велико (при исправном полупроводнике) от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Как проверить светодиод, стабилитрон, диод Шоттки мультиметром

Светодиоды проверяются таким же образом, как и силовые диоды — на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление. При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико.

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

Простая схема проверки стабилитрона

Для проверки напряжения стабилизации нужно собрать простейшую схему с токогасящим сопротивлением. Напряжение источника питания обычно берется на 2 — 3 В выше напряжения стабилизации стабилитрона. В качестве примера возьмем стабилитрон Д814Б с напряжением стабилизации 9 В и током стабилизации 5 ма. Ограничительный резистор можно приблизительно рассчитать по формуле:

R = U1-U2/I = 12 -9/0,005 = 600 Ом.

U1 – напряжение источника питания,

U2 – напряжение стабилизации стабилитрона,

I – номинальный ток стабилитрона.

Поставив такое сопротивление в схему проверки стабилитрона, меряют напряжение стабилизации на стабилитроне, оно должно быть 9 В с учетом отклонения + 0,5 — 1 В, то есть напряжение стабилизации должно иметь значение 8 — 9,5 Вольт.

Как проверить диодный мост мультиметром

Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно. Но тогда ток утечки нельзя будет проверить.

Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками (при выключенном источнике питания) проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим. Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно.

mytooling.ru

Как проверить стабилитрон мультиметром на работоспособность

Стабилитрон относится к электронным приборам с нелинейной вольт-амперной характеристикой. Его свойства характерны обычному диоду. Но есть и существенное различие между ним и диодом. Для проверки исправности стабилитрона можно использовать много различных лабораторных приборов и стендов. На практике, для ремонта электронной начинки, радиолюбители используют мультиметры или тестеры со стрелочной шкалой индикации. Чтобы выявить неисправность стабилитрона своими руками нужно хорошо знать его характеристики и уметь пользоваться мультиметром. Как проверить стабилитрон этим прибором, не прибегая к сложным и длительным лабораторным экспериментам, можно рассмотреть на примере.

Что такое стабилитрон

Его работа основана на нелинейной вольт-амперной характеристике p-n перехода. Отличие от диодов и светодиодов заключается в наличии на вольт-амперной характеристике зоны пробоя. Она показывает, что при возрастании тока в нагрузке напряжение остается практически неизменным. Это свойство называют стабилизационным, а электронный элемент получил название стабилитрон. Устройства, где они применяются, называются стабилизаторы. Стабилитроны изготавливаются, в основном, в стеклянном или металлическом корпусе. Они бывают низковольтными и высоковольтными. Чтобы убедиться в исправности элемента его проверяют мультиметром.

Порядок проверки

Чтобы проверить деталь на исправность, мультиметр используют в режиме измерения сопротивления или в режиме проверки диодов. Тестером или мультиметром стабилитроны прозваниваются точно также как и диоды. К выводам стабилитрона прикладывают щупы и считывают показания со шкалы индикации. Измерения должны проводиться в прямом и обратном направлении, то есть сначала прикладываем плюс мультиметра к катоду, а затем к аноду стабилитрона. Прибор должен показать в первом случае бесконечное сопротивление, а во втором случае покажет единицы или десятки Ом.

Такие показатели говорят об исправности стабилитрона. Если измерение сопротивления показывают в обоих направлениях бесконечность, то это говорит об обрыве p-n перехода и неисправности.

Бывает так, что при прозвонке стабилитрона мультиметр показывает в обоих направлениях десятки или сотни Ом. В этом случае создается впечатление, что стабилитрон пробит. Именно такой вывод можно было бы сделать, если бы это был обычный диод. Но в случае стабилитрона такой вывод неверен, он, скорее всего, исправен. Объясняется это наличием напряжения пробоя.

При прикладывании щупов мультиметра к выводам стабилитрона прикладывается напряжение внутреннего источника питания мультиметра. Если напряжение источника питания выше значения напряжения пробоя, то шкала индикации покажет сопротивление десятков или сотен Ом.

Если мультиметр имеет источник питания напряжением, например, 9 Вольт, то все проверяемые стабилитроны с напряжением стабилизации меньше 9 Вольт при измерении будут показывать пробой.

Как проверить стабилитрон мультиметром на плате

При ремонте платы, где расположен стабилитрон необходимо предусмотреть меры защиты от поражения электрическим током. Порядок действий при проверке электронного устройства такой же, как и при проверке выпаянного стабилитрона. Но нужно учесть, что остальные радиоэлементы, расположенные в схеме на плате, могут сильно изменить показания. Если остаются сомнения в правильности интерпретации результатов проверки, то стабилитрон демонтируют из платы и проверяют его без влияния остальных компонентов схемы.
Нужно отметить, что исправность элемента нельзя гарантировать со стопроцентной уверенностью при проверке его мультиметром. Ее можно гарантировать в том случае, если поместить его в схему и включить электронное устройство с этой схемой. Если устройство будет работать, то это означает, что элемент исправен.

vseotoke.ru

Прибор для проверки стабилитронов, схема

Радиолюбители иногда сталкиваются с проблемой проверки стабилитронов без маркировки. Естественно существует множество способов, например лабораторный блок питания с функцией ограничения тока и т.п., но многие пользуются самодельными регулируемыми стабилизаторами напряжения без функции ограничения тока, либо блок питания имеет функцию не стабилизации, а защиты по току. Было решено построить простой автономный тестер, который может проверить напряжение стабилизации стабилитронов. Для этих целей использованы готовые модули купленные в китайских интернет-магазинах.
1) Повышающий DC-DC преобразователь напряжения на базе микросхемы MT3608. Такие преобразователи довольно популярны и стоят копейки, могут обеспечивать выходное напряжение 28-30 Вольт.
2) Плата заряда LI-ION аккумуляторов от USB. Плата по сути из себя представляет автоматическое зарядное устройство для одной банки Li-Ion аккумулятора, обеспечивает максимальный ток заряда до 1 Ампер.
3) Литий-ионный аккумулятор любого стандарта, емкость тоже особо большой роли не играет.
4) Цифровой Вольт-Амперметр на напряжение 30 Вольт
5) Панелька для микросхем DIP, такие панельки предназначены для беспаечного монтажа, сюда будет вставляться стабилитрон, который нужно тестировать.
Это основные компоненты, остальное мелочь.
В качестве корпуса для этой конструкции был использован футляр от дешевого повербанка за доллар.
Из-за ограниченного места в корпусе я использовал никель-металл-гидридные аккумуляторы по 1,2 Вольт, которые соединены последовательно. В этом случае можно и не ставить специализированную плату для зарядки, поскольку никелевые аккумуляторы не так критичны к зарядке как литиевые.
Схема конструкции сейчас перед вами.
Изначально берем плату DC-DC преобразователя и вращаем подстроечный резистор до тех пор, пока на выходе не получим максимально возможное напряжение.
Исходя из этого, становиться ясно, что наш тестер может проверять стабилитроны с напряжением стабилизации не более 28-30 Вольт.

Ограничительный резистор предназначен для ограничения тока через стабилитрон, если его не устанавливать, то подопытный стабилитрон сгорит.


Электролитический конденсатор на выходе платы предназначен для сглаживания пульсаций с преобразователя, это нужно для избежания ложных показаний вольтметра, поскольку на выходе таких плат довольно большие пульсации.
Выключатель, думаю понятно для чего предназначен, может быть заменен на кнопку любой мощности.
С учетом того, что такой тестер будет работать кратковременно, заряда батареи хватит на очень долгое время, поэтому при желании источник питания может быть заменен на батарейку стандарта 6F22 (обычная крона на 9 Вольт).
Показания снимаются напрямую со стабилитрона, прибор работает довольно точно и может корректно проверять стабилитроны буквально любой мощности.
В практике применяется не так часто как мультиметр, но является незаменимым инструментом, когда быстро нужно проверить стабилитрон.

Автор; АКА КАСЬЯН

xn--100—j4dau4ec0ao.xn--p1ai

Как проверить стабилитрон | Все своими руками

Опубликовал admin | Дата 24 марта, 2013

Приставка для проверки стабилитронов

     Здравствуйте уважаемые посетители. За сорок лет увлечения радиотехникой скопилась целая куча стабилитронов и отечественных, и импортных, и с маркировкой и без, в связи с этим появилась необходимость в изготовлении приставки для мультиметра для определения целостности и параметров стабилитронов. По крайней мере напряжения стабилизации. На изготовление приставки ушло пару часов, это с травлением платы. За основу взял схемку стабилизатора тока (см. рис. 1)из документации на микросхему LM431, аналог 142ЕН19.

     Схема получившейся приставки представлена на рисунке 2. На транзисторе VT1 и микросхеме DA1 142ЕН19 собран стабилизатор тока, при номиналах резисторов, указанных на схеме, ток стабилизации равен примерно семнадцати миллиамперам. В качестве индикатора прохождения тока при измерении с схему включен светодиод. Можно использовать любой светодиод с прямым током не менее 20ма. Для изготовления приставки потребуется сетевая вилка от какой ни будь не нужной китайской хрени(см. фото 1, 2).


     Вернее запчасть от нее, показанная на фото 2. Приставка собрана на небольшой печатной платке из стеклотекстолита. Внешний вид платы показан на фото 3 и 4. Конструкция приставки надеюсь тоже понятна. Что бы контактные штыри бывшей сетевой вилки свободно входили в гнезда прибора, припаивают их к платке будучи вставленными в них.

На схеме указано максимально возможное входное напряжение для данных элементов – 35В. Но если при этом напряжении проверять, например стабистор КС107А, то на нем упадет напряжение 0,7В, а 34,3В — I•Ur2 упадет на транзисторе VT1. Где I•Ur2 – падение напряжения на резисторе R2 = 0,017А•200 = 3,4В. 34,3 – 3,4 = 30,9В – это такое напряжение упадет на транзисторе VT1, отсюда мощность коллектора транзистора составит U•I = 30,9В•0,017А ? 0,525Вт. Мощность коллектора транзистора КТ503 – 0,35Вт. Так, что замер надо производить очень быстро или заменить транзистор более мощным, или уменьшить напряжение питания приставки, что уменьшит количество марок проверяемых стабилитронов. Ну я думаю вы для себя это решите. Скачать рисунок печатной платы.

Скачать “Как проверить стабилитрон” Plata_Stab.rar – Загружено 620 раз – 5 KB

      Да, ток стабилизации зависит от номинала резистора R2, R2 = 2,5/Iст, где Iст – величина тока стабилизации. До свидания. К.В.Ю.

.

     Еще одно дополнение. С помощью этой приставки можно определять диоды с барьером Шоттки, у которых, как известно маленькое прямое падение напряжения. На снимке показана проверка 1N5819 — с барьером Шоттки. Uпр. = 0,24В. Отлично!

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:22 556


www.kondratev-v.ru

Анатолий Беляев (Mr.ALB) — персональный сайт

Универсальный тестер проверки DB3, оптронов, стабилитронов и других компонентов

Мне в последнее время приходилось возиться с разными электронными балластами и в их составе с динистором DB3, оптронами и стабилитронами из других устройств. Поэтому для быстрой проверки этих компонентов пришлось разработать и изготовить специализированный тестер. Дополнительно, кроме динисторов и оптронов, чтобы не создавать ещё тестеры для подобных компонентов, тестер может проверять стабилитроны, светодиоды, диоды, переходы транзисторов. В нём использована световая и звуковая индикация и дополнительно цифровой измеритель напряжения для оценки уровня срабатывания динисторов и падения напряжения на переходе проверяемых стабилитронов, диодов, светодиодов, транзисторов.

2017-03-04
Описание схемы

Схема тестера представлена ниже на Pic 1.

Примечание: для подробного просмотра картинки – кликните по ней.

Pic 1. Схема тестера DB3 (динисторов), оптронов, стабилитронов, диодов, светодиодов и переходов транзисторов

Основу тестера составляет генератор высоковольтных импульсов, который собран на транзисторе VT1 по принципу преобразователя DC-DC, то есть высоковольтные импульсы самоиндукции поступают в накопительный конденсатор C1 через высокочастотный диод VD2. Трансформатор генератора намотан на ферритовом кольце, взятом от электронного балласта (можно использовать любое подходящее). Количество витков около 30 на каждую обмотку (не критично и намотка может быть выполнена одновременно двумя проводами сразу). Резистором R1 добиваются максимального напряжения на конденсаторе C1. У меня получилось около +73.2 В. Выходное напряжение поступает через R2, BF1, HL1 на контакты панельки XS1, в которую вставляются проверяемые компоненты.

На контакты 15, 16 панельки XS1 подключен цифровой вольтметр PV1. Куплен на Алиэкспрессе за 60 Р. При проверке динисторов, вольтметр показывает напряжение открывания динистора. Если на эти контакты XS1[15, 16] подключать светодиоды, диоды, стабилитроны, переходы транзисторов, то вольтметр PV1 показывает напряжение на их переходе.

При проверке динисторов индикаторный светодиод HL1 и звуковой излучатель BF1 работают в импульсном режиме – указывая на исправность динистора. Если динистор пробит, то светодиод будет светиться постоянно и напряжение на вольтметре будет около 0 В. Если динистор в обрыве, то напряжение на вольтметре будет около 70 В, а светодиод HL1 светиться не будет. Аналогично проверяются оптроны, только индикаторный светодиод для них – HL2. Чтобы работа светодиода была импульсная в контакты XS1[15, 2] вставлен исправный динистор DB3 (КН102). При исправном оптроне свечение индикаторного светодиода импульсное. Оптроны имеют исполнение в корпусах DIP4, DIP6 и их необходимо устанавливать в соответствующие им контакты палельки XS1. Для DIP4 – это XS1[13, 12, 4, 5], а для DIP6 – XS1[11, 10, 9, 6, 7, 8].

Если проверять стабилитроны, то их подключать к XS1[16, 1]. Вольтметр будет показывать либо напряжение стабилизации, если катод стабилитрона подключен к контакту 16, либо напряжение на переходе стабилитрона в прямом направлении, если к контакту 16 подключить анод.

На контакты XS1[14, 3] выведено напрямую напряжение с конденсатора C1. Иногда есть необходимость засветить мощный светодиод или использовать полное выходное напряжение высоковольтного генератора.

Питание на тестер подаётся только во время проверки компонентов, при нажатии на кнопку SB1. Кнопка SB2 предназначена для контроля напряжения питания тестера. При одновременном нажитии на кнопки SB1 и SB2, вольтметр PV1 показывает напряжение на батарейках. Так сделал, чтобы можно было своевременно поменять батарейки, когда они разрядятся, хотя, думаю, что это будет не скоро , так как работа тестера кратковременная и потеря энергии батареек скорее за счёт их саморазряда, чем из-за работы самого тестера при проверке компонентов. Для питания тестера использованы две батарейки типа AAA.

Для работы цифрового вольтметра использовал покупной преобразователь DC-DC. На его выходе установил +4.5 В – напряжение поступающее и на питание вольтметра и на цепь светодиода HL2 — контроль работы выходного каскада оптронов.

В тестере использовал планарный транзистор 1GW, но можно использовать любой подходящий и не только планарный, который обеспечит напряжение на конденсаторе C1 больше 40 В. Можете попробовать использовать даже отечественный КТ315 или импортный 2N2222.

Фотообзор по изготовлению тестера

Далее небольшой фотоотчёт об этапах сборки окончательной конструкции тестера.

Pic 2. Печатная плата тестера. Вид со стороны панельки.

На этой стороне платы устанавливаются панелька, звуковой излучатель, трансформатор, индикаторные светодиоды и кнопки управления.


Pic 3. Печатная плата тестера. Вид со стороны печатных проводников.

На этой стороне платы устанавливаются планарные компоненты и больше-габаритные детали – конденсаторы С1 и С2, подстроечный резистор R1. Печатная плата была изготовлена упрощенным методом – прорезанием канавок между проводниками, хотя можно и провести травление. Файл с разводкой печатной платы можно скачать внизу страницы.


Pic 4. Внутреннее содержимое тестера.

Корпус тестера состоит из двух частей: верхней и нижней. В верхнюю часть устанавливается вольтметр и плата тестера. В нижнюю часть установлен преобразователь DC-DC для питания вольтметра и контейнер для батареек питания. Обе части корпуса соединяются за счёт защёлок. Традиционно корпус изготовлен из пластика ABS толщиной 2.5 мм. Размеры тестера 80 х 56.5 х 33 мм (без учёта ножек).


Pic 5. Основные части тестера.

Перед установкой преобразователя на его место в корпусе, произведена настройка выходного напряжения на +4.5 В.


Pic 6. Перед сборкой.

В верхней крышке прорезаны отверстия под индикатор вольтметра, под контактную панельку, под индикаторные светодиоды и под кнопки. Отверстие индикатора вольтметра закрыто кусочком оргстекла красного цвета (можно любым подходящим, к примеру, у меня с оттенком пурпурного, фиолетового). Отверстия под кнопки зазенкованы так, чтобы можно было нажать на кнопку, которая не имеет толкателя.


Pic 7. Сборка и подключение частей тестера.

Вольтметр и плата тестера крепятся на саморезах. Плата крепится так, чтобы индикаторные светодиоды, панелька и кнопки прошли в соответствующие им отверстия в верхней крышке.


Pic 8. Перед проверкой работы собранного тестера.

В панельку установлен оптрон PC111. В контакты 15 и 2 панельки вставлен заведомо исправный динистор DB3. Он будет использоваться как генератор импульсов подаваемых на входную цепь для проверки правильной работоспособности выходной части оптрона. Если использовать простое свечение светодиода через выходную цепь, то это было бы неправильно, так как если бы выходной транзистор оптрона был бы пробит, то светодиод светился бы тоже. А это неоднозначная ситуация. При использовании импульсной работы оптрона видим однозначно работоспособность оптрона в целом: как входную, так и выходную его части.


Pic 9. Проверка работоспособности оптрона.

При нажатии на кнопку проверки компонента, видим импульсное свечение первого индикаторного светодиода (HL1), указывающего на исправность динистора, работающего как генератор, и одновременно видим свечение второго индикаторного светодиода (HL2), который импульсной работой показывает на исправность оптрона в целом.

На вольтметре выводится напряжение срабатывания генераторного динистора, оно может быть от 28 до 35 В, в зависимости от индивидуальных особенностей динистора.

Аналогично проверяется и оптрон с четырьмя ножками, только устанавливается он в соответствующие ему контакты панельки: 12, 13, 4, 5.

Контакты панельки нумеруются по кругу против часовой стрелки, начиная с нижнего левого и далее вправо.


Pic 10. Перед проверкой оптрона с четырьмя ножками.
Pic 11. Проверка динистора DB3.

Проверяемый динистор вставляется в контакты 16 и 1 панельки и нажимается кнопка проверки. На вольтметре выводится напряжение срабатывания динистора, а первый индикаторный светодиод импульсной работой указывает на исправность проверяемого динистора.


Pic 12. Проверка стабилитрона.

Проверяемый стабилитрон устанавливается в контакты где проверяется и динисторы, только свечение первого индикаторного светодиода будет не импульсным, а постоянным. Работоспособность стабилитрона оценивается по вольтметру, где выводится напряжение стабилизации стабилитрона. Если стабилитрон вставить в панельку контактами наоборот, то при проверке на вольтметре будет выводиться падение напряжения на переходе стабилитрона в прямом направлении.


Pic 13. Проверка другого стабилитрона.

Точность показаний напряжения стабилизации может быть несколько условной, так как не задан определённый ток через стабилитрон.. Так, в данном случае проверялся стабилитрон на 4.7 В, а показания на вольтметре 4.9 В. Ещё может на это влиять и индивидуальная характеристика конкретного компонента, так как стабилитроны на определённое напряжение стабилизации имеют между собой некоторый разброс. Тестер же показывает напряжение стабилизации конкретного стабилитрона, а не значение его типа.


Pic 14. Проверка яркого светодиода.

Для проверки светодиодов можно использовать либо контакты 16 и 1, где проверяются динисторы и стабилитроны, тогда будет выведено падение напряжение на работающем светодиоде, либо использовать контакты 14 и 3, на которые напрямую выводится напряжение с накопительного конденсатора С1. Этот способ удобен для проверки свечения более мощных светодиодов.


Pic 15. Контроль напряжения на конденсаторе С1.

Если не подключать никакие компоненты для проверки, то вольтметр покажет напряжение на накопительном конденсаторе С1. У меня оно достигает 73.2 В, что даёт возможность проверять динисторы и стабилитроны в широком диапазоне рабочих напряжений.


Pic 16. Проверка напряжения питания тестера.

Приятная функция тестера – контроль напряжения на батареях питания. При нажатии одновременно на две кнопки, на индикаторе вольтметра показывается напряжение батарей питания и одновременно светится первый индикаторный светодиод (HL1).


Pic 17. Разные ракурсы на корпус тестера.

На виде сбоку видно, что кнопки управления не выступают за верхнюю сторону крышки, сделал так, чтобы не было случайного нажатия на кнопки, если тестер положить в карман.


Pic 18. Разные ракурсы на корпус тестера.

Корпус снизу имеет небольшие ножки, для устойчивого положения на поверхности и чтобы не протирать и не шоркать нижнюю крышку.


Pic 19. Законченный вид.

На фото законченный вид тестера. Его размеры можно представить по размещённому рядом стандартному коробку спичек. В миллиметрах же размеры тестера 80 х 56.5 х 33 мм (без учёта ножек), как и указывал выше.


Pic 20. Цифровой вольтметр.

В тестере применён покупной цифровой вольтметр. Использовал измеритель от 0 до 200 В, но можно и от 0 до 100 В. Стоит он недорого, в пределах 60…120 P.

Печатная плата тестера: ALB_DB3_tester.lay

. Ссылка на статью: #1

mralb.ru

на работоспособность, мультиметром без выпаивания, исправность полупроводниковых элементов

Диодная сборка – линия электрода, которая широко используется во всех электронных приборах. Что он собой представляет, как его проверять и распаять по инструкции, как осуществляется сборка, прозвонка диода и проверка диода, об этом и другом далее.

Что такое диод

Диодом называется электронный вид элемента на плате, который состоит из нескольких полупроводниковых слоев и имеет разную проходимость и мощность, в зависимости от того, какое имеет направление электротока. Электрод делится на анод с катодом. В большинстве случаев он нужен для того, чтобы проводить защитные модуляции с выпрямлениями и преобразованиями поступающих электрических сигналов на супрессоре.

Что такое диод

Инструкция по проверке

В ответ на вопрос, как проверить диод мультиметром, не выпаивая, необходимо уточнить, чтобы успешно его проверить, как и стабилитрон, необходимо взять его и мультиметр, сделать прозвонок. Как правило, многие из устройств оснащены функцией диодной проверки. По инструкции она выглядит таким образом:

Анод и катод

  1. Все, что нужно, это перевести регулятор на функцию проверки, взять концы мультиметра и присоединить их к диодной сборке. К знаку минус нужно поднести анод, а к знаку плюс – катод. Нередко это просто белые и красные полосы соответственно.
  2. Затем появятся значения порогового напряжения и значение с показаний проверки.

Подключение анода и катода

Обратите внимание! В ходе проверки выпрямительного светодиода шотка или schottky прикасаться руками к одному из зарядов нельзя, поскольку корректными показания в таком случае не будут. В ходе первого определения нужно повторить процедуру в противоположном порядке. Так, анод нужно поместить к знаку плюс, а катод – минус. При таком подключении на мультиметр поступит цифра 1. Это значит, что ток не течет. Все под защитой.

Стоит отметить, что более подробная инструкция со схемами, ответами на популярные вопросы о светодиодных узких супрессорах и предупреждениях дана в инструкции к каждому мультиметру.

Мультиметр для проверки диодной сборки

Проверка на исправность полупроводниковых элементов

Чтобы проверить полупроводниковые элементы на исправность, необходимо воспользоваться цифровым измерительным мультиметром с крышкой и большим функционалом. Большинство из них оснащены подобной функцией прозвона моста и генератора, поэтому сделать процедуру проверки может каждый желающий. Все что нужно, это прозвонить с помощью многофункционального мультиметра свободный диод, установить регуляторную ручку на измерительном приборе и нажать кнопку с данным обозначением на управленческой приборной панели. Далее необходимо подключить соответствующий красный щуп к аноду, а черный к катоду. Только так прибор измерит все правильно.

Обратите внимание! Понять, где анод, а где катод, несложно, прочитав описание к модели мультиметра, или воспользоваться помощью электронщика. Как правило, на каждом проводке имеется своя маркировка, благодаря которой понять, где что находится, очень просто в конкретной ситуации. В результате должно получиться пороговое прямое напряжение. Если есть повреждение какого-то элемента, то на панели появится ноль напротив того электрода, который будет подключен, или цифра выше или ниже допустимой.

В ответ на то, как проверить диодную сборку мультиметром, если специального режима в мультиметре нет, можно указать, что необходимо собрать схему: соединить источник питания с резистором и проверяемым полупроводником. Затем подключить элемент анода к резистору, а катод к источнику питания. Далее следует нажать пуск и посмотреть, в каком состоянии находится полупроводниковый элемент. Как и в прошлом случае, исправный элемент измерителем будет выдавать прямое напряжение.

Проверка мультиметром без выпаивания

Без выпаивания мультиметром можно проверить электроды. Все что нужно, это выбрать на устройстве сопротивляющий измерительный режим с диапазоном в 2 кОм. Затем стандартно нужно присоединить красный проводок к части анода, а черный к части катода. Так будет показана цифра напряжения в омах. Как правило, при разрыве цепи измерение получается с цифрой выше допустимого или со значением 0.

Обратите внимание! Важно понимать, что для проверки оборудования и полупроводниковых элементов необходимо полностью действовать в соответствии с представленной к мультиметру инструкцией. Также необходимо понимать важные физические моменты и немного понимать в электронике для составления правильной электрической схемы. В противном случае отсутствие знаний может затруднить работу с мультиметром.

Правильность подключения электродов залог успешной проверки

Тестирование высоковольтных диодов

Для проверки высоковольтного электрода необходимо собрать представленную на рисунке схему. Напряжения в 45 вольт будет достаточно, чтобы проверить любые элементы. Методика проверки не отличается от тестирования простых анодов с катодами. Величина сопротивления при этом не может достигать 3,6 кОм.

Тестирование высоковольтных диодов

Техника безопасности

По технике безопасности любые тестирования с обычными и высоковольтными электродами нельзя проводить в сырых и влажных комнатах. Кроме того, нельзя в момент измерений делать переключения измерений и делать замеры, если величины напряжения с силой тока больше обозначенных в мультиметре. Чтобы проверка была успешной и не опасной, необходимо использовать щупы, имеющие исправную изоляцию.

Техника безопасности при работе с мультиметром

Анализ результатов

Сделав проверку, можно судить о том, исправен полупроводник или нет. Признаком того, работоспособен ли электрод или нет, будут совпадающие величины, которые высвечиваются на панели прибора в том порядке, когда анод подключен к электроду со значением минус, а катод – к тому, что имеет значение плюса.

Что касается противоположного порядка подсоединения, то здесь будет хорошим результат 0. При оценке результатов важно учитывать уровень напряжения. Он может зависеть иногда и от того типа, который имеет электрод.

Результат нулевой

Если соблюдать данные параметры, можно понять, в каком состоянии находится диод. Есть ли поломка или нет. Если же какой-то показатель неудовлетворительный, то полупроводник необходимо в срочном порядке заменить.

Интересно, что проверить диоды может каждый желающий. Сегодня на рынке представлено большое количество бюджетных мультиметров, которые в точности смогут показать правдивые результаты проверки работоспособности диода на любом бытовом электроприборе.

Плохой результат измерительного прибора

Диод это электронный элемент, который обладает определенной проводимостью тока. Проверять его можно при помощи тестера или мультиметра. Делать это необходимо по инструкции, идущей к любому проверяющему аппарату.

rusenergetics.ru

0 comments on “Проверка стабилитронов – Как проверить стабилитрон мультиметром и сделать для него тестер своими руками

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *