Одним из основных понятий в электричестве является электростатическое поле. Его важным свойством считается работа по перемещению заряда в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Условия выполнения работыСила, находящиеся в электростатическом поле, перемещает заряд из одного места в другое. На нее совершенно не влияет форма траектории. Определение силы зависит только от положения точек в начале и конце, а также, от общей величины заряда. Исходя из этого, можно сделать следующий вывод: Если траектория при перемещении электрозаряда является замкнутой, то вся работа сил в электростатическом поле имеет нулевое значение. При этом, форма траектории не имеет значения, поскольку кулоновские силы производят одинаковую работу. Когда направление, в котором перемещается электрозаряд, изменяется на противоположное, то сама сила также изменяет свой знак. Поэтому, замкнутая траектория, независимо от своей формы, определяет всю работу, производимую кулоновскими силами, равной нулю. Если в создании электростатического поля принимает участие сразу несколько точечных зарядов, то их общая работа будет складываться из суммы работ, производимых кулоновскими полями этих зарядов. Общая работа, независимо от формы траектории, определяется исключительно местом расположения начальных и конечных точек. Понятие потенциальной энергии зарядаПотенциальность, свойственная электростатическому полю, позволяет определять потенциальную энергию какого-либо заряда. Кроме того, с ее помощью более точно устанавливается работа по перемещению заряда в электрическом поле. Чтобы получить это значение, в пространстве необходимо выбрать определенную точку и потенциальную энергию заряда, размещаемого в данной точке. Заряд, помещаемый в любую точку, имеет потенциальную энергию, равной работе, совершаемой электростатическим полем, во время перемещения заряда из одной точки в другую. В физическом смысле, потенциальная энергия представляет собой значение для каждой из двух разных точек пространства. При этом, работа по перемещению заряда находится вне зависимости от путей его перемещения и выбранной точки. Потенциал электростатического поля в данной пространственной точке, равняется работе, совершаемой электрическими силами, когда единичный положительный заряд удаляется из этой точки в бесконечное пространство. Работа электрического поля |
Работа при перемещение электрического заряда в электрическом поле
Работа при перемещение электрического заряда в электрическом поле
Вычислим работу при перемещении электрического заряда в однородном электрическом поле с напряженностью . Если перемещение заряда происходило по линии на пряженности поля на расстояние Ad = d1-d2 (рис. 110), то работа равна
где d1 и d2 — расстояния от начальной и конечной точек до пластины В.
В механике было показано, что при перемещении между двумя точками в гравитационном поле работа силы тяжести не зависит от траектории движения тела. Силы гравитационного и электростатического взаимодействия имеют одинаковую зависимость от расстояния, векторы сил направлены вдоль прямой, соединяющей взаимодействующие точечные тела. Отсюда следует, что и при перемещении заряда в электрическом поле из одной точки в другую работа сил электрического поля не зависит от траектории’ его движения.
При изменении направления перемещения на 180° работа сил электрического поля, как и работа силы тяжести, изменяет знак на противоположный. Если при перемещении заряда q из точки В в точку С силы электрического поля совершили работу А, то при перемещении заряда q по тому же самому пути из точки С в точку В они совершают работу — А. Но так как работа не зависит от траектории, то и при перемещении по траектории
Работа сил электростатического поля при движении электрического заряда по любой замкнутой траектории равна нулю.
Поле, работа сил которого по любой замкнутой траектории равна нулю, называется потенциальным полем. Гравитационное и электростатическое поля являются потенциальными полями.
sfiz.ru
Работа и энергия в электростатическом поле
Часть задач школьного уровня связана с поиском работы и энергии в электростатическом поле.
Работа по перемещению заряда в электростатическом поле.
- Поле однородно
Однородным называется поле, напряжённость которого во всех точках одинакова (
). Поместим в данное поле заряд . Тогда, исходя из определения напряжённости электростатического поля, модуль силы, действующей на заряд: (1)Вспомним определение механической работы:
(2)Подставим (1) в (2):
(3)Соотношение (3) удобно для поиска работы, в случае заряда в однородном электростатическом поле.
Важно: в задачах однородное поле должно быть задано самим выражением «считать поле однородным», также электростатическое поле плоского конденсатора можно считать однородным.
- Поле неоднородно
Неоднородным называется поле, напряжённость которого непостоянно в различных точках пространства. В случае неоднородности поля, воспользуемся выражением (3):
= = (4)Мы воспользовались определением перемещения: разность конечного (
) и начального () положения тела.Исходя из определения потенциала:
= = (5)- где
- — проекция вектора на выбранную ось,
- — потенциал в точке.
Тогда, если ввести
и , получим: (6)Т.е. в неоднородном электростатическом поле (а на самом деле, в любом), работа по переносу заряда численно равна переносимому заряду, умноженному на разность потенциалов между точками переноса.
Важно: неоднородное поле в задаче вводится через саму фразу «поле неоднородное» и через источники: точечный заряд, шар, которые также создают неоднородные поля.
Вывод: в задачах на нахождение работы по переносу заряда необходимо выяснить характер поля (однородное или неоднородное) и применить соответствующее выражение (3) или (6).
Энергия взаимодействия зарядов
А теперь обсудим энергию взаимодействия зарядов. Энергия взаимодействие зарядов на школьном уровне даётся без вывода, поэтому мы тоже ещё просто зафиксируем:
(7)Поделиться ссылкой:
www.abitur.by
Работа перемещения заряда в электрическом поле. Потенциал.
На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами электрического поля отрицательного заряда Q. По закону Кулона сила, перемещающая заряд, является переменной и равной
где r — переменное расстояние между зарядами.
Тогда
. Это выражение можно получить так:
Величина представляет собой потенциальную энергию Wп заряда в данной точке электрического поля:
.
Знак (-) показывает, что при перемещении заряда полем его потенциальная энергия убывает, переходя в работу перемещения.
Величина равная потенциальной энергии единичного положительного заряда (q = +1), называется потенциалом электрического поля.
Тогда . Для q = +1 .
Таким образом, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного положительного заряда из одной точки в другую.
Работа перемещения заряда в электрическом поле не зависит от формы пути, а зависит только от разности потенциалов начальной и конечной точек пути.
Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной.
Напряженность поля является его силовой характеристикой, а потенциал –энергетической.
Связь между напряженностью поля и его потенциалом выражается формулой
,
знак (-) обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, а в сторону возрастания потенциала.
5. Использование электрических полей в медицине.
Франклинизация, или «электростатический душ», представляет собой лечебный метод, при котором организм больного или отдельные участки его подвергаются воздействию постоянного электрического поля высокого напряжения.
Постоянное электрическое поле при процедуре общего воздействия может достигать 50 кВ, при местном воздействии 15 – 20 кВ.
Механизм лечебного действия. Процедуру франклинизации проводят таким образом, что голова больного либо другой участок тела становятся как бы одной из пластин конденсатора, в то время как второй является электрод, подвешенный над головой, или устанавливаемый над местом воздействия на расстоянии 6 — 10см. Под влиянием высокого напряжения под остриями игл, закрепленных на электроде, возникает ионизация воздуха с образованием аэроионов, озона и окислов азота.
Вдыхание озона и аэроионов вызывает реакцию сосудистой сети. После кратковременного спазма сосудов происходит расширение капилляров не только поверхностных тканей, но и глубоких. В результате улучшаются обменно-трофические процессы, а при наличии повреждения тканей стимулируются процессы регенерации и восстановления функций.
В результате улучшения кровообращения, нормализации обменных процессов и функции нервов происходит уменьшение головных болей, повышенного артериального давления, повышенного сосудистого тонуса, урежение пульса.
Применение франклинизации показано при функциональных расстройствах нервной системы
Примеры решения задач
1.При работе аппарата для франклинизации ежесекундно в 1 см3 воздуха образуется 500000 легких аэроионов. Определить работу ионизации, необходимую для создания в 225 см3 воздуха такого же количества аэроионов за время лечебного сеанса (15 мин). Потенциал ионизации молекул воздуха считать равным 13,54 В, условно считать воздух однородным газом.
Решение:
— потенциал ионизации, А– работа ионизации, N-количество электронов.
2.При лечении электростатическим душем на электродах электрической машины приложена разность потенциалов 100 кВ. Определить, какой заряд проходит между электродами за время одной процедуры лечения, если известно, что силы электрического поля при этом совершают работу 1800Дж.
Решение:
Отсюда
Электрический диполь в медицине
В соответствии с теорией Эйнтховена, лежащей в основе электрокардиографии, сердце представляет собой электрический диполь, расположенный в центре равностороннего треугольника (треугольник Эйнтховена), вершины которого условно можно считать
находящимися в правой руке, левой руке и левой ноге.
За время сердечного цикла изменяется как положение диполя в пространстве, так и дипольный момент. Измерение разности потенциалов между вершинами треугольника Эйнтховена позволяет определить соотношение между проекциями дипольного момента сердца на стороны треугольника следующим образом:
Зная напряжения UAB, UBC, UAC, можно определить, как ориентирован диполь относительно сторон треугольника.
В электрокардиографии разность потенциалов между двумя точками тела (в данном случае между вершинами треугольника Эйнтховена) называется отведением.
Регистрация разности потенциалов в отведениях в зависимости от времени называется электрокардиограммой.
Геометрическое место точек конца вектора дипольного момента за время сердечного цикла называется вектор-кардиограммой.
Лекция №4
Контактные явления
1. Контактная разность потенциалов. Законы Вольты.
2. Термоэлектричество.
3. Термопара, ее использование в медицине.
4. Потенциал покоя. Потенциал действия и его распространение.
- Контактная разность потенциалов. Законы Вольты.
При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты). Эта разность потенциалов называется контактной.
Для того чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла.
Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A1 и A2, причем A1 < A2. Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A2 > A1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй — отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:
или
(1)
Приведем теперь в контакт два металла с A1 = A2, имеющие различные концентрации свободных электронов n01 > n02. Тогда начнется преимущественный перенос свободных электронов из первого металла во второй. В результате первый металл зарядится положительно, второй – отрицательно. Между металлами возникнет разность потенциалов , которая прекратит дальнейший перенос электронов. Возникающая при этом разность потенциалов определяется выражением:
, (2)
где k — постоянная Больцмана.
В общем случае контакта металлов, различающихся и работой выхода и концентрацией свободных электронов к.р.п. из (1) и (2) будет равна:
(3)
Легко показать, что сумма контактных разностей потенциалов последовательно соединенных проводников равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников:
.
Это положение называется вторым законом Вольты.
Если теперь непосредственно соединить концевые проводники, то существующая между ними разность потенциалов компенсируется равной по величине разностью потенциалов , возникающей в контакте 1 и 4. Поэтому к.р.п. не создает тока в замкнутой цепи металлических проводников, имеющих одинаковую температуру.
2. Термоэлектричество – это зависимость контактной разности потенциалов от температуры.
Составим замкнутую цепь из двух разнородных металлических проводников 1 и 2.
Температуры контактов a и b будем поддерживать различными Тa > Tb. Тогда, согласно формуле (3), к.р.п. в горячем спае больше, чем в холодном: . В результате между спаями a и b возникает разность потенциалов , называемая термоэлектродвижущей силой, а в замкнутой цепи пойдет ток I. Пользуясь формулой (3), получим
, или
, (4)
где для каждой пары металлов.
- Термопара, ее использование в медицине.
Замкнутая цепь проводников, создающая ток за счет различия температур контактов между проводниками, называется термопарой.
Из формулы (4) следует, что термоэлектродвижущая сила термопары пропорциональна разности температур спаев (контактов).
Формула (4) справедлива и для температур по шкале Цельсия:
(4’)
Термопарой можно измерить только разности температур. Обычно один спай поддерживается при 0ºС. Он называется холодным спаем. Другой спай называется горячим или измерительным.
Термопара обладает существенными преимуществами перед ртутными термометрами: она чувствительна, безинерционна, позволяет измерять температуру малых объектов, допускает дистанционные измерения.
Измерение профиля температурного поля тела человека.
Считается, что температура тела человека постоянна, однако это постоянство относительно, поскольку на различных участках тела температура не одинакова и меняется в зависимости от функционального состояния организма.
Температура кожи имеет свою вполне определенную топографию. Самую низкую температуру (23-30º) имеют дистальные отделы конечностей, кончик носа, ушные раковины. Самая высокая температура – в подмышечной области, в промежности, области шеи, губ, щек. Остальные участки имеют температуру 31 — 33,5 ºС.
У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием диагностики заболеваний методом построения профиля температурного поля с помощью контактных устройств: термопары и термометра сопротивления.
4. Потенциал покоя. Потенциал действия и его распространение.
Поверхностная мембрана клетки не одинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя)
При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия, который распространяется в нервных волокнах.
Механизм распространения потенциала действия по нервному волокну рассматривается по аналогии с распространением электромагнитной волны по двухпроводной линии. Однако наряду с этой аналогией существуют и принципиальные различия.
Электромагнитная волна, распространяясь в среде, ослабевает, так как ее энергия рассеивается, превращаясь в энергию молекулярно-теплового движения. Источником энергии электромагнитной волны является ее источник: генератор, искра и т.д.
Волна возбуждения не затухает, так как получает энергию из самой среды, в которой она распространяется (энергия заряженной мембраны).
Таким образом, распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки.
Примеры решения задач
1. При построении профиля температурного поля поверхности тела человека используется термопара с сопротивлением r1 = 4 Ом и гальванометр с сопротивлением r2 = 80 Ом; I=26 мкА при разности температур спаев ºС. Чему равна постоянная термопары?
Решение:
Термоэдс, возникающая в термопаре, равна , где термопары, -разность температур спаев.
По закону Ома для участка цепи ,где U принимаем как . Тогда
Лекция №5
Электромагнетизм
1. Природа магнетизма.
2. Магнитное взаимодействие токов в вакууме. Закон Ампера.
3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа.
4. Диа-, пара- и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.
5. Магнитные свойства тканей организма.
1. Природа магнетизма.
Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами.
Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты.
Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества.
2. Магнитное взаимодействие токов в вакууме. Закон Ампера.
Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I1 и I2 в них и обратно пропорциональна квадрату расстояния r между участками:
~ (1)
Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и .
~ , (2)
где — угол между и радиусом-вектором r12, соединяющим с , а — угол между и нормалью n к плоскости Q, содержащей участок и радиус-вектор r12.
Объединяя (1) и (2) и вводя коэффициент пропорциональности k, получим математическое выражение закона Ампера:
(3)
Направление силы также определяется по правилу буравчика: оно совпадает с направлением поступательного движения буравчика, рукоятка которого вращается от к нормали n1.
Элементом тока называется вектор, равный по величине произведению Idl бесконечно малого участка длины dl проводника на силу тока I в нем и направленный вдоль этого тока. Тогда, переходя в (3) от малых к бесконечно малым dl, можно записать закон Ампера в дифференциальной форме:
. (4)
Коэффициент k можно представить в виде
, (5)
где — магнитная постоянная (или магнитная проницаемость вакуума).
Величина для рационализации с учетом (5) и (4) запишется в виде
. (6)
3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа.
Поскольку электрические токи взаимодействуют друг с другом посредством своих магнитных полей, количественную характеристику магнитного поля можно установить на основе этого взаимодействия-закона Ампера. Для этого проводник l с током I разобьем на множество элементарных участков dl. Он создает в пространстве поле.
В точке О этого поля, находящуюся на расстоянии r от dl, поместим I0dl0. Тогда, согласно закону Ампера (6), на этот элемент будет действовать сила
(7)
где -угол между направлением тока I на участке dl (создающем поле) и направлением радиуса-вектора r, а -угол между направлением тока I0dl0 и нормалью n к плоскости Q содержащей dl и r.
В формуле (7) выделим часть, не зависящую от элемента тока I0dl0, обозначив ее через dH:
— закон Био-Савара-Лапласа (8)
Величина dH зависит только от элемента тока Idl, создающего магнитное поле, и от положения точки О.
Величина dH является количественной характеристикой магнитного поля и называется напряженностью магнитного поля. Подставляя (8) в (7), получим
, (9)
где — угол между направлением тока I0 и магнитного поля dH. Формула (9) называется формулой Ампера, выражает зависимость силы, с которой магнитное поле действует на находящийся в нем элемент тока I0dl0 от напряженности этого поля. Эта сила расположена в плоскости Q перпендикулярно dl0. Ее направление определяется по «правилу левой руки».
Полагая в (9) =90º, получим:
(10)
Т.е. напряженность магнитного поля направлена по касательной к силовой линии поля, а по величине равна отношению силы, с которой поле действует на единичный элемент тока, к магнитной постоянной.
4. Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.
Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными, вторые –парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики.
Диамагнетики — фосфор, сера, золото, серебро, медь, вода, органические соединения.
Парамагнетики— кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы.
Ферромагнетики – железо, никель, кобальт, их сплавы.
Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества.
У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.
Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается.
У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его.
При ликвидации внешнего поля под действием теплового движения ориентация магнитных моментов атома нарушается и парамагнетик размагничивается.
Результирующая напряженность магнитного поля в веществе H’ равна
, (1)
где -напряженность поля, создаваемого самой средой. Знак (+) берется для парамагнетиков, (-) для диамагнетиков. Поскольку ~H, то
, (2)
где -магнитная проницаемость среды, которая характеризует ее способность намагничиваться под влиянием внешнего поля.
Магнитное поле в веществе принято характеризовать индукцией магнитного поля
, (3),
где 0-магнитная постоянная. Или (4), где -абсолютная магнитная проницаемость среды. В вакууме =1, , а
В ферромагнетиках имеются области (~10-2 см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен.
С появлением внешнего поля домены, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При достаточно сильном поле все домены переориентируются вдоль поля, и ферромагнетик быстро намагничивается до насыщения.
При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение не может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля.
При температуре, равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик.
Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность:
(5)
Единица измерения B –Тесла, Ф-Вебер.
Похожие статьи:
poznayka.org
11.6. Работа сил электростатического поля по перемещению зарядов.
В однородном поле (рис.11.12). Однородное поле создают, например, большие металлические пластины, имеющие заряды противоположного знака. Найдем работу по перемещению заряда q’ на расстояние d:
Таким образом, работа, совершаемая силами поля, не зависит от формы пути, по которому перемещался заряд, а зависит только от расстояния d, измеряемого вдоль силовой линии между начальным и конечным положением заряда.
В неоднородном поле точечного заряда q (рис.11.13).
Найдем работу по перемещению пробного заряда q’ из точки 1 в точку 2 в поле, создаваемом точечным зарядом q:
. (11-23)
И в этом случае работа сил не зависит от формы пути. Она является только функцией начального и конечного положения заряда.
Для замкнутой траектории L она равна нулю, т. к. , т. е.
или (11-24)
т.е. циркуляция вектора напряженности по любому замкнутому контуру равна нулю.
В механике было приведено следующее определение: «Силы, работа которых не зависит от формы пути, называются консервативными силами, а поля, работа сил которых не зависит от формы пути, называются потенциальными полями». Таким образом, рассмотренное нами электростатическое поле является потенциальным, а кулоновские силы — консервативными.
11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
Известно, что работа сил потенциального поля может быть представлена как убыль потенциальной энергии, т. е.
. (11-25)
Отсюда следует, что потенциальная энергия пробного заряда в поле заряда q будет
При потенциальная энергия должна обращаться в нуль, поэтому значение постоянной С полагаем равным нулю. В итоге получаем, что
(11-26)
Величину
(11-27)
называют потенциалом электрического поля в данной точке. Потенциал , наряду с напряженностью электрического поля, используется для описания электрического поля. Потенциал точечного зарядаq, как следует из (11-26) и (11-27),
, (11-28)
т. е. (прямо пропорционален величине заряда и обратно пропорционален расстоянию от него). Потенциал в СИ измеряется в вольтах:
1 В= 1Дж/1 Кл.
Если поле создает система точечных зарядов то потенциал
. (11-29)
Из формулы (11-27) вытекает, что заряд q’, находящийся в точке поля с потенциалом , обладает потенциальной энергией
. (11-30)
Следовательно, работу сил поля над зарядом q’ можно выразить через разность потенциалов
, (11-31)
здесь — разность потенциалов между двумя точками поля, которая называется напряжением. Напряжение тоже измеряется в вольтах.
Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью.
Ее уравнение имеет вид .
Для точечного заряда
и эквипотенциальная поверхность является сферической. При перемещении заряда q’ вдоль эквипотенциальной поверхности на отрезок dl потенциал не изменяется, т. е. = 0, следовательно,
.
Вектор напряженности электрического поля , перпендикулярен эквипотенциальной поверхности.
studfile.net
Работа перемещения заряда в электростатическом поле. Потенциал поля. Разность потенциалов
Если в электростатическом поле точечного заряда qиз точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд q0, то сила, приложенная к заряду, совершает работу. Работа силы на элементарном перемещении dlравна
Работа при перемещении заряда q0из точки 1 в точку 2
Работа A12не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы — консервативными.
Таким образом, работа перемещения заряда в электростатическом поле по любому замкнутому контуру Lравна нулю
Интеграл называется циркуляцией вектора напряженности. Из обращения ее в нуль следует, что линии напряженности электростатического поля никогда не могут быть замкнуты сами на себя. Они начинаются и кончаются на зарядах, либо уходят в бесконечность. Это свидетельствует о наличии в природе двух родов электрических зарядов. Формула справедлива только для электростатического поля.
При перемещении зарядов изменяется их взаимное расположение, поэтому работа, совершаемая электрическими силами, в этом случае равна изменению потенциальной энергии перемещаемого заряда:
Потенциальная энергия заряда q0, находящегося в поле заряда qна расстоянии r от него равна
Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0.
Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов потенциальная энергия из взаимодействия (притяжения) отрицательна.
В любой точке поля потенциальная энергия W заряда численно равна работе, которую необходимо совершить для перемещения заряда из бесконечности в эту точку.
Отношение зависит только от q и r. Эту величину называют потенциалом:
Единица электрического потенциала – вольт (В).
Она характеризует потенциальную энергию, которой обладал бы положительный единичный заряд, помещенный в данную точку поля.Для поля точечного заряда: . Потенциал данной точки поля равен работе перемещения единичного положительного заряда из данной точки в бесконечность.
Потенциал поля, создаваемого системой точечных зарядов, равен алгебраической сумме потенциалов всех этих зарядов: .
Работа сил поля при перемещении заряда q’ из точки 1 в точку 2 может быть записана в виде:
Величину называют разностью потенциалов (напряжением) электрического поля.
megaobuchalka.ru
Работа электрического поля при перемещении заряда — Мегаобучалка
На пробный электрический заряд, помещенный в электростатическое поле, действует сила, заставляющая этот заряд перемещаться. Значит, эта сила совершает работу по перемещению заряда. Получим формулу для расчета работы этой силы.
Рассмотрим однородное электрическое поле (такое поле существует между пластинами плоского заряженного конденсатора вдали от его краев):
Допустим, что мы поместили пробный заряд в точку М. Тогда сила во всех точках поля имеет один и тот же модуль и направление. Под действием силы заряд перемещается в точку N. Работа, совершенная полем:
Представим, что заряд переместился по пути MKN. Работа поля по перемещению заряда:
Представим, что заряд переместился из точки N в точку M по криволинейной траектории. Тогда мы можем разделить эту траекторию на малые участки, каждый из которых можно будет считать прямолинейным. Запишем работу на каждом таком участке, затем эти работы сложим и придем к тому же результату. Значит ее работа не зависит от траектории движения, а зависит только от расположения начальной и конечной точки движения. Мы рассмотрели однородное электрическое поле, но полученный вывод верен для любого электростатического поля.
Сила, работа которой не зависит от формы пути, проходимого точкой приложения силы, называется консервативной (потенциальной) силой. Следовательно, сила, действующая на заряд в электрическом поле – консервативная.
Допустим, что в некотором электростатическом поле пробный заряд q0 переместился из точки 1 в точку 2. Из механики известно, что работа консервативных сил по перемещению заряда равна убыли потенциальной энергии системы:
В одной точке электрического поля разные заряды могут обладать различной потенциальной энергией, но отношение потенциальной энергии к заряду для данной точки поля оказывается постоянной величиной. Она называется потенциалом и ее принимают за энергетическую характеристику данной точки поля:
Из выражений (1) и (2) получим:
Т. е. работа, совершаемая силами электрического поля при перемещении заряда, равна произведению заряда на разность потенциалов начальной и конечной точек траектории движения заряда.
Физический смысл потенциала: Предположим, что заряд равен единице, тогда . Таким образом, потенциал – физическая величина, численно равная той потенциальной энергии, которой обладает пробный заряд, равный единице, помещенный в данную точку поля. (Так мы говорим для краткости: на самом деле Wp – потенциальная энергия системы зарядов, образующих поле и пробного заряда, внесенного в это поле).
За единицу потенциала принимают потенциал такой точки поля, в которой пробный заряд 1 Кл обладает потенциальной энергией 1 Дж. Эта единица – 1 Вольт.
Доказано, что потенциал в некоторой точке поля, созданного точечным зарядом q рассчитывается по формуле:
(*), где
r – расстояние от заряда, образующего поле, до точки, в которой нужно найти потенциал.
Потенциал – скалярная величина. Потенциалы точек поля, созданного положительным зарядом, являются положительными величинами и наоборот. Если поле создано несколькими зарядами, то потенциал каждой точки этого поля есть алгебраическая сумма потенциалов отдельных полей.
Из формулы (*) видно, что потенциал равен нулю, в точках пространства, расположенных бесконечно далеко от заряда, образующего поле.
/*—————————————————-
Можно дать другое толкование физического смысла потенциала:
Предположим, что под действием сил поля заряд переместился из точки поля 1 в бесконечно далекую точку. Тогда работа, совершенная сила ми поля:
. Но , т. к. в бесконечно далекой точке поле отсутствует. Следовательно,
Значит, потенциал поля в точке 1 – физическая величина, численно равная работе, которую совершат силы поля, перемещая единичный заряд из данной точки поля в бесконечно далекую точку.
—————————————————-*/
Значение потенциала данной точки поля зависит от выбора поверхности нулевого потенциала. В физике считают, что нулевым потенциалом обладают точки пространства, бесконечно далекие от зарядов, образующих поле. В радиотехнике считают, что нулевым потенциалом обладают точки поверхности земли. В формулу работы входит разность потенциалов, а эта величина не зависит от выбора точки нулевого потенциала.
Поверхности, перпендикулярные к силовым линиям называются эквипотенциальными поверхностями (поверхностями равного потенциала). Все точки таких поверхностей имеют одинаковый потенциал. Работа поля по перемещению заряда по эквипотенциальной поверхности равна нулю.
Разность потенциалов
Физическая величина, равная работе, которую совершат силы поля, перемещая заряд из одной точки поля в другую, называется напряжением между этими точками поля.
Рассмотрим однородное электростатическое поле (такое поле существует между пластинами плоского заряженного конденсатора вдали от его краев):
Во время перемещения заряда поле совершает работу:
6. Проводник во внешнем электрическом поле
(сто происходит, почему индукцируется)
Индукция электростатическая,
наведение в проводниках или диэлектриках электрических зарядов в постоянном электрическом поле.
В проводниках подвижные заряженные частицы — электроны — перемещаются под действием внешнего электрического поля. Перемещение происходит до тех пор, пока заряд не перераспределится так, что созданное им электрическое поле внутри проводника полностью скомпенсирует внешнее поле и суммарное электрическое поле внутри проводника станет равным нулю. (Если бы этого не произошло, то внутри проводника, помещенного в постоянное электрическое поле, неограниченно долго существовал бы электрический ток, что противоречило бы закону сохранения энергии.) В результате на отдельных участках поверхности проводника (в целом нейтрального) образуются равные по величине наведённые (индуцированные) заряды противоположного знака.
В диэлектриках, помещенных в постоянное электрическое поле, происходит поляризация, которая состоит либо в небольшом смещении положительных и отрицательных зарядов внутри молекул в противоположные стороны, что приводит к образованию электрических диполей (с электрическим моментом, пропорциональным внешнему полю), либо в частичной ориентации молекул, обладающих электрическим моментом, в направлении поля. В том и другом случае электрический дипольный момент единицы объёма диэлектрика становится отличным от нуля. На поверхности диэлектрика появляются связанные заряды. Если поляризация неоднородная, то связанные заряды появляются и внутри диэлектрика. Поляризованный диэлектрик порождает электростатическое поле, добавляющееся к внешнему полю. (См. Диэлектрики.)
megaobuchalka.ru