Расчет однофазной цепи переменного тока онлайн – , ,

Расчет цепей переменного тока

Расчет электрических цепей переменного синусоидального тока производится в комплексной форме. При этом величины синусоидальных ЭДС и токов представляются в виде комплексных амплитуд или комплексных действующих значений, а все элементы в схеме – в виде комплексных сопротивлений.

Например, если ЭДС источника равна , то комплексная амплитуда запишется в виде- в показательной форме записи, или- в алгебраической форме. Комплексное действующее значение синусоидальной ЭДС:— в показательной форме записи, или- в алгебраической форме.

Комплексные сопротивления элементов электрической цепи переменного тока:

— для идеального сопротивления,

— для идеальной индуктивности,

— для идеальной емкости.

Далее расчет электрической цепи переменного тока можно вести любым методом, известным из раздела – «электрические цепи постоянного тока». При этом используется математический аппарат, разработанный для операций с комплексными числами.

Применяются три формы записи комплексного значения синусоидальной величины:

— показательная форма,

— алгебраическая форма,

где и— действительная и мнимая часть комплексного значения синусоидальной величины. Переход от алгебраической формы к показательной осуществляется по формулам:

;.

Переход от показательной формы к тригонометрической осуществляется по формуле Эйлера:

.

Сложение и вычитание комплексных величин производится в алгебраической форме, а умножение и деление в показательной.

При анализе цепей синусоидального тока применяют главным образом комплексные действующие значения синусоидальных величин, сокращенно их называют комплексными значениями.

      1. Расчет однофазных цепей

Расчет однофазных цепей переменного тока при наличии одного источника синусоидальной ЭДС производится методом эквивалентных преобразований. Рассмотрим пример расчета однофазной цепи приведенной на рис.

Рис. 2.4. Схема электрической цепи к примеру расчета

Пример расчета однофазной цепи

По заданным значениям активных и реактивных сопротивлений и напряжению источника определить токи во всех ветвях схемы и падения напряжения на ее участках. Определить комплекс полной мощности, активную и реактивную мощность. Расчет произвести комплексным методом. Выполнить проверку правильности расчета с использованием баланса активных мощностей схемы. Построить векторную диаграмму. Построить мгновенные значения синусоидальных токов ветвей. Исходные данные для расчета приведены в таблице.

U, В

R1, Ом

R2, Ом

R3, Ом

X1, Ом

X2, Ом

X3, Ом

100

50

100

100

50

50

100

Решение:

Электрическая цепь на рис. 2.4 состоит из трех ветвей, определим комплексные сопротивления ветвей. Сопротивление первой ветви, состоящей из сопротивления R1 и идеальной катушки индуктивности с комплексным сопротивлением

:

Ом.

Сопротивление второй ветви, состоящей из сопротивления R2 и идеальной емкости с комплексным сопротивлением:

Ом.

Сопротивление третьей ветви, состоящей из сопротивления R3 и идеальной катушки индуктивности с комплексным сопротивлением:

Ом.

Вторая и третья ветвь соединены параллельно, поэтому их эквивалентное сопротивление

Эквивалентное сопротивление всей схемы:

Ом.

Зная эквивалентное сопротивление, можно определить ток в первой ветви:

А.

Затем можно определить напряжения на участках цепи:

В,

В.

Зная напряжение на участке bc можно рассчитать токи

А,

А.

Проверку правильности расчета токов можно выполнить по первому закону Кирхгофа в комплексной форме:

, или

.

Так как первый закон Кирхгофа выполняется, значит, расчет токов выполнен верно.

Комплекс полной мощности:

,

где — сопряженный комплекс тока. ЕслиА, то сопряженный комплексА. Таким образом, комплекс полной мощности равен

ВА.

При этом действительная часть комплекса полной мощности равна активной мощности потребляемой схемой

Вт,

а мнимая часть комплекса полной мощности равна реактивной мощности схемы

ВА.

Векторная диаграмма токов и напряжений строиться на комплексной плоскости по координатам, полученным при расчете в комплексной форме. Токи и напряжения строятся в одних координатных осях, но для них выбираются разные масштабы. Диаграмма для рассчитанной схемы показана на рис. 2.5.

Рис. 2.5. Векторная диаграмма токов и напряжений

Выражения для мгновенных значений токов можно получить из комплексных значений записанных в показательной форме:

А.

Действующее значение тока I1 = 0.724 А, а фазовый сдвиг, таким образом мгновенное значение тока равно

А.

Аналогично для остальных токов:

А.

А.

А.

А.

Графики мгновенных значений токов приведены на рис. 2.6.

Рис. 2.6. Мгновенные значения токов

studfile.net

Символический (комплексный) метод расчета цепей переменного тока

Одним из способов расчета цепей переменного тока является комплексный, или еще как говорят, символический метод расчета. Этот метод применяется при анализе схем с гармоническими ЭДС, напряжениями и токами. В результате решения получают комплексное значение токов и напряжений, используя для решения любые методы (эквивалентных преобразований, контурных токов, узловых потенциалов и т.п.). Но для начала необходимо иметь понятие, в каких именно формах может представляться синусоидальная величина. 1. Одна из форм представления – это вращающийся вектор (см. рис.1):

Рис.1. Вращающийся вектор

С помощью рисунка ясно видно, как с течением времени меняется значение синусоидальной величины. В нашем случае – это величина а на графике, которая может быть, например, входным напряжением. Величина имеет некоторое начальное значение при t = 0 при начальной фазе φ

имеет положительное максимальное значение при угле ωt3, когда при времени t3 сумма ωt3φ = 90° и соответственно,

имеет отрицательное максимальное значение при угле ωt7, когда при времени t7 сумма углов ωt7φ = 270° и, соответственно,

и имеет два нулевых значения при ωtn + φ = 0, когда ωtn = —φ (на рис.1 эта область не показана и находится слева от начала координат)

и тогда

и имеет нулевое значение при угле ωt11, когда при времени t11 сумма ωt11φ = 360° и соответственно,

Именно по такому закону и меняется привычное нам переменное напряжение 220 В, изменяясь по синусоидальному закону от  значения  0 В до максимальных 311 В и обратно.

2. Другая форма представления – это комплексное число. Чтобы представить ранее рассмотренную форму представления синусоидальной величины, которая имеет некоторую начальную фазу φ, создают комплексную плоскость в виде графика зависимости двух величин (рис.2)

Рис.2. Комплексное число на комплексной плоскости

Длина вектора Am на такой комплексной плоскости равна амплитуде (максимальному значению) рассматриваемой величины. С учетом начальной фазы φ такое число записывают как .

На практике при использовании для расчетов символического (комплексного) метода расчета используют для некоторых удобств не амплитудное значение величины, а так называемое действующее значение. Его величина в корень из двух раз меньше амплитудного и обозначается без индекса m, т.е. равна

На рисунке выше этот вектор также показан.
Например, при том же нашем напряжении в сети, максимальное значение синусоидально изменяющегося напряжения равно 311 В, а действующее значение, к значению которого мы привыкли

При работе с комплексными числами и расчетов применяют различные формы записи комплексного числа. Например, при сложении комплексных чисел удобнее использовать алгебраическую форму записи таких чисел, а при умножении или делении – показательную форму записи. В некоторых случаях пишут тригонометрическую форму.
Итак, три формы записи комплексного числа:

1) показательная форма в виде

2) тригонометрическая форма в виде

3) алгебраическая форма

где ReA — это действительная составляющая комплексного числа, ImA — мнимая составляющая.

Например, имеем комплексное число в показательной форме вида

в тригонометрической форме записи это запишется как

при подсчете получим число, плавно переходящее в алгебраическую форму с учетом того, что

В итоге получим

где

При переходе от алгебраической формы к показательной комплексное число вида

переходит к показательному виду  по следующим преобразованиям

а угол

Таким образом, и получим

Перейдем к рассмотрению несложных примеров использования  символического, или по-другому, комплексного метода расчета электрических цепей. Составим небольшой алгоритм комплексного метода:

      • Составить комплексную схему, заменяя мгновенные значения ЭДС, напряжений и токов их комплексным видом
      • В полученной схеме произвольно выбирают направления токов в ветвях и обозначают их на схеме.
      • При необходимости составляют комплексные уравнения по выбранному методу решения.
      • Решают уравнения относительно комплексного значения искомой величины.
      • Если требуется, записывают мгновенные значения найденных комплексных величин.

Пример 1. В схеме рис.3 закон изменения ЭДС e = 141sin*ωt. Сопротивления R1 = 3 Ом, R2 = 2 Ом, L = 38,22 мГн, С = 1061,6 мкФ. Частота f = 50 Гц. Решить символическим методом. Найти ток и напряжения на элементах. Проверить 2-ой закон Кирхгофа для цепи.

Рис.3. Схема с последовательным соединением элементов

Составляем комплексную схему, обозначив комплексные токи и напряжения (рис.4):

Рис.4. Схема с комплексными обозначениями

По закону Ома ток в цепи равен

где U — комплексное входное напряжение, Z — полное сопротивление всей цепи. Комплекс входного напряжения находим как

Пояснение: здесь начальная фаза  φ = 0°, так как  общее выражение для мгновенного значения напряжение вида при  φ = 0° равно

Соответственно, комплекс входного напряжения в показательной форме запишется как

Полное комплексное сопротивление цепи в общем виде

Находим комплексное сопротивление индуктивности

Находим комплексное сопротивление емкости

Соответственно, общее комплексное сопротивление цепи

Ток в цепи

Комплексные напряжения на элементах

Проверяем второй закон Кирхгофа для замкнутого контура, т.е. должно выполняться равенство

Проверяем

С небольшим расхождением из-за округлений промежуточных вычислений всё верно.

Пример 2. В электрической цепи (рис.5) однофазного синусоидального тока, схема и параметры элементов которой заданы для каждого варианта в таблице, определить:
1)  полное сопротивление электрической цепи и его характер;
2)  действующие значения токов в ветвях;
3) показания вольтметра и ваттметра;

    1. Исходные данные: Е = 220 В, f = 50 Гц, L1 = 38,2 мГн, R2 = 6 Ом, С2 = 318 мкФ, L2 = 47,7 мГн, R3 = 10 Ом, С3 = 300 мкФ.

Рис.5.Цепь однофвзного синусоидального тока

Решение:
1.  Находим комплексные сопротивления ветвей и всей цепи:
Учитываем, что

Комплексное сопротивление первой ветви:

Комплексное сопротивление второй ветви:

Комплексное сопротивление третьей ветви:

Общее сопротивление цепи

Откуда

— нагрузка носит активно-индуктивный характер

2. Находим действующие значения токов в ветвях:

Рис.6. Схема с обозначенными комплексными токами

Действующие значения, соответственно,

3. Определим показания приборов:
Вольтметр подключен по схеме параллельно источнику питания. Соответственно его показание равно:
U=220 В
Ваттметр включен токовой обмоткой в разрыв третьей ветви, а обмоткой напряжения также к выводам третьей ветви, измеряя, таким образом,  активную мощность третьей ветви. Эта мощность равна мощности на сопротивлении R3. Его показания:

electrikam.com

Пример решения задачи однофазного синусоидального тока

Для цепи, изображенной на рис. 1 требуется:

  1. Определить комплексным методом действующие значения напряжений и токов на всех участках цепи.
  2. Определить активные, реактивные и полные мощности каждого участка цепи и всей цепи.
  3. Составить баланс активных и реактивных мощностей и оценить погрешность расчета.
  4. Построить векторную диаграмму токов и напряжений.

Частота питающего напряжения 50 Гц.


Рис. 1

Исходные данные:
U = 127 В , r1 = 15 Ом , C1 = 60 мкФ, r2 = 10 Ом , L2 = 80 мГн, r3 = 15 Ом , C3 = 90 мкФ.

Решение. Заказать у нас работу!   Решить онлайн! (New!!!)

  1. Определим комплексные сопротивления каждой ветви.

(Ом)
(Ом)
(Ом)

2. Определим полное сопротивление цепи.

(Ом)

3. Приняв найдем токи и напряжения в ветвях.

(А)

(В)

(В)

(А)
(А)

4. Определим активные, реактивные и полные мощности участков цепи и всей цепи целиком.

Мощность первого участка:
(ВА)
Мощность второго участка:
(ВА)
Мощность третьего участка:
(ВА)
Полная мощность всей цепи:
(ВА)

Проверим баланс активных мощностей:
P = P1 + P2 + P3
P = 205,2 (BA)
 P1 + P2 + P3 = 61,25 + 82,44 + 61,22 = 204,91 (Вт)
 Абс. погр-ть Δ = P – (P1 + P2 + P3) = 205,2 – 204,91 = 0,29 (Bт)
Отн. погр-ть

Проверим баланс реактивных мощноcтей:
S = S1 + S2 + S3
S =- 153,96 (BA)
S1 + S2 + S3 = — 216,7 + 207,19 – 144,5 = — 154,01 (ВА)
Абс. погр-ть Δ = |S – (S1 + S2 + S3)| = |153,96 – 154,01| = 0,05 (BA)
Отн. погр-ть

5. Построим векторную диаграмму на комплексной плоскости.

Для этого определим напряжения на каждом элементе схемы.
(В)
(В)
(В)
(В)
(В)
(В)

Рис. 2. Векторная диаграмма.

Заказать у нас работу!  Решить онлайн! (New!!!)

 

freewriters.narod.ru

Расчет цепей переменного тока | Онлайн журнал электрика

Хоть какой ток изменяющийся по величине является переменным. Но на практике под переменным током понимают таковой ток, закон конфигурации которого во времени есть синусоидальная функция.

Математическое выражение для синусоидального тока можно записать в виде:

где, i — секундное значение тока, показывающее величину тока в определенный момент времени, Im — амплитудное (наибольшее) значение тока, выражение в скобках есть фаза, которая определяет значение тока в момент времени t, f — частота переменного тока, это величина, оборотная периоду конфигурации синусоидальной величины Т, ω — угловая частота, ω = 2πf = 2π / T, α — исходная фаза, указывает значение фазы в момент времени t = 0.

Аналогичное выражение можно записать и для синусоидального переменного напряжения:

Секундные значения тока и напряжения договорились обозначать строчными латинскими знаками i, u, а наибольшие (амплитудные) значения – строчными печатными латинскими знаками I, U с индексом m.

Для измерения величины переменного тока в большинстве случаев употребляют действующее (действенное) значение, которое численно равно такому неизменному току, который за период переменного выделяет в нагрузке такое же количество тепла, что и переменный ток.

Действующее значение переменного тока:

Для обозначения действующих значений тока и напряжения употребляют строчные печатные латинские буковкы I, U без индекса.

В цепях синусоидального тока меж амплитудным и действующим значениями существует связь:

В цепях переменного тока изменение во времени питающего напряжения влечёт за собой изменение тока, также магнитного и электронного полей, связанных с цепью. Результатом этих конфигураций является появление ЭДС самоиндукции и взаимоиндукции в цепях с катушками индуктивности, а в цепях с конденсаторами возникают зарядные и разрядные токи, которые делают сдвиг по фазе меж напряжениями и токами в таких цепях.

Отмеченные физические процессы учитывают введением реактивных сопротивлений, в каких, в отличие от активных, не происходит перевоплощение электронной энергии в другие виды энергии. Наличие тока в реактивном элементе разъясняется повторяющимся обменом энергией меж таким элементом и сетью. Все это усложняет расчёт цепей переменного тока, потому что приходится определять не только лишь величину тока, да и его угол сдвига по отношению к напряжению.

Все главные законы цепей неизменного тока справедливы и для цепей переменного тока, но только для моментальных значений либо значений в векторной (всеохватывающей) форме. На базе этих законов можно составить уравнения, дозволяющие выполнить расчёт цепи.

Обычно, целью расчёта цепи переменного тока является определение токов, напряжений, углов сдвига фаз и мощностей на отдельных участках. При составлении уравнений для расчёта таких цепей выбирают условные положительные направления ЭДС, напряжений и токов. Получаемые уравнения для моментальных значений в установившемся режиме и синусоидальном входном напряжении будут содержать синусоидальные функции времени.

Аналитический расчёт тригонометрических уравнений неудобен, просит значимых издержек времени и потому не находит широкого распространения в электротехнике. Упростить анализ цепи переменного тока можно, используя тот факт, что синусоидальную функцию можно условно изобразить вектором, а вектор, в свою очередь, можно записать в виде всеохватывающего числа.

Всеохватывающим числом именуют выражение вида:

где a – вещественная (действительная) часть всеохватывающего числа, j – надуманная единица, b – надуманная часть, A – модуль, α– аргумент, e – основание натурального логарифма.

1-ое выражение представляет собой алгебраическую форму записи всеохватывающего числа, 2-ое – показательную, а третье – тригонометрическую. Для отличия, в всеохватывающей форме записи подчеркивают буковку, обозначающую электронный параметр.

Способ расчёта цепи, основанный на применении всеохватывающих чисел, именуется символическим способом. В символическом способе расчета все реальные характеристики электронной цепи подменяют знаками в всеохватывающей форме записи. После подмены реальных характеристик цепи на их всеохватывающие знаки расчет цепей переменного тока делают способами, которые применяли для расчета цепей неизменного тока. Отличие заключается в том, что все математические операции нужно делать с всеохватывающими числами.

В итоге расчета электронной цепи разыскиваемые токи и напряжения получаются в виде всеохватывающих чисел. Реальные действующие значения тока либо напряжения равны модулю соответственного комплекса, а аргумент всеохватывающего числа указывает угол поворота вектора на всеохватывающей плоскости по отношению к положительному направлению вещественной оси. При положительном аргументе вектор поворачивается против часовой стрелки, а в случае отрицательного аргумента – по часовой.

Завершают расчёт цепи переменного тока, обычно, составлением баланса активных и реактивных мощностей, который позволяет проверить корректность вычислений.

Школа для электрика

elektrica.info

Расчет однофазного и трехфазного тока

   Добрый день!
   Из этой статьи вы узнаете по каким формулам рассчитывается однофазный и трехфазный ток, какие параметры нужно знать чтобы выполнить расчет и где их найти. Ну и конечно же я приведу пример по расчету однофазного и трехфазного токов.

Формула для расчета однофазного тока выглядит следующим образом:


где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

       

Формула для расчета трехфазного тока выглядит следующим образом: 

где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

Для электродвигателей имеет смысл учитывать коэффициент полезного действия (КПД), поэтому формулы приобретают следующий вид:

где P — мощность электроприемника, Вт

      U — напряжение питающей сети, В

      cosφ — коэффициент мощности

      ɳ — КПД

   Можно заметить, что формулы для расчета однофазного и трехфазного токов не сложные, осталось только разобраться где брать составляющие для их расчета. 

   Мощность электроприемника (P, Вт) можно узнать из паспорта, который к нему прилагается или по табличке на корпусе устройства. Если же такой информации нет, то в интернете вы без труда найдете мощность нужного электроприемника, но для этого нужно знать точное название.

    Напряжение питающей сети (U,B) при расчетах однофазных электроприемников принимается 220В, а при расчете трехфазных электроприемников 380В. На практике эти значения обычно отличаются, так как напряжение на вводе немного завышено с целью предотвращения потерь напряжения. Бывают так же случаи когда напряжение на вводе ниже номинального из за большой удаленности потребителя и т.д.

   Коэффициент мощности cosφ (отношение активной и полной мощности) при расчетах берется из паспорта к электроприемнику, а если такая информация там отсутствует то берется из справочников. В подавляющем большинстве случаев значение cosφ неизвестно, но известны средние значения для того или иного типа потребителей, подставив которые можно выполнить расчет. Идеальный случай — это когда cosφ=1, но таким значением могут похвастаться лишь ТЭНы, обогреватели, лампы накаливания  (0,99-1). У электродвигателей значения коэффициентов мощности варьируются в пределах 0,7-0,9, у люминесцентных и светодиодных светильников  коэффициент мощности варьируется в пределах (0,85-0,96), у компьютеров 0,6-0,8.

   Все вышеприведенные параметры можно замерить опытным путем, тем самым проверить правильность расчетов.

   КПД указывается в паспорте к электродвигателю.

   

   Ну а теперь я приведу несколько примеров по расчету токов.

   Пример 1. Возьмем электрический чайник, мощностью 2кВт. Мы знаем, что он подключается к электросети 220В, а так же знаем коэффициент мощности (0,99-1), которым в данном случае мы можем пренебречь. Далее берем формулу для однофазного тока, и получаем:

   Пример 2. Возьмем трехфазный электродвигатель АИР56B2 мощностью 0,25кВт. Коэффициент мощности данного электродвигателя составляет 0,78. Для расчета тока электродвигателей стоит учитывать КПД (ɳ), который для данного двигателя равен 66%. Далее берем формулу для расчета трехфазного электрического тока, и получаем:

   Подводя итог, отмечу что правильный подсчет токов очень важен в проектировании, либо просто в быту. Правильно посчитав токи можно с уверенностью выбирать защитный, коммутационный аппарат, либо подбирать сечение проводника. 4

     Если же Вам необходим совет по расчету тока, либо выбору кабеля, обращайтесь в форму обратной связи. Помогу чем смогу!

380220.blogspot.com

Расчет однофазной цепи переменного тока

3.  расчет  однофазной  цепи  переменного  тока

3.1. Задание для самостоятельной работы

Для цепи синусоидального тока заданы параметры (табл. 8) включенных в нее элементов (рис. 10) и действующее значение напряжения на ее зажимах; частота питающего напряжения f = 50 Гц. Необходимо:

1) определить действующие значения тока в ветвях и неразветвленной   части цепи символическим методом;

2) по полученным комплексным изображениям записать выражения для мгновенных значений тока в ветвях и напряжения на участке цепи с параллельным соединением;

3) построить упрощенную векторную диаграмму;

4) составить баланс мощности;

5) определить характер (индуктивность или емкость) и параметры элемента, который нужно добавить в неразветвленную часть схемы, чтобы в цепи имел место резонанс напряжений;

6) выполнить моделирование режима работы цепи при заданных параметрах и в режиме резонанса напряжений с помощью системы схемотехнического моделирования Electronics Workbench.

3.2. Методические указания к выполнению аналитического расчета

3.2.1. Рассмотрим порядок расчета однофазной цепи переменного тока на примере анализа схемы, представленной на рис. 11, а. Числовые значения параметров указаны в табл. 9.

Расчет однофазной цепи с одним источником выполняют методом эквивалентных преобразований («сворачиванием» – «разворачиванием») схемы, который рассмотрен в разд. 1.

Перед выполнением расчетов необходимо значения всех параметров привести к международной системе единиц СИ (1 мГн = 10-3 Гн; 1 мкФ = 10-6 Ф). Расчет ведется символическим методом с помощью аппарата комплексных чисел.

                                       1                                                     2    

          3                                          4                                       5

                      

                                                   6                                          7

   

                    8                           9                                                     0

Рис. 10

Таблица 8

Числовые значения параметров элементов схемы

Вариант

Напряжение,

В

Параметры элементов цепи

R1, Ом

L1, мГн

С1, мкФ

R2, Ом

L2, мГн

С2, мкФ

R3, Ом

L3, мГн

С3, мкФ

0

220

9

15

800

9

17

1000

5

14

800

1

127

6

20

200

8

18

800

6

10

700

2

380

8

25

400

7

20

600

7

8

450

3

380

5

16

600

6

48

400

8

13

600

4

127

7

10

500

5

13

500

9

11

500

5

220

4

14

1000

12

31

700

10

9

400

6

220

3

18

700

6

20

900

7

21

300

7

127

6

12

300

7

16

450

8

18

200

8

380

5

26

650

6

18

650

6

15

900

9

127

8

24

480

8

26

800

4

12

600

Таблица 9

Числовые значения параметров элементов схемы для примера расчета

Вариант

Напряжение,

В

Параметры элементов цепи

R1, Ом

R2, Ом

L2, мГн

С2, мкФ

С3, мкФ

127

5

10

20

200

300

Для расчета полных комплексных сопротивлений ветвей определим реактивные составляющие сопротивлений (рис. 11, б), которые создают реактивные элементы, находящиеся в ветвях. Реактивное сопротивление индуктивного элемента , емкостного – , общее сопротивление ветви, содержащей индуктивный и емкостный элементы, – , где  рад;f = 50 Гц – частота питающего напряжения.

Первая ветвь цепи не содержит реактивного элемента, поэтому реактивная составляющая сопротивления ветви будет равна нулю:  Ом.

vunivere.ru

0 comments on “Расчет однофазной цепи переменного тока онлайн – , ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *