Маленькие хитрости. Часть 4. — КульбакиМастер.ru
Формулы для радиолюбительских расчетов.
Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!
Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.
Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.
Закон Ома.
Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:
I=U/R
U=IR
R=U/I
Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).
Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.
Как рассчитать сопротивление гасящего резистора.
Сопротивление гасящего резистора рассчитывают по формуле: R=U/I
Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).
Как рассчитать мощность гасящего резистора.
Расчет мощности гасящего резистора проводят по формуле: P=I2R
Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).
Как рассчитать напряжение падения на сопротивлении.
Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад. =RI
Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).
Как рассчитать ток потребляемый устройством или цепью.
Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U
Где P– мощность устройства (Вт), U– напряжение питания устройства (В).
Как рассчитать мощность устройства в Вт.
Рассчитать мощность устройства в Вт. можно по формуле: P=IU
Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).
Как рассчитать длину радиоволны.
Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ
Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.
Как рассчитать частоту радиосигнала.
Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ
Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.
Как рассчитать номинальную выходную мощность звуковой частоты.
Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U2вых./ Rном.
Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.
И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.
Как рассчитать сопротивление двух параллельно включенных резисторов.
Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)
Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).
Как рассчитать сопротивление более двух включенных параллельно резисторов.
Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…
Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).
Как рассчитать емкость включенных параллельно двух или более конденсаторов.
Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…
Где C1 , C
Как рассчитать емкость включенных последовательно двух конденсаторов.
Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2
Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно более двух конденсаторов.
Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…
Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).
СЛЕДУЮЩИЙ МАТЕРИАЛ: Виртуальный осциллограф
Рекомендуем посмотреть:
Программы для радиолюбительских расчетов и измерений
Справочники по радиоэлектронике
Падение напряжения: расчет, формула, как найти
Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.
Что означает падение напряжения
Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.
Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.
Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.
Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.
Закон Ома для участка цепиДопустимое падение напряжение в кабеле
Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.
Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.
Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.
Падение напряжения на резистореПроверка кабеля по потере напряжения
Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.
Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:
- при освещении и сигнализации при напряжении более 50 вольт – 5 %;
- при освещении и сигнализации при напряжении 50 вольт – 10 %;
- при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
- при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
- при пуске двигателей – 25 %;
- при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
- при подаче электричества в генераторы и распределительный щит – 1 %.
Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.
Пример калькулятора для автоматизации вычисленийКак найти падение напряжения и правильно рассчитать его потерю в кабеле
Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.
Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:
- определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
- определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
- определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
- определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).
Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.
Таблица значений индуктивных сопротивленийВ трехфазной сети
Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.
Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле
Формула расчетаПервый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.
Пример таблицыПотери напряжения определены следующей формулой:
ΔU = ΔUтабл * Ма;
Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.
Однолинейная схема линии трехфазного токаНа участке цепи
Для того, чтобы провести замер потери напряжения на участке цепи, следует:
- Произвести замер в начале цепи.
- Выполнить замер напряжения на самом удаленном участке.
- Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.
Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.
Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).
Образец калькулятора для вычисления потерьТаким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.
Формулы для радиолюбительских расчетов.
Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!
Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.
Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.
Закон Ома.
Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:
Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).
Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.
Как рассчитать сопротивление гасящего резистора.
Сопротивление гасящего резистора рассчитывают по формуле: R= U /I
Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).
Как рассчитать мощность гасящего резистора.
Расчет мощности гасящего резистора проводят по формуле: P=I 2 R
Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).
Как рассчитать напряжение падения на сопротивлении.
Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад . =RI
Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).
Как рассчитать ток потребляемый устройством или цепью.
Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U
Где P– мощность устройства (Вт), U– напряжение питания устройства (В).
Как рассчитать мощность устройства в Вт.
Рассчитать мощность устройства в Вт. можно по формуле: P=IU
Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).
Как рассчитать длину радиоволны.
Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ
Где ƒ-частота в килогерцах, ƛ- длинна волны в метрах.
Как рассчитать частоту радиосигнала.
Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ
Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.
Как рассчитать номинальную выходную мощность звуковой частоты.
Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U 2 вых./ R ном .
Где U 2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.
И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.
Как рассчитать сопротивление двух параллельно включенных резисторов.
Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)
Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).
Как рассчитать сопротивление более двух включенных параллельно резисторов.
Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…
Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).
Как рассчитать емкость включенных параллельно двух или более конденсаторов.
Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…
Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно двух конденсаторов.
Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2
Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно более двух конденсаторов.
Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…
Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).
Рекомендуем посмотреть:
Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.
Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.
Схема делителя напряжения на резисторах
Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.
Расчет делителя напряжения на резисторах
Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.
Формула делителя напряжения
Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.
Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:
Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:
Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:
Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:
И, на какое-то время, мы можем упростить схему:
Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:
А так как I1 равно I2, то:
Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.
Делитель напряжения — калькулятор онлайн
Применение делителя напряжения на резисторах
В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.
Потенциометры
Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.
Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.
Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.
Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.
Резистивные датчики
Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.
Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).
Пример работы делителя напряжения на фоторезисторе.
Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.
Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.
21 комментарий
Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.
Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.
спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?
Просто и понятно описано, чтобы понять даже ребенку.
За калькуляторы отдельное спасибо — очень удобно!
Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.
Читайте примечание внизу калькулятора…
вполне приличный калькулятор.спасибо.
Спасибо за отличный и удобный калькулятор!
Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов
смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .
При умножении на R1 ты вычислишь разницу напряжений Uin-Uout
А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.
Без учета нарузки это сферический конь в вакууме.
Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.
Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.
отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))
да кстати сколько ват рассеит резистор как посчитать?
Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.
Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).
Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)
Делитель напряжения — это простая схема, которая позволяет получить из высокого напряжения пониженное напряжение.
Используя только два резистора и входное напряжение, мы можем создать выходное напряжение, составляющее определенную часть от входного. Делитель напряжения является одной из наиболее фундаментальных схем в электронике. В вопросе изучения работы делителя напряжения следует отметить два основных момента – это сама схема и формула расчета.
Схема делителя напряжения на резисторах
Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.
Расчет делителя напряжения на резисторах
Расчет делителя напряжения предполагает, что нам известно, по крайней мере, три величины из приведенной выше схемы: входное напряжение и сопротивление обоих резисторов. Зная эти величины, мы можем рассчитать выходное напряжение.
Формула делителя напряжения
Это не сложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.
Для того чтобы узнать какое напряжение будет на выходе делителя, выведем формулу исходя из закона Ома. Предположим, что мы знаем значения Uin, R1 и R2. Теперь на основании этих данных выведем формулу для Uout. Давайте начнем с обозначения токов I1 и I2, которые протекают через резисторы R1 и R2 соответственно:
Наша цель состоит в том, чтобы вычислить Uout, а это достаточно просто используя закон Ома:
Хорошо. Мы знаем значение R2, но пока неизвестно сила тока I2. Но мы знаем кое-что о ней. Мы можем предположить, что I1 равно I2. При этом наша схема будет выглядеть следующим образом:
Что мы знаем о Uin? Ну, Uin это напряжение на обоих резисторах R1 и R2. Эти резисторы соединены последовательно, при этом их сопротивления суммируются:
И, на какое-то время, мы можем упростить схему:
Закон Ома в его наиболее простом вид: Uin = I *R. Помня, что R состоит из R1+R2, формула может быть записана в следующем виде:
А так как I1 равно I2, то:
Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению сопротивлений R1 и R2.
Делитель напряжения — калькулятор онлайн
Применение делителя напряжения на резисторах
В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.
Потенциометры
Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.
Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.
Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.
Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.
Резистивные датчики
Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.
Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).
Пример работы делителя напряжения на фоторезисторе.
Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.
Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.
21 комментарий
Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.
Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.
спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей
правый(внизу) измеряют снимаемое (Uout) c
Uout и минуса входящего?
Просто и понятно описано, чтобы понять даже ребенку.
За калькуляторы отдельное спасибо — очень удобно!
Увы. Врет калькулятор безбожно!
Пытался рассчитать делитель с 6В на 2.5В.
Жаль нельзя скриншот вставить.
Результаты:
По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3)
По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты.
По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800)
Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать.
Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего.
В общем не фонтан.
Читайте примечание внизу калькулятора…
вполне приличный калькулятор.спасибо.
Спасибо за отличный и удобный калькулятор!
Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов
смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .
При умножении на R1 ты вычислишь разницу напряжений Uin-Uout
А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.
Без учета нарузки это сферический конь в вакууме.
Сама идея создать калькуляторы хорошая.
Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома.
И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки.
И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя.
И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь.
Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.
Блин, ребята! Такие делители применяются исключительно для задания какого-нибудь опорного напряжения для компаратора или для задания точки смещения транзистора. В таких условиях просто принимается что сопротивление нагрузки (т.е. входа этого самого компаратора) на порядки больше, и, соответственно сопротивление такой нагрузки почти не влияет на конечный результат. Да и отклонение резисторов а также температурный дрейф будут вносить бОльшие искажения, нежели сопротивление входа компаратора. А если требуется более точное напряжение, то ставят точные стабилитроны или вобще специализированную микросхему — ИОН (источник опорного напряжения). Но никто через такие делители не запитывает именно полноценную нагрузку. Частный случай такого делителя, это если вместо нижнего резистора ставится стабилитрон. Тогда расчёт по мощности упирается в допустимую мощность стабилитрона, а мощность нагрузки должа быть в разы меньше, т.е. таким образом можно разве что подать питание на одну-две микросхемы маломощные.
отличная подборка, присоединюсь к уже озвученному, жаль нет расчёта по мощности )))
да кстати сколько ват рассеит резистор как посчитать?
Тупит ваш калькулятор, у меня практическая схема R1=260 Ом 10W, R2=120 Ом 5W, при входном 56В на выходе 18В. Мигалка для электропогрузчика с бортовым 56В. Ваш калькулятор перекрывает выходные значения сообщением о мощности и величине сопротивления.
Хороший калькулятор, спасибо автору. Но для полного удобства не хватает расчёта R2 при известном R1 и напряжениях. Как раз столкнулся с такой задачей, пришлось решать методом перебора с последовательным приближением. Все равно это будет переменный резистор, главное понять какой туда повесить чтобы покрыть весь диапазон выходных напряжений, не рискуя разорвать ОС при «шуршании» бегунка резистора (регулируемый БП).
Нужно еще один калькулятор — чтобы по Uin, Uout и I выдавал нужные сопротивления (когда нужно, чтобы ток был определенной величины — не больше заданной, но и не на порядки меньше: например, ток 10мА при 10В->3В, если брать килоомные сопротивления, меня не устраивает)
Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях
Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо, между нулевой и минусом – нижнее плечо.
Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:
На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.
В соответствии с законом Ома (1):
Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):
Тогда напряжение на всем участке цепи (4):
Отсюда определим, чему равно значение тока без включения нагрузки (5):
Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):
Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.
Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.
Онлайн подбор сопротивлений для делителя
Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.
Таким образом, напряжения: U=24 B, U2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R1=1000 Ом, тогда используя формулу (7) получим:
выразим отсюда R2:
Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):
Ток, который протекает через делитель, находится по формуле (5):
Схема делителя напряжения на резисторах рассчитана выше и промоделирована:
Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):
По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:
1. R1=1 кОм, P1=0,324 Вт. | ||
2. R2=333,3 Ом, P2=0,108 Вт. |
Полная мощность, которая потеряется:
Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.
Сопротивление конденсатора рассчитывается по формуле (10):
где С – ёмкость конденсатора, Ф; | ||
f – частота сети, Гц. |
Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f. Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):
Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):
где L – индуктивность, Гн. |
Падение напряжения на индуктивностях (14,15):
Недостаточно прав для комментирования
Автор Aluarius На чтение 5 мин. Просмотров 259 Опубликовано
Делитель напряжения на резисторах
Резисторный делитель напряжения — это устройство, с помощью которого из источника с высоким напряжением можно получить лишь необходимую для устройства часть. Это нужно сделать для питания потребителя с низкой мощностью. Ниже вы узнаете о разновидностях такого приспособления, для чего оно используется в физике, а также, как произвести необходимые расчёты самостоятельно и при помощи программ.
Что такое делитель тока
Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.
Состоит делитель обычно из двух резисторов, параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.
Виды и принцип действия
В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.
Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема, позволяющая понять принцип действия:
Различают разные устройства, в зависимости от элементов в составе:
- резистивный — более популярен из-за простоты устройства.
- ёмкостный;
- индуктивный.
Формула для расчёта делителя напряжения
Как рассчитать резистор для понижения напряжения ?
Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.
Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.
Можно рассчитать общее сопротивление в резисторах:
R=R1*R2/(R1+R2)
В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток:
I=I1+I2
Найти общий ток можно, зная закон Ома
Уменьшаемое в итоге напряжение на резисторах находится по формуле:
U1=(R1/(R1+R2))*U
U2=(R2/(R1+R2))*U
Остаётся узнать, как найти ток на обоих резисторах:
I=U/R
Также, рассчитать напряжение на резисторе можно через ЭДС (Электродвижущую силу):
r – внутреннее сопротивление устройства.
Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях
Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.
Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.
Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2
Ток в цепи устройства:
Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.
Формула для вычисления сопротивления:
Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.
Сопротивление катушки находится по формуле:
Расчет делителя напряжения калькулятором онлайн
Калькулятор онлайн — это программа, с помощью которой вы можете произвести необходимые вычисления для расчёта U выходного. Её используют, когда в расчётах много резисторов или при больших значениях. Для этого вам сначала нужно определить U исходное, сопротивление каждого из резисторов и ёмкость конденсатора.
Практическое применение параллельного и последовательного соединения
Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.
Пример работы делителя напряжения на фоторезисторе.
Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:
Освещённость | R1 (кОм) | R2(кОм) | R2/(R1+R2) | U выходное (В) |
Яркая | 5,6 | 1 | 0,15 | 0,76 |
Тусклая | 5,6 | 7 | 0,56 | 2,78 |
Темнота | 5,6 | 10 | 0,67 | 3,21 |
Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.
Потенциометры
Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.
На потенциометр подается напряжение, регулируемое подвижным контактом, который действует, когда крутят ручку, в результате оно может меняться от нуля до исходного значения.
Потенциометры используют в быту, как регулятор громкости, и в электронике, например, в качестве датчика.
Резистивные датчики
Резистивные датчики также называют омическими. Это приборы, в которых изменяется сопротивление, если изменяется длина, площадь сечения или удельное сопротивление. Их используют в устройствах для изменения сопротивления, а также при помощи микроконтроллера с его помощью вы можете измерить напряжение. Существуют различные датчики, одним из некоторых является фоторезистор — переменный резистор, сопротивление которого зависит от попадающего на него света.
Переменный резистор в качестве делителя напряжения
Переменный резистор позволяет напряжению изменяться более плавно. Работает он так: крайние выводы подключаются к положительному и отрицательному заряду, а из центрального на выходе получается пониженное напряжение
Делитель применяют в различных конструкциях, если нагрузка сети слишком высока для устройства, в датчиках и электронных схемах. Он является одним из основных аспектов электроники, позволяет приспособить параметры сети для механизма. Теперь вы знаете, для чего применяют резисторный делитель, основные для использования вычисления, например, как рассчитать резистор для понижения напряжения.
Светодиоды все чаще используются нами в различных сферах. Они представляют собой полупроводниковый прибор, превращающий электрический ток в световое излучение.
Для получения света с их помощью, не надо применять специальные дополнительные преобразователи. Достаточно подать на него электрический ток. В этом моменте часто проблемы. Они чувствительны к большим скачкам тока, которые наблюдаются при включении.
Для защиты от таких скачков, в цепь включают специально подобранные резисторы.
Резисторы по праву считаются самыми распространенными радиоэлементами. Главная их характеристика состоит в сопротивлении, в двух словах, они препятствуют протеканию электрического тока.
Резисторы считаются пассивными элементами электрической цепи. Они могут быть постоянными, т.е. такими сопротивлениями, у которых протекание тока остается неизменным. И переменными, где величину сопротивления можно регулировать от 0 до его максимального значения. Их используют как токоограничительные элементы, делители напряжения, шунты для измерительных приборов, и тому подобное.
Основной параметр резистора – это его сопротивление. Сопротивление – это его свойство препятствовать протеканию электрического тока. Измеряемой характеристикой величины сопротивления есть Ом.
Расчет сопротивления для светодиодов
Как произвести расчет:
Для провидения расчета понадобится знать точные параметры светодиода и источника напряжения. Их можно прочитать в паспортных данных, или найти в интернете. По источнику питания нам понадобятся данные выходного напряжения.
По светодиоду, его номинальное напряжение и рабочий ток.
Возьмем, к примеру, простейшую схему на рисунке выше. У нас источник питания Uи = 12В, напряжение на светодиоде Uvd= 2В, номинальный рабочий ток светодиода будет Ivd = 0,02А, в справочнике эта величина может быть показана как 2мА.
Найдем падения напряжения на резисторе.
Для этого, отнимем от напряжения источника питания, падения на светодиоде:
- Ur= Uи – Uvd = 12 – 2 = 10В;
У нас выходит падение напряжения на резисторе 10 вольт.
Используя формулу закона Ома, найдем величину необходимого сопротивления цепи:
- R=U/I = 10/0.02 = 500 Ом.
Подставив в формулу значение напряжения и тока, мы получили величину сопротивления. После этого, находим по справочным таблицам, ближайшее стандартное значение. Если нет точного значения, лучше взять с небольшим запасом в большую сторону.
Расчет онлайн
Для расчета на онлайн-калькуляторе понадобятся все те же данные, что и для расчетов в ручном режиме. Это: напряжение источника питания, номинальный прямой ток и напряжение, количество светодиодов, и их схема подключения.
Ниже приведены ссылки на несколько источников с онлайн-калькуляторами:
- http://forum220.ru/calc-res-led.php. На странице этого калькулятора вам подскажут, как можно найти номинальное прямое напряжение светодиода по цвету его света, если данные об этом отсутствуют.
- http://cxem.net/calc/ledcalc.php. Этот калькулятор не только рассчитает вам значения сопротивления, но и предложит схему подключения. Это будет удобно в случае большого количества светодиодов.
- http://h-t-f.ru/calk/online-calculator-for-resistor-leds. Калькулятор учитывает особенности соединения.
Принцип работы и область применения
Резисторы разной мощности
Принцип работы резистора построен на рассеивании мощности. Номинальной мощностью рассеивания является та мощность, которую резистор может рассеять не повреждаясь. Единица мощности – ватты.
Рассматривая роль резистора с точки зрения электротехники, мощность можно определить по формуле: Р=I ² * R, где P – мощность, I – значение силы тока, R – сопротивление резистора.
Резисторы являются важными элементами электрической цепи, главная их функция – это сопротивление протеканию электрического тока. Этим он способствует стабилизации и ограничении силы тока протекающей по цепи. Его часто используют в качестве балластного резистора, чтобы иметь возможность регулировать напряжение в цепи.
Резисторы, в том числе балластные, используются для поглощения некоторой части напряжения, выравнивают силы тока в различных участках цепи. Тем самым, они поддерживают стабильность напряжения.
Этот принцип используют в резисторах для светодиодов. Светодиоды чувствительны к большим скачкам тока, которые могут возникнуть при их включении, они могут привести их негодность. Включенный последовательно с ним токоограничивающий резистор, уменьшит ток до приемлемой величины.
Подключение и пайка
Светодиоды – это полупроводниковые приборы, при их подключении необходимо соблюдать полярность. При неправильном подключении они работать не будут, и довольно часто выходят со строя.
Анод имеет полярность +, катод соответственно -. Обычно, ножка катода немного меньше по длине. Часто, катод можно опознать по более толстой ножке внутри прибора. В любом случае, данные по контактам можно найти в справочной литературе.
Диоды также боятся перегрева во время пайки. Для пайки нельзя использовать мощные паяльники, лучше использовать приборы мощностью до 100 Вт.
Также, можно в качестве вспомогательных средств для охлаждения использовать пинцет. Он отведет часть тепла. Вместо пинцета, можно использовать и другие металлические инструменты.
Паяльник перед пайкой надо разогреть до его максимальной температуры. Было бы хорошо, чтобы его температура была в пределах 250-280 градусов Цельсия.
Сам процесс пайки одной ножки не должен превышать 4-5 секунд. При этом времени, прибор не успеет перегреться.
При монтаже светодиода на месте установки, старайтесь, чтобы контакты ближе к корпусу, оставались параллельны, как при выходе из производства. Изгибайте контакты небольшими радиусами, уступив подальше от корпуса. Собирайте их на твердом плоском материале. Предварительно, подготовьте отверстия для ножек светодиодов с помощью дрели.
Подбирая источник питания, следует помнить: чем больше разница рабочего напряжения светодиода и источника питания, тем меньше они будут подвержены влиянию скачков напряжения блока питания. Не забывайте устанавливать предохранители.
Если у вас безвыходные SMD светодиоды, у них вместо ножек для пайки контактные площадки. Эти площадки расположены на нижней части их корпуса. Паяют их маломощными паяльниками не более 15 ВТ.
Часто, для этой работы применяют специальное жало. Оно имеет разветвление на рабочем конце. Народные умельцы вместо специального жала наматывают тонкий медный провод на стандартное жало. Оптимальный диаметр такого провода 1 мм.
Легче всего проверить светодиоды с помощью тестера. Проверяется он как обычный диод. Его надо включить в прямом положении, чтобы между анодом и катодом пошло положительное напряжение. Многие современные цифровые приборы имеют встроенную возможность проверки диодов. Главное при проверке – соблюдать полярность.
Статья была полезна?
0,00 (оценок: 0)
Автор Aluarius На чтение 7 мин. Просмотров 549 Опубликовано
Ни одна электрическая схема не обходится без резисторов. Что это такое, для чего он нужен и какими способами их подключают в электрическую цепь рассмотрим подробно.
Что такое резистор и для чего он нужен
Резистор – пассивный элемент электрической цепи, который поглощает энергию тока и преобразовывает её в тепло за счет сопротивления потоку электронов в цепи.
Зависимость тока от сопротивления описывается законом Ома и рассчитывается по формуле I = U/R.
Свойство резисторов ограничивать ток и снижать напряжение используется во многих электронных устройствах и бытовых приборах.
Справка: Резисторы бывают двух видов – постоянные и переменные, во втором случае сопротивление проводника изменяется механическим путем (вручную).
Последовательное и параллельное соединение резисторов – основные способы соединения резистивных элементов.
Внимание! Резистор не имеет полярности, длина выводов с обоих концов одинакова, поэтому для лучшего понимания сути соединения предлагается называть выводы:
- С правого края – правый.
- С левого края – левый.
Понятие параллельного подключения резисторов
При параллельном подключении правые выводы всех резисторов соединяются в один узел, левые – во второй узел.
При параллельном включении резисторов ток в цепь разветвляется по отдельным ветвям, протекая через каждый элемент – по закону Ома величина тока обратно пропорциональна сопротивлению, напряжение на всех элементах одинаковое.
Справка: Ветвь – фрагмент электрической цепи, содержащий один или несколько последовательно соединенных компонентов от узла до узла.
Последовательное подключение
При последовательном соединении резисторы нужно подключить в цепь друг за другом – правый вывод одного резистора к левому второго, правый второго – к левому третьего и так далее в зависимости от количества соединяемых элементов.
При последовательном соединении ток, не изменяя своей величины, течет через все резистивные элементы.
Смешанное подключение
При смешанном подключении в одной схеме сочетаются несколько видов соединений – последовательное, параллельное соединение резисторов и их комбинации. Самую сложную электрическую схему, состоящую из источников питания, диодов, транзисторов, конденсаторов и других радиоэлектронных элементов можно заменить резисторами и источниками напряжения, параметры которых изменяются в каждый момент времени. О параллельном соединении резистора и конденсатора читайте тут.
Смешанная схема делится на фрагменты, ток и напряжение рассчитывается для каждого отдельно в зависимости от того, как они соединены на выбранном сегменте электрической схемы.
Важно! Для расчета сопротивления резистора в схеме применяют отдельные формулы для каждого конкретного элемента в зависимости от вида соединения.
Что ещё нужно учитывать при подключении резисторов
Важный показатель в работе резистивного элемента мощность рассеивания – переход электрической энергии в тепловую, вызывающую нагрев элемента.
При превышении допустимой мощности рассеивания резисторы будут сильно греться и могут сгореть, поэтому при расчете схем соединения надо учитывать этот параметр – важно знать насколько изменится мощность резистивных элементов при включении в электрическую цепь.
Какая мощность тока при последовательном и параллельном соединении
Определение мощности отдельного резистивного элемента производится по формуле
P = U²/R или P = I²R , которую можно вывести из формулы расчета мощности электрической цепи P = UI по закону Ома.
Мощность при параллельном соединении
Рассчитав сопротивление каждого элемента в отдельности, считаем мощность каждого по формуле P = I²R, где
- R – не номинальное сопротивление резистивного элемента, а рассчитанное для данной цепи;
- I – сила тока в цепи.
При параллельном соединении через меньший резистор протекает больший ток – мощность рассеивания на этом резистивном элементе будет больше, чем на остальных.
Важно! При расчете параллельной цепи следует учитывать мощность сопротивления с самым маленьким номиналом.
Мощность при последовательном соединении
Вычислив сопротивление каждого резистивного элемента по отдельности, рассчитываем мощность каждого по формуле P = U²/R, где
- R – рассчитанное нами сопротивление для определенной схемы;
- U – падение напряжения на данном резистивном элементе.
Справка: Полную мощность цепи при последовательном и параллельном соединении можно найти, сложив вычисленные мощности отдельных элементов, входящих в цепь Pобщ = P1+P2+P3+…+Pn.
Как правильно рассчитать сопротивление
Применяется закон Ома для участка цепи – расчет сопротивления делается по формуле R = U/I, где
- U – падение напряжение на конкретном резистивном элементе;
- I – ток, протекающий через него.
При последовательном соединении
Для двух элементов считаем Rобщ = R1+R2.
Для нескольких сопротивлений разного номинала Rобщ = R1+R2+R3+…+Rn.
При параллельном соединении
Расчет для двух резисторов делаем по формуле Rобщ = (R1×R2)/(R1+R2).
Сопротивление параллельных резисторов с разным номиналом рассчитываем по формуле
Rобщ = 1/(1/R1+1/R2+1/R3+…+1/Rn).
Для элементов, соединенных в параллель, суммарное сопротивление всегда ниже наименьшего номинального.
Как рассчитать сложные схемы соединения резисторов
Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.
Перед нами сложная схема – задача рассчитать общее сопротивление:
- R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
- R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
- R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.
Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.
Преобразование «звезда-треугольник»
Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:
- «звезда» – соединение трех ветвей с одним общим узлом;
- «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.
Справка: Узел – точка, в которой соединяются три и более проводника электрической цепи.
Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».
Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».
RA = RAB RAC/(RAB+RAC+RDC).
Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.
RAB=(RARB+RARC+RBRС)/RC
О разнице подключения звезда и треугольник читайте здесь.
Чему равна сила тока в цепи при параллельном соединении резисторов
Согласно правилу Кирхгофа ток, поступающий в узел, равен току, выходящему из узла, – величина тока до группы параллельных резисторов и после нее должна быть неизменной.
Ток в группе параллельных резисторов распределяется по цепи в зависимости от их номинала, после прохождения через сопротивления суммируется в узле и выходит из него неизменным I = I1+I2+I3+…+In.
Как определить величину эквивалентного сопротивления при последовательном соединении резисторов
Справка: Эквивалентом сопротивления называется замена части схемы, состоящей из нескольких резистивных элементов, одним элементом.
Для последовательного соединения эквивалентное сопротивление равно сумме сопротивлений резисторов, включенных в группу, для расчета применяется формула Rэкв = R1+R2+…+Rn.
Например: Нужно посчитать эквивалентное сопротивление данной схемы.
Решение задачи производится путем разделения резистивных элементов на системные группы.
Выделяем первую группу из последовательно соединенных элементов – R2, R3, R4.
Считаем сопротивление Rобщ1 = R2+R3+R4.
Выделяем вторую группу из последовательных элементов R1, R5, R6.
Считаем сопротивление Rобщ2 = R1+R5+R6.
Получаем величину двух эквивалентных сопротивлений Rобщ1 и Rобщ2, соединенных параллельно.
Делаем расчет всей схемы Rэкв= Rобщ1× Rобш2/ (Rобщ1+ Rобщ2).
Зная способы соединения и формулы расчета можно рассчитать любую сложную схему соединения резистивных элементов, однако существует множество онлайн калькуляторов, которые сделают это быстрей человека, достаточно только ввести нужные параметры компонентов схемы.
Как рассчитать падение напряжения на резисторе?
Наука
- Анатомия и физиология
- астрономия
- астрофизика
- Биология
- Химия
- наука о планете Земля
- Наука об окружающей среде
- Органическая химия
- физика
математический
- Алгебра
- Исчисление
- Геометрия
- Prealgebra
- тригонометрия и алгебра
- Статистика
- тригонометрия
гуманитарные науки
.Определяем падение напряжения на резисторах
Меню- Форумы Новые сообщения Поиск по форумам
- Что нового Новые сообщения Новые средства массовой информации Новые комментарии СМИ Новые ресурсы Последние действия
- статьи Лучшие статьи Поисковые ресурсы
- члены Текущие посетители
- EE Ресурсы DesignFast Электронные книги / технические советы Вопросы и ответы LEAP Awards Осциллограф Finder EE Подкасты EE Вебинары EE Whitepapers EE Калькуляторы Калькулятор сопротивления термистора Таймерный калькулятор 555 (нестабильный режим) Калькулятор LM3914 Конденсаторный калькулятор импеданса Конденсаторный калькулятор импеданса Калькулятор LM317 Все калькуляторы
EE Видео Блоги
Поиск
Где угодно
Как рассчитать напряжение на компоненте
- Программирование
- Электроника
- Компоненты
- Как рассчитать напряжение на компоненте
Автор: Cathleen Shamieh
Чтобы выяснить, какое напряжение падает на каждом резисторе, вы используете закон Ома для каждого отдельного резистора. Вы знаете значение каждого резистора, а вы знаете ток, протекающий через каждый резистор. Помните, что ток ( I ) — это напряжение аккумулятора (9 В), деленное на общее сопротивление ( R1 + R2 ), или приблизительно 7,4 мА.
Теперь вы можете применить закон Ома к каждому резистору для расчета падения напряжения:
Обратите внимание, что если вы добавите падение напряжения на два резистора, вы получите 9 вольт, что является общим напряжением, подаваемым батареей. Это не совпадение; батарея подает напряжение на два резистора в цепи, а напряжение питания распределяется между резисторами пропорционально, в соответствии со значениями резисторов.Этот тип схемы известен как делитель напряжения .
Используйте это изображение для расчета разделенных напряжений.
Существует более быстрый способ вычисления любого из «разделенных напряжений» ( В 1 или В 2 ) на этом рисунке. Вы знаете, что ток, проходящий через цепь, может быть выражен как
Вы также знаете, что:
и
Например, для расчета В 1 можно заменить выражение I , показанное выше, и вы получите
Вы можете изменить условия, не меняя уравнения, чтобы получить
Аналогично, уравнение для V 2 равно
Включив значения R1 , R2 и В аккумулятор , вы получите В 1 = 1.628 В и В 2 = 7,4 В, точно так же, как рассчитано.
Следующее общее уравнение обычно используется для напряжения на резисторе ( R1 ) в цепи делителя напряжения:
Многие электронные системы используют делители напряжения для понижения напряжения питания до более низкого уровня, после чего они подают это пониженное напряжение на вход другой части всей системы, для которой требуется это более низкое напряжение.
Вы можете использовать уравнение делителя напряжения для расчета выходного напряжения В из цепи делителя напряжения, которое показано на следующем рисунке следующим образом:
Схема на следующем рисунке делит напряжение питания 9 В до 5 В.
Эта схема делителя напряжения снижает напряжение 9 В до 5 В при напряжении В, , , , по сравнению с , . ,