Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ | Π€ΠΈΠ·ΠΈΠΊΠ° Π΄Π»Ρ Π²ΡΠ΅Ρ
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°) Π·Π° ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ Π°Π²ΡΠΎΠ±ΡΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΈΠ· ΡΠ°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΡΠ°ΡΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (a = const).
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π·Π³ΠΎΠ½ΡΠ΅ΡΡΡ Ρ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅ΡΡΡ. ΠΡΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ, Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
Π ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅ Π»ΡΠ±ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° Π²ΡΠ±ΡΠ°Π½Π½ΡΡ ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΡΡΠΌ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π° Π²ΡΠ΅ΠΌΡ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ β ΠΌ/Ρ.
vcp = s / t
ΠΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ β ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
ΠΠ΅ΠΊΡΠΎΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯:
vx = xβ
ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠΈ).
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π±ΡΡΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π°, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
ΠΠ΅ΠΊΡΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
Β
vx = v0x Β± axt
ΠΠ½Π°ΠΊ Β«-Β» (ΠΌΠΈΠ½ΡΡ) ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠ΅ΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ (a = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ 0t (ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΈΡ. 1.15).
Π ΠΈΡ. 1.15. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ β ΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ (ΡΠΈΡ. 1.16).
Π ΠΈΡ. 1.16. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΡΠΈΡ. 1.16) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ
ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡΡ 0abc (ΡΠΈΡ. 1.16).
ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° Π²ΡΡΠΎΡΡ. ΠΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ 0abc ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ:
0a = v0 bc = v
ΠΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ Β«βΒ» (ΠΌΠΈΠ½ΡΡ).
ΠΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.17. ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.18.
Π ΠΈΡ. 1.17. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ.
Π ΠΈΡ. 1.18. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1 ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ»ΠΈ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΡΡΠ³ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ΅ΡΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
Π€ΠΎΡΠΌΡΠ»Π° ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π½Π°ΠΌ Π²ΡΠ²Π΅ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠΎΠΉ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΎΒ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ x(t) ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ), Π½ΠΎ Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π² ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠΈ Π°x < 0 ΠΈ Ρ 0 = 0 Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΠΈΠ· (ΡΠΈΡ. 1.18).
av-mag.ru
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅. | |
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ. | Β |
ΠΠ±ΠΎΠ·Π½Π°ΡΠΈΠΌ: — Π²Π΅ΠΊΡΠΎΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, Β — ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ, Π° Ξt — ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΡΡΡΒ Ξt1= Ξt2=Ξt3=…, ΡΠΎΠ³Π΄Π° ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ | Β |
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Β Π’.ΠΎ., ΡΡΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. | Β |
ΠΡΠ»ΠΈ t0=0, ΡΠΎΒ Β Β Β | |
Π£Π‘ΠΠΠ ΠΠΠΠ — ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ°Ρ Π±ΡΡΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ (ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ) ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ. | Β |
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π² Π‘Π —Β Β Β ΠΌ/Ρ2. | ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ 5 ΠΌ/Ρ2Β — ΡΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ, Π΄Π²ΠΈΠ³Π°ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ, ΡΠ΅Π»ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π½Π° 5 ΠΌ/Ρ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΡΠ²ΠΎΠ΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. |
Π ΡΠ»ΡΡΠ°Π΅ Π½Π΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ: ΡΠΎΠ³Π΄Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ | Β |
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ, Π΅ΡΠ»ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ. | Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Ρ.Ρ.Π΄. —. |
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ, Π΅ΡΠ»ΠΈ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ. | Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Ρ.Π·.Π΄. — . |
ΠΡΠ°ΡΠΈΠΊΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. | |
ΠΈΠ»ΠΈ Β — Π² ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡ ; ΠΈΠ»ΠΈ β ΡΠ΅ΡΠ΅Π· ΠΌΠΎΠ΄ΡΠ»ΠΈ. | |
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΡΠ°ΡΠΈΠΊ — ΠΏΡΡΠΌΠ°Ρ. | Β |
ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠΈΠ΅ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΎΡΠΈ:
| |
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. | |
ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΠΎΠ΄ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. | |
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠΈ Π΄Π»Ρ Ρ.Ρ.Π΄. : | |
ΠΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ. | |
Π€ΡΠ½ΠΊΡΠΈΠΈΒ Β ΠΈΒ Β — ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠ΅. ΠΡΠ°ΡΠΈΠΊ β | |
![]() |
www.eduspb.com
Π Π΅ΠΏΠ΅ΡΠΈΡΠΎΡ-ΠΎΠ½Π»Π°ΠΉΠ½ β ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ Π¦Π’
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Ox. ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π΅Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΒ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠΎ Π·Π°ΠΊΠΎΠ½Ρ vΒ =Β 9,0 β 1,5t, Π³Π΄Π΅ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π°Π΄Π°Π½Π° Π²Β ΠΌΠ΅ΡΡΠ°Ρ Π²Β ΡΠ΅ΠΊΡΠ½Π΄Ρ, Π²ΡΠ΅ΠΌΡΒ β Π²Β ΡΠ΅ΠΊΡΠ½Π΄Π°Ρ . ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π·Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ 4,0Β Ρ Π΄ΠΎ 7,0Β Ρ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
vx = v0x + axt,
Π³Π΄Π΅ v0x = 9,0Β ΠΌ/ΡΒ β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ; ax = β1,5Β ΠΌ/Ρ2Β β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° ΡΠΊΠ°Π·Π°Π½Π½ΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ.
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ:
x(t)=x0+v0xt+axt22=x0+9,0tβ0,75t2,
Π³Π΄Π΅ x0Β β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠΎΡΠΊΠΈ.
Π’ΠΎΡΠΊΠ° ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ, Π²ΡΡΠΈΡΠ»Π΅Π½Π½Π°Ρ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
ΟΠΎΡΡ=v0a=9,01,5=6,0 c,
ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ Π²Β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π²Β ΡΡΠ»ΠΎΠ²ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ.
Π ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ t1 = 4,0 c Π΄ΠΎ ΟΠΎΡΡ = 6,0Β Ρ ΡΠΎΡΠΊΠ° Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
S1=|x(ΟΠΎΡΡ)βx(t1)|,
Π³Π΄Π΅
x(ΟΠΎΡΡ)=x0+9,0ΟΠΎΡΡβ0,75ΟΠΎΡΡ2=
=x0+9,0β 6,0β0,75β (6,0)2=(x0+27) ΠΌ;
x(t1)=x0+9,0t1β0,75t12=x0+9,0β 4,0β0,75β (4,0)2=(x0+24)Β ΠΌ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΡΡ S1, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π²Β ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π΅Π½:
S1=|x(ΟΠΎΡΡ)βx(t1)|=|(x0+27)β(x0+24)|=3,0 ΠΌ.
Π ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ ΟΠΎΡΡ = 6,0Β Ρ Π΄ΠΎ t2 = 7,0 c ΡΠΎΡΠΊΠ° Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ Π²ΡΡΠΈΡΠ»ΡΠ΅ΠΌ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
S1=|x(t2)βx(ΟΠΎΡΡ)|,
Π³Π΄Π΅
x(ΟΠΎΡΡ)=x0+9,0ΟΠΎΡΡβ0,75ΟΠΎΡΡ2=
=x0+9,0β 6,0β0,75β (6,0)2=(x0+27) ΠΌ;
x(t2)=x0+9,0t2β0,75t22=
=x0+9,0β 7,0β0,75β (7,0)2=(x0+26,25) ΠΌ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΡΡΡ S2, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π²Β ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π΅Π½:
S2=|x(t2)βx(ΟΠΎΡΡ)|=|(x0+26,25)β(x0+27)|=0,75Β ΠΌβ0,8Β ΠΌ.
Π‘ΡΠΌΠΌΠ°ΡΠ½ΡΠΉ ΠΏΡΡΡ S, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π²Β ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΡ 4,0Β Ρ Π΄ΠΎ 7,0 Ρ,Β ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ
S=S1+S2β3,0+0,8=3,8 ΠΌ.
vedy.by
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΊΠΎΠ½Ρ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ. ΠΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ. Π€ΠΈΠ·ΠΈΠΊΠ° 11 ΠΠ»Π°ΡΡ
ΠΠ° ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π²Π΄ΠΎΠ»Ρ Π΅Π³ΠΎ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π°ΠΊΠΆΠ΅ Π½Π° ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΡΡΡΡ ΡΠΈΠΏΠΎΠ²ΡΡ Π·Π°Π΄Π°Ρ Π½Π° ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Π·ΡΡΡ ΠΈΠ· ΡΠ±ΠΎΡΠ½ΠΈΠΊΠ° Π·Π°Π΄Π°Ρ Π΄Π»Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠΌΡ Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΠΎΠΌΡ ΡΠΊΠ·Π°ΠΌΠ΅Π½Ρ
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ.
Β
1. Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
,
Π³Π΄Π΅ Β β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ; Β β Π²ΡΠ΅ΠΌΡ.
2. Π€ΠΎΡΠΌΡΠ»Ρ ΠΏΡΡΠΈ:
— Β
— ,
Π³Π΄Π΅ Β β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ.
— Β
— Β
3. ΠΡΡΠΈ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠ΅ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΡΡΠ΄ Π½Π΅ΡΡΡΠ½ΡΡ ΡΠΈΡΠ΅Π»:
,
Π³Π΄Π΅ Β β ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π·Π° n-ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ; Β β ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π·Π° ΠΏΠ΅ΡΠ²ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Β
4. Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠ΅Π΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡ Π½Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΡ ΠΎΡΡ, ΠΊΠΎΡΠΎΡΡΡ ΡΠΎΠ²ΠΌΠ΅ΡΠ°ΡΡ Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠ΅ΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Β
Β ,
Π³Π΄Π΅ Β β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ; Β β ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π²Π΄ΠΎΠ»Ρ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΎΡΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠ°ΠΊΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ:
,
Π³Π΄Π΅ Β Β β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°.
ΠΠΎΠ΅Π·Π΄ ΠΏΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Β Π½Π°ΡΠ°Π» ΡΠΎΡΠΌΠΎΠ·ΠΈΡΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ . ΠΠ°ΠΉΡΠΈ Π²ΡΠ΅ΠΌΡ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΡΠΈΠ°Π½ΡΡ ΠΎΡΠ²Π΅ΡΠ°: 1. 25 Ρ; 2. 30 Ρ; 3. 50 Ρ; 4. 90 Ρ. Π§Π΅ΠΌΡ ΡΠ°Π²Π΅Π½ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡΡΡ ΠΏΠΎΠ΅Π·Π΄Π°?
ΠΠ°Π½ΠΎ: ; ;
ΠΠ°ΠΉΡΠΈ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ· ΡΠΎΡΠΌΡΠ»Ρ
Β
ΠΡΡΠ°Π·ΠΈΠΌ Π²ΡΠ΅ΠΌΡ:
Β
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ ΡΠ°Π²Π΅Π½:
Β
ΠΡΠ²Π΅Ρ: 1. 25 Ρ;
ΠΡΠ»Ρ, Π»Π΅ΡΡΡΠ°Ρ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ , ΠΏΠΎΠΏΠ°Π΄Π°Π΅Ρ Π² Π΄ΠΎΡΠΊΡ ΠΈ ΠΏΡΠΎΠ½ΠΈΠΊΠ°Π΅Ρ Π½Π° Π³Π»ΡΠ±ΠΈΠ½Ρ 6 ΡΠΌ. ΠΡΠ»ΠΈ ΠΏΡΠ»Ρ Π² Π΄ΠΎΡΠΊΠ΅ Π΄Π²ΠΈΠ³Π°Π΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ, ΡΠΎ Π½Π° Π³Π»ΡΠ±ΠΈΠ½Π΅ 3 ΡΠΌ Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π±ΡΠ»Π° ΡΠ°Π²Π½Π°: 1. ; 2. ; 3. ; 4. .
ΠΠ°Π½ΠΎ: ; ; ; ;
ΠΠ°ΠΉΡΠΈ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ ΠΏΡΡΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΈΠ³ΡΡΠΈΡΡΠ΅Ρ ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ, Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅.
Β
Β
Π Π°Π·Π΄Π΅Π»ΠΈΠΌ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π½Π° Π²ΡΠΎΡΠΎΠ΅ ΠΈ ΡΡΡΡΠΌ, ΡΡΠΎ Β Π±ΠΎΠ»ΡΡΠ΅ Β Π² Π΄Π²Π° ΡΠ°Π·Π°:
Β
Β
Π’Π°ΠΊ ΠΊΠ°ΠΊ , ΡΠΎ:
Β
Β
Β
Β
ΠΡΠ²Π΅Ρ: 2.
Π’Π΅Π»ΠΎ Π½Π°ΡΠ°Π»ΠΎ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΠΈΠ· ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΏΠΎΠΊΠΎΡ Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ . ΠΠ°ΠΊΠΎΠΉ ΠΏΡΡΡ ΠΎΠ½ΠΎ ΠΏΡΠΎΠΉΠ΄ΡΡ Π·Π° ΡΠ΅ΡΠ²ΡΡΡΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ?
ΠΠ°Π½ΠΎ: ; ; ;
ΠΠ°ΠΉΡΠΈ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
Β
Π ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅:
Β
ΠΡΠ²Π΅Ρ: Β
Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΠΎ ΠΏΠ°Π΄Π°ΡΡΠ΅Π΅ Π±Π΅Π· Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»ΠΎ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ ΠΏΡΠΎΡΠ»ΠΎ ΠΏΡΡΡ Π½Π° Β Π±ΠΎΠ»ΡΡΠΈΠΉ, ΡΠ΅ΠΌ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΡΡ. Π‘ ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ ΠΎΠ½ΠΎ ΡΠΏΠ°Π»ΠΎ Π½Π° Π·Π΅ΠΌΠ»Ρ? Π‘ ΠΊΠ°ΠΊΠΎΠΉ Π²ΡΡΠΎΡΡ ΠΏΠ°Π΄Π°Π»ΠΎ ΡΠ΅Π»ΠΎ? Π§Π΅ΠΌΡ ΡΠ°Π²Π½ΠΎ Π²ΡΠ΅ΠΌΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΡΠ΅Π»Π°?
ΠΠ°Π½ΠΎ: Β β ΠΏΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ (n-ΡΠΉ) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ; ; ;
ΠΠ°ΠΉΡΠΈ: ; ;
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π‘ ΡΡΠ΅ΡΠΎΠΌ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ:
— ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΡΠ°Π²Π½Π°:
Β
— Π²ΡΡΠΎΡΠ°, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ΅Π»ΠΎ ΡΠΏΠ°Π»ΠΎ (ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡ):
Β
ΠΡΠ΅ΠΌΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠ°ΠΊ:
Β
ΠΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ (n-ΡΠΉ) ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠ°Π²Π΅Π½:
Β
ΠΡΡΡ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ Π·Π° ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΡΡ ΡΠ΅ΠΊΡΠ½Π΄Ρ (-ΡΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ), ΡΠ°Π²Π΅Π½:
Β
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ:
Β
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ:
Β
Β
Π‘ΠΎΠΊΡΠ°ΡΠΈΠΌ ΠΎΠ±Π΅ ΡΠ°ΡΡΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π½Π° :
Β
Β
Β
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅Π»ΠΎ ΠΏΠ°Π΄Π°Π»ΠΎ:
Β
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ ΡΡΠΎ Π²ΡΠ΅ΠΌΡ Π² ΡΠΎΡΠΌΡΠ»Ρ Π²ΡΡΠΎΡΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ:
Β
ΠΠΎΠ΄ΡΡΠ°Π²Π»ΡΠ΅ΠΌ Π²ΡΠ΅ΠΌΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ Π² ΡΠΎΡΠΌΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠ°Π΄Π΅Π½ΠΈΡ:
Β
ΠΡΠ²Π΅Ρ: ; ; Β
Β
ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅
- Π£ΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΠ΅ 3 (1, 2) ΡΡΡ. 36 β Π.Π―. ΠΡΠΊΠΈΡΠ΅Π², Π.Π. ΠΡΡ ΠΎΠ²ΡΠ΅Π², Π.Π. Π‘ΠΎΡΡ
interneturok.ru
3. Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ, ΡΠΎ Π΅ΡΡΡ ΠΊΠΎΠ³Π΄Π° ΡΠΊΠΎΡΠΎΡΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ (v = const) ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ (Π° = 0).
ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ ΡΠ°Π·ΠΎΠ±ΡΡΠΌ ΠΊΠ°ΠΊΠΎΠΉ-ΡΠΎ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠ½Π΄Π΅, ΡΠΎ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ Π±ΡΠ΄Π΅Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ Π·Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΡΡΠΈΡ ΠΎΡΡΠ΅Π·ΠΊΠΎΠ² Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π°. Π’ΠΎ Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ Π²Π΅ΠΊΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΎΠΌ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠ°Π²Π½Π° ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ:
vcp = v
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΒ β ΡΡΠΎ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°Β Π·Π° Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° t:
V(Π²Π΅ΠΊΡΠΎΡ)Β =Β s(Π²Π΅ΠΊΡΠΎΡ) / t
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΠΊΠ°ΠΊΠΎΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ° Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅Β ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
s(Π²Π΅ΠΊΡΠΎΡ)Β =Β V(Π²Π΅ΠΊΡΠΎΡ)Β Β β’ t
ΠΡΠΎΠΉΠ΄Π΅Π½Π½ΡΠΉ ΠΏΡΡΡΒ ΠΏΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π΅Π½ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π° Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°:
vx = v, ΡΠΎ Π΅ΡΡΡ v > 0
ΠΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
s = vt = x β x0
Π³Π΄Π΅ x0Β β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π°, Ρ β ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° (ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ)
Π£ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΡΠΎ Π΅ΡΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ρ = Ρ (t), ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 + vt
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Π½Π° ΠΎΡΡ ΠΠ₯ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ (v < 0), ΠΈ ΡΠΎΠ³Π΄Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π²ΠΈΠ΄:
Ρ = x0 — vt
4. Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π Π°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ ΡΠ°ΡΡΠ½ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
ΠΠ΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠ΅Π»ΠΎ (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΠΊΠ°) Π·Π° ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ Π½Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π³ΠΎΡΠΎΠ΄ΡΠΊΠΎΠΉ Π°Π²ΡΠΎΠ±ΡΡ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΈΠ· ΡΠ°Π·Π³ΠΎΠ½ΠΎΠ² ΠΈ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠΉ.
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π·Π° Π»ΡΠ±ΡΠ΅ ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈΒ ΠΎΡΡΠ°ΡΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ ΠΈ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ (a = const).
Π Π°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ ΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΌ.
Π Π°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π·Π³ΠΎΠ½ΡΠ΅ΡΡΡ Ρ Π½Π΅ΠΈΠ·ΠΌΠ΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
Π Π°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΠ΅Π»ΠΎ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ Π·Π°ΠΌΠ΅Π΄Π»ΡΠ΅ΡΡΡ. ΠΡΠΈ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ, Π° ΠΌΠΎΠ΄ΡΠ»Ρ ΡΠΊΠΎΡΠΎΡΡΠΈ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ.
Π ΠΌΠ΅Ρ Π°Π½ΠΈΠΊΠ΅ Π»ΡΠ±ΠΎΠ΅ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΡΠΌ, ΠΏΠΎΡΡΠΎΠΌΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠ³ΠΎ Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΎΠΌ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π° Π²ΡΠ±ΡΠ°Π½Π½ΡΡ ΠΎΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π‘ΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΒ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΏΡΡΡΠΌ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π° Π²ΡΠ΅ΠΌΡ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΡΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ»ΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΠΎ. ΠΠ΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ β ΠΌ/Ρ.
vcp = s / t
ΠΠ³Π½ΠΎΠ²Π΅Π½Π½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡΒ β ΡΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° (ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠΈ) Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
V=lim(^t-0) ^s/^t
ΠΠ΅ΠΊΡΠΎΡ ΠΌΠ³Π½ΠΎΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈΒ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
V(Π²Π΅ΠΊΡΠΎΡ) = sβ(Π²Π΅ΠΊΡΠΎΡ)
ΠΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈΒ Π½Π° ΠΎΡΡ ΠΠ₯:
vx = xβ
ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΎΡΠΈ).
Π£ΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅Β β ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π±ΡΡΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π°, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π», ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Ξt:
Π°(Π²Π΅ΠΊΡΠΎΡ) = lim (t-0) ^v(Π²Π΅ΠΊΡΠΎΡ)/^t
ΠΠ΅ΠΊΡΠΎΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΒ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΈΠ»ΠΈ ΠΊΠ°ΠΊ Π²ΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΎΡ Π²Π΅ΠΊΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
a(Π²Π΅ΠΊΡΠΎΡ) = v(Π²Π΅ΠΊΡΠΎΡ)’ = s(Π²Π΅ΠΊΡΠΎΡ)»
Π£ΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎΒ 0Β β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ),Β β ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ (ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ), t β ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ,ΡΠΎΡΠΌΡΠ»Π° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡΒ Π±ΡΠ΄Π΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ:
a(Π²Π΅ΠΊΡΠΎΡ) = v(Π²Π΅ΠΊΡΠΎΡ)-v0(Π²Π΅ΠΊΡΠΎΡ)/t
ΠΡΡΡΠ΄Π°Β ΡΠΎΡΠΌΡΠ»Π° ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡΒ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
v(Π²Π΅ΠΊΡΠΎΡ) = v0(Π²Π΅ΠΊΡΠΎΡ) + a(Π²Π΅ΠΊΡΠΎΡ)t
ΠΡΠ»ΠΈ ΡΠ΅Π»ΠΎ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ ΠΠ₯ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡΠ΅ΠΉ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Ρ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΠ΅ΠΉ ΡΠ΅Π»Π°, ΡΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° ΡΡΡ ΠΎΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΌΡΠ»ΠΎΠΉ:
vx = v0x Β± axt
ΠΠ½Π°ΠΊ Β«-Β» (ΠΌΠΈΠ½ΡΡ) ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠ΅ΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΎΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌ (a = const), ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ β ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΎΡΠΈ 0t (ΠΎΡΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΡΠΈΡ. 1.15).
Β Π ΠΈΡ. 1.15. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈΒ β ΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ (ΡΠΈΡ. 1.16).
Β Π ΠΈΡ. 1.16. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈΒ (ΡΠΈΡ. 1.16) ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ
ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½ΠΎ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ ΡΠΈΠ³ΡΡΡ 0abc (ΡΠΈΡ. 1.16).
ΠΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΡΠΌΠΌΡ Π΄Π»ΠΈΠ½ Π΅Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΉ Π½Π° Π²ΡΡΠΎΡΡ. ΠΡΠ½ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ 0abc ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ:
0a = v0
bc = v
ΠΡΡΠΎΡΠ° ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ ΡΠ°Π²Π½Π° t. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡΠ°Π΄Ρ ΡΡΠ°ΠΏΠ΅ΡΠΈΠΈ, Π° Π·Π½Π°ΡΠΈΡ, ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΡ ΠΠ₯ ΡΠ°Π²Π½Π°:
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠ·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π² ΡΠΎΡΠΌΡΠ»Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ°Π²ΠΈΡΡΡ Π·Π½Π°ΠΊ Β«βΒ» (ΠΌΠΈΠ½ΡΡ).
ΠΠ±ΡΠ°Ρ ΡΠΎΡΠΌΡΠ»Π° Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.17. ΠΡΠ°ΡΠΈΠΊ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΡΠΈ v0 = 0 ΠΏΠΎΠΊΠ°Π·Π°Π½ Π½Π° ΡΠΈΡ. 1.18.
Β Π ΠΈΡ. 1.17. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ.
Β Π ΠΈΡ. 1.18. ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΊΠΎΡΠΎΡΡΡ ΡΠ΅Π»Π° Π² Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t1Β ΡΠ°Π²Π½Π° ΡΠ°Π½Π³Π΅Π½ΡΡ ΡΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΊ Π³ΡΠ°ΡΠΈΠΊΡ ΠΈ ΠΎΡΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ v = tg Ξ±, Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ»ΠΈ Π²ΡΠ΅ΠΌΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π° Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄ΡΡΠ³ΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠ΅ΡΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
Π€ΠΎΡΠΌΡΠ»Π° ΡΠΎΠΊΡΠ°ΡΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²Β ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π½Π°ΠΌ Π²ΡΠ²Π΅ΡΡΠΈ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ:
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΡΠ΅Π»Π° Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΡΠΌΠΌΠΎΠΉ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, ΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»Π°Β Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ x(t) ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° (ΠΊΠ°ΠΊ ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΡ), Π½ΠΎ Π²Π΅ΡΡΠΈΠ½Π° ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π² ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΡΠ°Π»ΠΎΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΡΠΈ Π°xΒ < 0 ΠΈ Ρ 0Β = 0 Π²Π΅ΡΠ²ΠΈ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π²Π½ΠΈΠ· (ΡΠΈΡ. 1.18).
studfiles.net
2) ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠΈ ΡΠ°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΡΠ»ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π° Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡΡΠΎ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΠ²
ΠΈΠΏΠΎΠ»ΡΡΠΈΠΌΠΎΡΠΊΡΠ΄Π°
ΠΡΠΎΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π² ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΌΠ΅Π½ΡΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ t, Π½Π°ΠΉΠ΄Π΅ΠΌ, ΡΡΠΎ Π΄Π»ΠΈΠ½Π° ΠΏΡΡΠΈ, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΊΠΎΠΉ, Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
3)β ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ;
4)ΠΡΠΈΡΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ, Π° ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ. ΠΠ· ΡΠΎΡΠΌΡΠ»ΡΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΡΠ°Π΄ΠΈΡΡ ΠΊΡΠΈΠ²ΠΈΠ·Π½Ρ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΠΏΠΎΡΡΠΎΒΡΠ½Π½ΡΠΌ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΡΠΌ;
5)β ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅;
6)β ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅;
7)β ΠΊΡΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ.
Β§ 4. Π£Π³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ³Π»ΠΎΠ²ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ²Π΅ΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π²ΠΎΠΊΡΡΠ³ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ ΠΎΡΠΈ. Π’ΠΎΠ³Π΄Π° ΠΎΡΠ΄Π΅Π»ΡΒΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π±ΡΠ΄ΡΡ ΠΎΠΏΠΈΡΡΠ²Π°ΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π·Π½ΡΡ ΡΠ°Π΄ΠΈΡΡΠΎΠ², ΡΠ΅Π½ΡΡΡ ΠΊΠΎΡΠΎΡΡΡ Π»Π΅ΠΆΠ°Ρ Π½Π° ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ. ΠΡΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΠΊΠ° Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΡΡΠ° R (ΡΠΈΡ. 6). ΠΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈΠ·Π°Π΄Π°Π΄ΠΈΠΌ ΡΠ³Π»ΠΎΠΌΠΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΒΠ½ΡΠ΅ (Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ°Π»ΡΠ΅) ΠΏΠΎΠ²ΠΎΡΠΎΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡΠΎΡΡ (ΠΎΠ½ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΒΡΡΠΈΠ»ΠΈΠΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ°ΡΠ°Π²Π΅Π½ ΡΠ³Π»Ρ ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°, Π° Π΅Π³ΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅ΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΎΡΡΡΠΈΡ Π²ΠΈΠ½ΡΠ°, Π³ΠΎΠ»ΠΎΠ²ΠΊΠ° ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Ρ. Π΅. ΠΏΠΎΠ΄ΡΠΈΠ½ΡΠ΅ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ° (ΡΠΈΡ. 6). ΠΠ΅ΠΊΡΠΎΡΡ, Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΡΡ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ, Π½Π°Π·ΡΒΠ²Π°ΡΡΡΡ ΠΏΡΠ΅Π²Π΄ΠΎΠ²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ ΠΈΠ»ΠΈ Π°ΠΊΡΠΈΠ°Π»ΡΠ½ΡΠΌΠΈ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ. ΠΡΠΈ Π²Π΅ΠΊΡΠΎΡΡ Π½Π΅ ΠΈΠΌΠ΅ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅ΒΠ»Π΅Π½Π½ΡΡ ΡΠΎΡΠ΅ΠΊ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ: ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡΡ ΠΎΡΠΊΠ»Π°Π΄ΡΠ²Π°ΡΡΡΡ ΠΈΠ· Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ³Π»Π° ΠΏΠΎΠ²ΠΎΡΠΎΡΠ° ΡΠ΅Π»Π° ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
ΠΠ΅ΠΊΡΠΎΡΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΠΏΡΠ°Π²ΠΈΠ»Ρ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ°, Ρ. Π΅. ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π²Π΅ΠΊΡΠΎΡ(ΡΠΈΡ. 7). Π Π°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ, Π° Π΅Π΅ Π΅Π΄ΠΈΠ½ΠΈΡΠ° β ΡΠ°Π΄ΠΈ-
Π°Π½ Π² ΡΠ΅ΠΊΡΠ½Π΄Ρ (ΡΠ°Π΄/Ρ).
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΠΊΠΈ (ΡΠΌ. ΡΠΈΡ. 6)
Ρ. Π΅.
Π Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:
ΠΡΠΈ ΡΡΠΎΠΌ ΠΌΠΎΠ΄ΡΠ»Ρ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ, ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ, ΡΠ°Π²Π΅Π½
Π° Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΡΡΡΠΏΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠ°Π²ΠΎΠ³ΠΎ Π²ΠΈΠ½ΡΠ° ΠΏΡΠΈ
Π΅Π³ΠΎ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΎΡ
ΠΡΠ»ΠΈΡΠΎ Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ
Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π’ β Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ, Π·Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΡΠΊΠ° ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΠΎΠ΄ΠΈΠ½ ΠΏΠΎΠ»Π½ΡΠΉ ΠΎΠ±ΠΎΡΠΎΡ, Ρ. Ρ. ΠΏΠΎΠ²ΠΎΡΠ°ΡΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠ³ΠΎΠ»Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ
ΡΠΎΠΎΡΠΊΡΠ΄Π°
Π§ΠΈΡΠ»ΠΎ ΠΏΠΎΠ»Π½ΡΡ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ², ΡΠΎΠ²Π΅ΡΡΠ°Π΅ΠΌΡΡ ΡΠ΅Π»ΠΎΠΌ ΠΏΡΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠΌ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, Π² Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ:
ΠΎΡΠΊΡΠ΄Π°
Π£Π³Π»ΠΎΠ²ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΡΠ°Π²Π½Π°Ρ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
ΠΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΠΈ ΡΠ΅Π»Π° Π²ΠΎΠΊΡΡΠ³ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ ΠΎΡΠΈ Π²Π΅ΠΊΡΠΎΡ ΡΠ³Π»ΠΎΠ²ΠΎΠ³ΠΎ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π² ΡΡΠΎΡΠΎΠ½Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡΠΎΡΡΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π²Π΅ΠΊΡΠΎΡΡ(ΡΠΈΡ. 8), ΠΏΡΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΒΠ½ΠΎΠΌ β ΠΏΡΠΎΡΠΈΠ²ΠΎΠ½Π°ΠΏΡΠ°Π²Π»Π΅Π½ Π΅ΠΌΡ (ΡΠΈΡ. 9).
Π’Π°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ
ΠΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠ°Ρ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ (Π΄Π»ΠΈΠ½Π° ΠΏΡΡΠΈ s, ΠΏΡΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠΎ Π΄ΡΠ³Π΅ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π΄ΠΈΡΡΠ° R, Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ΅ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΈ ΡΠ³Π»ΠΎΠ²ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ (ΡΠ³ΠΎΠ» ΠΏΠΎΠ²ΠΎΡΠΎΡΠ°ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡΡΠ³Π»ΠΎΠ²ΠΎΠ΅ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ:
Π ΡΠ»ΡΡΠ°Π΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΎΡΠΊΠΈ ΠΏΠΎ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ
Π³Π΄Π΅β Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ³Π»ΠΎΠ²Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ.
studfiles.net
1.3. ΠΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅
ΠΡΠΈ
ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄ΠΎΠΏΡΡΠΊΠ°Π»ΠΎΡΡ, ΡΡΠΎ Π΅Π³ΠΎ ΡΠΊΠΎΡΠΎΡΡΡ
Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠΎΡΠΊΠ°Ρ
Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
ΠΎΡΡΠ°ΡΡΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈ
Π²Π΅Π»ΠΈΡΠΈΠ½Π΅;
.ΠΠ΄Π½Π°ΠΊΠΎ
Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ Π½Π°ΡΠ°Π»Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡ
ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ
Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΡ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Π΄ΠΎ Π½ΡΠ»Ρ. ΠΠ΅ Π²Π΄Π°Π²Π°ΡΡΡ
ΠΏΠΎΠΊΠ° Π² ΠΏΡΠΈΡΠΈΠ½Ρ Π½Π΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ
Π½Π° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ°Ρ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΆΠΈΠ΄Π°ΡΡ, ΡΡΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠ°Ρ
Π±ΡΡΡΡΠΎΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ
ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΏΠΎΠ΄ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, Π΅ΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ
Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ
ΠΈ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ
ΡΡΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ οt ο½ t2 β t1,
ΡΠΎ Π±ΡΡΡΡΠΎΡΠ° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΌΠΎΠΆΠ΅Ρ
Π±ΡΡΡ Π½Π°ΠΉΠ΄Π΅Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ΅ΠΉ
Π΄Π΅Π»Π΅Π½ΠΈΡ. ΠΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΊ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ,Π·Π°
ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΡΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·ΠΎΡΠ»ΠΎ,
Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ. Π ΡΠΈΠΌΠ²ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΌ
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ ΡΠ°ΠΊ:
.ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ
ΡΠΊΠΎΡΠΎΡΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Π° Π²Π΅ΠΊΡΠΎΡΠ½Π°Ρ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅
ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π΅ΠΊΡΠΎΡΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ;
ΠΊΡΠΎΠΌΠ΅ ΡΠΈΡΠ»Π΅Π½Π½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²Π°Ρ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΈΠΌΠ΅Π΅Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅.
Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, Π² ΠΏΡΠΈΠ²Π΅Π΄ΡΠ½Π½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π½Π°
ΡΡΠ°ΡΡΠΊΠ΅ Π½Π°ΡΠ°Π»Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅
Π²Π΅ΠΊΡΠΎΡΠ° ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ
Π²Π΅ΠΊΡΠΎΡΠ° ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½Π° ΡΡΠ°ΡΡΠΊΠ΅
ΠΏΡΠ΅ΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ β ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ
ΠΏΠΎ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ Π²Π΅ΠΊΡΠΎΡΡ ΡΠΊΠΎΡΠΎΡΡΠΈ
(ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΡΠ΅ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅). ΠΠ· ΡΠΈΠΌΠ²ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠΉ
Π·Π°ΠΏΠΈΡΠΈ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΠΎΠ½ΠΎ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ
Π² ΠΌΠ΅ΡΡΠ°Ρ
Π½Π° ΡΠ΅ΠΊΡΠ½Π΄Ρ Π² ΠΊΠ²Π°Π΄ΡΠ°ΡΠ΅ (ΠΌ/Ρ2).
ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π·Π°Π΄Π°ΡΠ° ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ β ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°ΡΡ Π·Π°ΠΊΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π°, ;Π·Π°ΠΊΠΎΠ½ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΠΉΠ΄ΡΠΌ Π΄Π»Ρ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ΅Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ) ΡΠ΅Π»Π° Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ.
Π‘ΠΈΠΌΠ²ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠ΅
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ
ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ:
.ΠΠ΄Π΅ΡΡ
β
ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°Π΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ
,Ρ
ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΡΠ΄Π΅Ρ Π΄Π²ΠΈΠ³Π°ΡΡΡΡ ΡΠ΅Π»ΠΎ ΡΠ΅ΡΠ΅Π·
Π²ΡΠ΅ΠΌΡ t ΠΏΠΎΡΠ»Π΅ Π½Π°ΡΠ°Π»Π° ΠΎΡΡΡΡΡΠ°;
β
ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΊΠΎΡΠΎΡΡΡ
,Ρ
ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄Π²ΠΈΠ³Π°Π»ΠΎΡΡ ΡΠ΅Π»ΠΎ Π² ΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ,
ΠΊΠΎΠ³Π΄Π° Π·Π°ΠΏΡΡΡΠΈΠ»ΠΈ Π²ΡΠ΅ΠΌΡ ΠΎΡΡΡΡΡΠ°. ΠΡΠΈ
ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΡ Π²Π°ΠΆΠ½Ρ, ΠΊΠΎΠ³Π΄Π° ΠΊΡΠ°ΡΠΊΠΎ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ
Β«Π΄Π°Π½ΠΎΒ» ΠΈΠ· ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ.
ΠΠ·
ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ»Π΅Π΄ΡΠ΅Ρ, Π΄Π»Ρ
ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ·
Π°Π»Π³Π΅Π±ΡΡ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅
Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π½ΠΎ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΡΡΠΌΠΌΡ
Π΅Ρ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π°
Π»ΡΠ±ΠΎΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅
ΡΡΠ΅Π΄Π½ΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΠ΅ΡΡΡ:
.ΠΡΠΎ
ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π·Π°ΠΊΠΎΠ½ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠΆΡΡΠ΅Π³ΠΎΡΡ ΡΠ΅Π»Π° ΠΏΡΠΈ
ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² Π²ΠΈΠ΄Π΅: .ΠΡΠ»ΠΈ
ΡΡΠ΅ΡΡΡ ΡΠΈΠΌΠ²ΠΎΠ»ΠΈΡΠ΅ΡΠΊΡΡ Π·Π°ΠΏΠΈΡΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ
ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ
Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ΄:
(ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΠ΄Π΅Π»Π°Π»ΠΈ?). ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ
Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ· Π΄Π²ΡΡ
ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ
ΠΈ
ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΡ Π΅Ρ. Π£Π΄Π°ΡΠΈ!
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½Π΅Π΅. ΠΠΎΡΠ΅ΠΌΡ? ΠΠΎ-ΠΏΠ΅ΡΠ²ΡΡ , Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π² Π΄Π²ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ β ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ. ΠΠΎ-Π²ΡΠΎΡΡΡ , ΡΡΠΎΠ±Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠ΅ΡΡΡΠΆ Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ. Π, Π²-ΡΡΠ΅ΡΡΠΈΡ , ΡΠ΅ΡΡΡΠΆ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ, Π±Π΅Π· ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ΄ΡΠ°Ρ Π½Π΅Π»ΡΠ·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Β«ΡΠΊΡΡΡΡΠΉΒ» ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: Π‘ ΠΊΡΡΡΠΈ Π΄ΠΎΠΌΠ° Π²ΡΡΠΎΡΠΎΠΉ 16 ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅ΡΠ΅Π· ΡΠ°Π²Π½ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΠΏΠ°Π΄Π°ΡΡ ΠΊΠ°ΠΏΠ»ΠΈ Π²ΠΎΠ΄Ρ, ΠΏΡΠΈΡΡΠΌ ΠΏΠ΅ΡΠ²Π°Ρ ΡΠ΄Π°ΡΡΠ΅ΡΡΡ ΠΎ Π·Π΅ΠΌΠ»Ρ Π² ΡΠΎΡ ΠΌΠΎΠΌΠ΅Π½Ρ, ΠΊΠΎΠ³Π΄Π° ΠΏΡΡΠ°Ρ ΠΎΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΠΎΡ ΠΊΡΡΡΠΈ. ΠΠ°ΠΉΡΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠ΅ΡΠ²ΡΡΡΠΎΠΉ ΠΊΠ°ΠΏΠ»ΠΈ ΠΎΡ ΠΊΡΡΡΠΈ Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ΄Π°ΡΠ° ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠ°ΠΏΠ»ΠΈ ΠΎ Π·Π΅ΠΌΠ»Ρ.ΠΡΠ»ΠΈ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅ΡΡΡΠΆ, ΠΈΠ· Π½Π΅Π³ΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΠΏΠ΅ΡΠ²Π°Ρ ΠΊΠ°ΠΏΠ»Ρ ΠΏΠ°Π΄Π°Π»Π° ΡΠ΅ΡΡΡΠ΅ ΡΠ°Π²Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ± ΡΡΠΈΡ ΡΠ°Π²Π½ΡΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΏΠΎΠΌΠΈΠ½Π°Π΅ΡΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅ΡΠ²ΡΡΡΠ°Ρ ΠΊΠ°ΠΏΠ»Ρ ΠΏΠ°Π΄Π°Π»Π° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ°ΠΉΡΠΈ Π²ΡΠ΅ΠΌΡ ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠ°ΠΏΠ»ΠΈ ΠΏΡΠΎΡΡΠΎ: Π²Π±Π»ΠΈΠ·ΠΈ Π·Π΅ΠΌΠ»ΠΈ Π²ΡΠ΅ ΡΠ΅Π»Π° ΠΏΠ°Π΄Π°ΡΡ Ρ ΠΈΠ·Π²Π΅ΡΡΠ½ΡΠΌ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°Π΄Π΅Π½ΠΈΡ; Π²ΡΡΠΎΡΠ° ΠΏΠ°Π΄Π΅Π½ΠΈΡ ΠΈΠ·Π²Π΅ΡΡΠ½Π°; Π½Π°ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΠΎΠ³ΠΎΠ²ΠΎΡΠ΅Π½Π° ΡΠ»ΠΎΠ²ΠΎΠΌ Β«ΠΎΡΠ΄Π΅Π»ΡΠ΅ΡΡΡΒ», ΡΠΎ Π΅ΡΡΡ Π±Π΅Π· β¦ ΠΠΎΠ³Π°Π΄Π°Π»ΠΈΡΡ? Π£Π΄Π°ΡΠΈ. ΠΡΡΠ°ΡΠΈ, Π²ΠΎΠΏΡΠΎΡ Π·Π°Π΄Π°ΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°ΡΡ:ΠΠ°ΠΉΡΠΈ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΡΠ²ΡΡΡΠΎΠΉ ΠΈ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠ°ΠΏΠ»Π΅ΠΉ Π² ΠΌΠΎΠΌΠ΅Π½Ρ ΡΠ΄Π°ΡΠ° ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠ°ΠΏΠ»ΠΈ ΠΎ Π·Π΅ΠΌΠ»Ρ.
ΠΡΠ°ΠΊ, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΡΠΈ Π½Π°Π²ΡΠΊΠΈ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΡΠ΅ΠΊΡΡΠ°, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ ΠΏΠΎΠΈΡΠΊ Π·Π°Π΄Π°Π½Π½ΡΡ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½, ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΡΡ Π·Π°ΠΏΠΈΡΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π² Π·Π°Π΄Π°ΡΠ΅.
ΠΠ°Π²Π΅ΡΡΠ°Ρ ΡΠΊΡΠΊΡΡΡ Π² ΡΠ°Π·Π΄Π΅Π» ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΠΊΠΈ Β«ΡΠ°Π²Π½ΠΎΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Β», ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ»ΠΈΠΌ Π΅Π³ΠΎ ΠΊΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: ΡΠΊΠΎΡΠΎΡΡΡ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡΠΎΡΡΠΈ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ.
studfiles.net