Резервирование n 1 что это – резервирование инженерных систем / Группа Компаний ХОСТ corporate blog / Habr

резервирование инженерных систем / Группа Компаний ХОСТ corporate blog / Habr

Начинать чинить надо, пока не сломалось — сломанное поддаётся ремонту гораздо неохотней.
Юрий Татаркин

После того как обеспечены надежные стены и крыша над головой для ЦОД (статья «Риски ЦОД: выбираем месторасположение»), следующим шагом на пути обеспечения его отказоустойчивости должно стать резервирование инженерных систем. Строя дата-центры более 10 лет, мы убедились, что не все заказчики в полной мере осознают важность дублирования основных коммуникаций. Космические корабли и те падают, а оборудование в ЦОД в идеале должно работать 365 дней в году и 24 часа в сутки. Любая вышедшая из строя или нуждающаяся в профилактике деталь должна быть заменена без остановки работы всех критичных сервисов.

Как справедливо отметили наши читатели, далеко не всем компаниям нужен надежный ЦОД. Для некоторых его бесперебойная работа не предмет переживаний, а многие предпочтут хранить свои данные в публичном облаке. Данный паблик предназначен в большей степени для тех, кто по тем или иным соображениям безопасности или проходимости каналов связи сделал свой выбор в пользу собственного дата-центра и работы сервисов с уровнем доступности не менее трех девяток (простоя не более 1,6 часов в год).

Отказоустойчивость и резервирование: что говорит мировой опыт?

Согласно стандартам Uptime Institute выделяют четыре уровня отказоустойчивости инфраструктуры ЦОДа:


Использование классификации Tier подразумевает, что все инженерные системы и компоненты ЦОД, вплоть до запаса топлива для дизель-генератора, воспринимаются как единое целое. Наличие хотя бы одного нерезервированного компонента приводит к снижению уровня отказоустойчивости и увеличению возможных часов простоя ЦОД. Количество таких компонентов, а также статистика по плановым и внеплановым отказам дата-центров в год влияют на допустимое время простоя. Например, для ЦОД уровня Tier I характерно внеплановое отключение 1,2 раза в год. Плюс, из-за отсутствия резервных систем дата-центр не будет работать еще два раза по двенадцать часов во время планового обслуживания. В итоге суммарное время простоя будет рассчитываться как: 12+12+4х1,2=28,8 часов.

Для расчета уровня отказоустойчивости в процентах нужно: ((t работы — t простоя )×100%)/ t работы, где
t работы – максимальное количество часов работы ЦОД в год (24 часа в сутки 365 дней в году).
t простоя – это время планового простоя ЦОД в год.

Классифицируя способы резервирования, принято выделять следующие схемы: N+1, 2N и 2(N+1). Применение схем N+1 и N+2 по сравнению с 2N дают значительную экономию бюджета и при неплохом уровне отказоустойчивости (разом все элементы системы вряд ли выйдут из строя). Однако, нужно помнить, что с ростом числа рабочих единиц (N), согласно теории вероятности, доступность системы ухудшается. В ситуации большого количества элементов (большого N, например, источников бесперебойного питания) уместнее использовать схему 2N, когда каждый компонент системы полностью задублирован. Это позволит в разы увеличить отказоустойчивость и снизить время простоя. В то же время, ни N+1, ни 2N не резервируют систему в целом, а потому не исключают опасность аварии на участке между зарезервированными элементами системы. Поэтому Tier IV рекомендует использовать 2 независимые схемы, каждая из которой полностью задублирована, 2(N+1).

Неиссякаемая энергия

Основой надежной работы ЦОД является электроснабжение: бесперебойное (источники бесперебойного питания – ИБП) и гарантированное (дизель-генераторные установки – ДГУ). В момент исчезновения напряжения городской сети ИБП должны поддержать питание оборудования до полного запуска ДГУ, который сможет обеспечить электроэнергией весь ЦОД.
Для того чтобы ЦОД не встал в отсутствии электроснабжения, крайне важно, во-первых, зарезервировать ИБП, а, во-вторых, проводить регулярные сервисные работы.

К каким рискам может привести наличие только одного ИБП – в целом понятно. В лучшем случае мы не сможем провести тестирование источника, в худшем – получим простой ЦОД. Но порой даже наличие нескольких ИБП не дает свободу действий. Так в одной организации источников в ЦОДе было два, но каждый питал только свою группу серверов, а не служил резервом друг для друга. При проведении технического обслуживания у сервис-инженера прихватило спину. Падая, он каким-то образом умудрился обесточить выход ИБП. И, по закону подлости, выключившийся в разгар рабочего дня источник обесточил группу серверов с наиболее критичными приложениями.

«Боевой» запуск дизель-генератора (ПБ) – проверка возможности запуска дизель-генератора в автоматическом режиме при пропадании внешней сети. Производится с помощью имитации полного отключения внешнего питания ЦОД. Время от отключения питания до запуска дизель-генератора серверное оборудование работает от батарей ИБП (обычно 1-3 минуты).

Запуск дизель-генератора под нагрузкой (ПН) – проверка способности дизель-генератора поддерживать питание подключенного к нему оборудования. Производится ручным переключением нагрузки на генератор (с помощью панели управления) после его запуска и выхода на нормальную работу. На время переключения АВР серверное оборудование работает от батарей ИБП (около 0,3-1 сек.). Кстати, для переключения нагрузки на ДГУ лучше использовать мотор-приводы, они хоть и работают медленнее, но срок службы и надежность у них выше.

Для предотвращения нежелательных простоев нужны регулярные комплексные сервисные работы. В одном из ЦОД проверки проводились только в отношении ДГУ. ИБП исправно показывал 10 минут автономии, но его никто не обслуживал. Возраст батарей к тому времени перевалил за 5 лет, и во время одного из боевых запусков они смогли проработать лишь 29 секунд. В то время как ДГУ завелась и смогла принять на себя нагрузку спустя только 33 секунды. Ко всему прочему, все оборудование было запитано от одного ИБП (от второго было решено отказаться еще на этапе реализации из-за бюджетных ограничений). В итоге – падение ЦОД. Полное восстановление всех вычислительных систем заняло около 12 часов.

Основные ошибки:
• Отказ на стадии реализации от второго ИБП. Трудные времена закончились, но второй ИБП так и не был приобретен.
• Отсутствие комплексного обслуживания всех инженерных систем ЦОД. При регулярном сервисном обслуживании ИБП об их неудовлетворительном состоянии стало бы известно заранее.
• Отсутствие регламентов планового обслуживания ЦОД и хаос при его эксплуатации.

Пути миграции тока

Ваши ИБП зарезервированы и вы регулярно их обслуживаете? Молодцы, но не вздумайте на этом останавливаться! Зарезервируйте еще и кабельные линии электроснабжения ЦОД, и установите 2 АВР, которые полностью резервируют друг друга. В идеале, они должны быть подключены к разным независимым электрощитам. В крайнем случае можно протянуть две линии и от одной щитовой, чтобы не получилось ситуации, как у одного из наших заказчиков.

При внедрении системы диспетчеризации в небольшой, но значимый ЦОД необходимо было поставить трансформаторы тока на основной ввод. Проблема была в том, что ввод был только один, а обесточить дата-центр было нельзя. После всех подготовительных работ питание было отключено. Пока оборудование ЦОД работало от батарей, монтажники трудились не покладая рук, а инженер, вытирая пот со лба, считал минуты на дисплее ИБП.

Основные ошибки:
• Система диспетчеризации была незаслуженно забыта при проектировании.
• Линия питания ЦОД не была зарезервирована.

Стало жарко

Система «чиллер-фанкойл» – система кондиционирования воздуха, в которой теплоносителем между центральной холодильной машиной (чиллером) и локальными теплообменниками (фанкойлами) служит охлажденная жидкость, циркулирующая под относительно низким давлением – обыкновенная вода (в тропическом климате) или водный раствор этиленгликоля (в умеренном и холодном климате).

Не стоит забывать и о резервировании систем кондиционирования. За последние два месяца довелось увидеть два проекта охлаждения ЦОД с использованием системы чиллер-фанкойл без резервирования трассы между чиллерами и сухими охладителями. Использование данного решения в реальной жизни с высокой долей вероятности приводит к простою ЦОД. В случае замены теплоносителя (что не редкость), только резервная трасса может сохранить работоспособность системы охлаждения, а значит и всего дата-центра.

Еще очень важный момент – разделение внешнего и внутреннего контуров охлаждения. Так в одном проекте на кровле седьмого этажа предлагалось установить два двухтонных чиллера, бак аккумулятор холода, мощную подкачивающую насосную станцию. Подача и обратка длиной двести метров была запланирована напрямую с крыши до блоков охлаждения в ЦОД, который находился в цоколе. В итоге, при даже небольшом прорыве трубы или неплотных соединениях внутренних блоков охлаждения все десять тонн этиленгликоля под давлением могли затопить ЦОД и электрощитовую заказчика.

Не забывайте о резервировании не только вычислительного оборудования, но и основных инженерных систем, и пусть ваш ЦОД работает вечно!

habr.com

Схемы резервирования инженерных систем ЦОД

Схемы резервирования инженерных систем ЦОД

Что такое схема с N элементами в системе резервирования и как разобраться с, казалось бы, сложной таблицей Менделеева дата-центра?

Прежде всего, необходимо сказать, что обозначение N происходит от английского слова «need», что в переводе обозначает «необходимость». А для ЦОД необходима его бесперебойная работа, то есть системы резервирования прежде всего отвечают за отказоустойчивость источников бесперебойного питания и систем охлаждения.

Для системы резервирования этот символ N является обозначением необходимой нагрузки для эффективной работы оборудования. В одной системе, как правило, используются несколько N элементов. Их принцип работы зависит от схем, по которым они были воспроизведены. Существует несколько основных видов резервирования: N, N+1, 2N, 2N+1, 2(N+1), 3/2N.

В зависимости от установленной схемы резервирования можно говорить об отказоустойчивости системы: чем система сложнее, тем она дороже и, соответственно, более устойчива к отказам и ошибкам.

N. Отличительная черта такой схемы резервирования в том, что как такового резервирования в ней нет, а надежность зависит от каждого отдельного элемента N. При сбое в работе одного из них незамедлительно будет прекращена вся работа системы. Причина в том, что, когда один из элементов выходит из строя, его нагрузку перераспределить будет некуда. В результате такого сбоя данные могут быть безвозвратно утеряны, и это повлечет за собой, соответственно, материальные убытки. Эта схема уже давно не эксплуатируется как раз по причине того, что цена простоя всего ЦОД в случае неполадок слишком высока. По сути, при данной схеме зачастую отсутствует сам ИБП или генератор, а если даже они и есть, то представлены одномодульными системами.

N+1 – схема с одним резервным элементом N. В системе N+1 резервный элемент остается незадействованным в работе до тех пор, пока в системе не произойдет сбой одного из основных элементов. В случае возникновения такого сбоя, резервный элемент примет на себя всю его нагрузку. Таким образом, система продолжит работать, но необходимость отключать всю систему для проведения ремонтных работ все еще возникнет.

Для этого предусмотрены вариации: N+2, N+3 и т.д., в зависимости от требований уровня надежности и безопасности. Но стоит учитывать, что в этом варианте усложнение схемы может привести к большему простою.

2N – это две полные параллельные системы для каждого элемента N. То есть каждый элемент N в такой схеме дублируется, а нагрузка одинакова на двух элементах. При этом ни один из них никогда не нагружается полностью, и системы делят нагрузку 50/50, но эффективность работы при этом значительно снижается. Однако, при такой системе резервирования сбой одного или нескольких элементов N или выход из строя одной из систем не повлияют на работу всей системы в целом.

 

 

2N+1 — это параллельная система резервирования, схожая с системой 2N, но с одним дополнительным резервным элементом.

Таким образом, если ЦОД выйдет из строя или потребуется техническое обслуживание, то всю нагрузку можно перенести на параллельный блок, в то время как сам дата-центр продолжит работу без остановок.

Схема 2(N+1) – это параллельная система резервирования с дополнительным элементом N, в которой резервный элемент дублируется, то есть это две полные системы по схеме N+1. При возникновении сбоя или необходимости технического обслуживания резервные элементы N остаются в любом случае, резервируются и ИБП, и системы охлаждения, ДГУ ждет своего часа на отдельной площадке. Эта система считается самой отказоустойчивой.

Схема 3/2N включает в себя все преимущества системы 2N, но такая система загружена на 2/3, а не на 50/50 как в системе 2N, соответственно и производительность у 3/2N будет намного выше, а счета за электричество – значительно меньше. При отказе одного из элементов минимальна вероятность потери нагрузки. Даже если выйдет из строя один из ИБП, то его нагрузку подхватит соседняя система. Как и в любой другой схеме, здесь возможны вариации: к примеру, если добавить четвертую группу ИБП, то схема уже будет называться 4/3 N. Как ни странно, данная схема пришла их сетей передачи данных и большой популярности у дата-центров не пользуется.

 

 

N

Схемы резервирования

N

N+1

2N

2(N+1)

Вероятность отказа

Длительность простоя

Вероятность отказа

Длительность простоя

Вероятность отказа

Длительность простоя

Вероятность отказа

Длительность простоя

1

0.23%

20ч

0.0005%

0.046ч

0.0005%

0.046ч=164сек 

2.7·10-9

0.0009сек 

2

0.46%

39.9ч

0.0016%

0.137ч

4.7·10-6%

 1.5сек

2.4·10-5

0.008сек 

3

0.68%

59.7ч

0.0031%

0.273ч

 4.0·10-8%

 0.013сек

 9.7·10-5%

 0.03сек

4

0.90%

79.5ч

0.0052%

0.454ч

3.5·10-10

 0.0001сек

 2.7·10-7%

 0.08сек

5

1.13%

99.1ч

0.0077%

0.679ч

2.9·10-12

 0.000001сек

 6.0·10-7%

 0.20сек

6

1.35%

118.6ч

0.0108%

0.948ч

 2.5·10-14%

 0.8·10-8сек

 1.2·10-6%

 0.37сек

7

1.58%

138.1ч

0.0144%

1.261ч

 2.1·10-16%

 0.7·10-10сек

 2.1·10-6%

 0.65сек

8

1.80%

157.5ч

0.0185%

1.618ч

 1.9·10-18%

 0.6·10-12сек

 3.4·10-6%

 1.08сек

9

2.02%

176.7ч

0.0230%

2.018ч

 1.7·10-20%

 0.5·10-14сек

 5.3·10-6%

 1.67сек

10

2.24%

195.9ч

0.0281%

2.460ч

 1.4·10-22%

 0.5·10-16сек

 7.9·10-6%

 2.49сек

 

 

www.alldc.ru

принцип резервирования N+1 — это… Что такое принцип резервирования N+1?

 

принцип резервирования N+1
Системы бесперебойного электроитания (СБЭ), использующие принцип резервирования N+1, представляют собой системы с так называемым «горячим» (т. е. находящимся под нагрузкой) резервом.
[А. Воробьев. Классификация ИБП http://www.osp.ru/lan/2003/10/138056/ с изменениями]

EN

N+1 redundancy
A redundant method based on one module more than needed to fulfill the required performance. For instance, three parallel systems, each rated 2KVA, form a 2+1 redundant system for a 4KVA consumer. Failure of a single UPS will not affect systems operational performance.
[http://www.upsonnet.com/UPS-Glossary/]

Параллельные тексты EN-RU

N+X redundancy
Load remains secure in the event of a module failure.
One Ensuring a high level of availability while reducing the initial investment.
(N+1) or more (N+X) redundant modules could be added to the system

[GUTOR Electronic LLC]

Резервирование по принципу N+X
Электропитание нагрузки в случае выхода модуля из строя не прерывается.
Обеспечивается высокий уровень эксплуатационной готовности при сокращении первоначальных затрат.
В системе может быть один (резервирование по принципу N+1) или Х (резервирование по принципу N+X) резервных модулей.

[Перевод Интент]

 

 

N + 1 Redundancy ensures maximum uptime and continuous availability

Резервирование по принципу N + 1 минимизирует время простоя и обеспечивает постоянную готовность оборудования

Symmetra Power Array achieves N+1 redundancy and higher through proven power sharing technology.

Power sharing means that all of the power modules in a Power Array run in parallel and share the load evenly.

N+1 redundancy means running one extra module than will support your full load.


В ИБП семейства Symmetra Power Аггау резервирование по принципу N+1 или с более высокой избыточностью реализуется на основе проверенной практикой технологии распределения нагрузки.

Все модули электропитания работают параллельно и несут одинаковую нагрузку.

Резервирование по принципу N+1 означает, что число модулей электропитания превышает на 1 необходимое для питания защищаемых устройств при их работе на максимальную мощность.

In this way, all of the modules support one another.

Таким образом, каждый модуль подстраховывает другие модули

For example, if your computer load is 15kVA, you achieve N+1 with five 4kVA Power Modules.

Например, если максимальная потребляемая мощность компьютерной системы составляет 15 кВА, то для резервирования по принципу N+1 требуется пять модулей электропитания по 4 кВА каждый.

If a module fails or is removed, the other modules instantaneously begin supporting the full load.
It does not matter which module fails because all of the modules are always running and supporting your load.

В случае аварии или отключения одного из модулей нагрузка мгновенно перераспределяется на остальные модули.
Не имеет значения, какой именно из модулей прекратит работу — каждый одновременно выполняет функции и основного и резервного.

technical_translator_dictionary.academic.ru

принцип резервирования N+1 — это… Что такое принцип резервирования N+1?

 

принцип резервирования N+1
Системы бесперебойного электроитания (СБЭ), использующие принцип резервирования N+1, представляют собой системы с так называемым «горячим» (т. е. находящимся под нагрузкой) резервом.
[А. Воробьев. Классификация ИБП http://www.osp.ru/lan/2003/10/138056/ с изменениями]

EN

N+1 redundancy
A redundant method based on one module more than needed to fulfill the required performance. For instance, three parallel systems, each rated 2KVA, form a 2+1 redundant system for a 4KVA consumer. Failure of a single UPS will not affect systems operational performance.
[http://www.upsonnet.com/UPS-Glossary/]

Параллельные тексты EN-RU

N+X redundancy
Load remains secure in the event of a module failure.
One Ensuring a high level of availability while reducing the initial investment.
(N+1) or more (N+X) redundant modules could be added to the system

[GUTOR Electronic LLC]

Резервирование по принципу N+X
Электропитание нагрузки в случае выхода модуля из строя не прерывается.
Обеспечивается высокий уровень эксплуатационной готовности при сокращении первоначальных затрат.
В системе может быть один (резервирование по принципу N+1) или Х (резервирование по принципу N+X) резервных модулей.

[Перевод Интент]

 

 

N + 1 Redundancy ensures maximum uptime and continuous availability

Резервирование по принципу N + 1 минимизирует время простоя и обеспечивает постоянную готовность оборудования

Symmetra Power Array achieves N+1 redundancy and higher through proven power sharing technology.

Power sharing means that all of the power modules in a Power Array run in parallel and share the load evenly.

N+1 redundancy means running one extra module than will support your full load.


В ИБП семейства Symmetra Power Аггау резервирование по принципу N+1 или с более высокой избыточностью реализуется на основе проверенной практикой технологии распределения нагрузки.

Все модули электропитания работают параллельно и несут одинаковую нагрузку.

Резервирование по принципу N+1 означает, что число модулей электропитания превышает на 1 необходимое для питания защищаемых устройств при их работе на максимальную мощность.

In this way, all of the modules support one another.

Таким образом, каждый модуль подстраховывает другие модули

For example, if your computer load is 15kVA, you achieve N+1 with five 4kVA Power Modules.

Например, если максимальная потребляемая мощность компьютерной системы составляет 15 кВА, то для резервирования по принципу N+1 требуется пять модулей электропитания по 4 кВА каждый.

If a module fails or is removed, the other modules instantaneously begin supporting the full load.
It does not matter which module fails because all of the modules are always running and supporting your load.

В случае аварии или отключения одного из модулей нагрузка мгновенно перераспределяется на остальные модули.
Не имеет значения, какой именно из модулей прекратит работу — каждый одновременно выполняет функции и основного и резервного.

technical_translator_dictionary.academic.ru

Теория вероятностей: резервирование и время безотказной работы ЦОД

Данная статья — первая в своём роде и посвящена применению теории вероятностей для сравнения различных схем резервирования оборудования в ЦОД, вычислению достигаемого времени безотказной работы, а также финансовым рискам.

Известно, что каждое оборудование имеет такие характеристики, как ресурс, время безотказной работы и средняя длительность простоя за год использования. Также заметим, что уровни надежности ЦОД (Tier), являясь одной из основных характеристик ЦОД, зависят от времени простоя за год. Это неспроста: именно от длительности простоя зависит успешность бизнеса компании и её непредвиденные убытки.

Итак, при построении ЦОД вкладывают деньги для реализации той или иной схемы резервирования с целью сократить время простоя и, следовательно, сократить и убытки от простоев. Всегда ли оправдываются эти вложения? Всё зависит от схемы резервирования. Именно по этому критерию будет разделен последующий материал.

Схема резервирования отсутствует: N

В данном случае ни одна система не  резервируется (Tier I) и  простой каждой единицы оборудования означает простой всего ЦОД. Общий простой ЦОД за год составляет 28.8ч (Коэффициент отказоустойчивости 99,671%). Эта схема была характерна для ЦОД 60-70х годов прошлого века и полностью изжила себя к настоящему моменту по причине предельной убыточности: сегодня убытки компании от пары часов простоя если и не превышают стоимость дополнительной (резервной) единицы оборудования, то как минимум равны ей.

Схема резервирования N+1

Схема резервирования N+1 наиболее распространена на сегодняшний день. Согласно ей, к N рабочим единицам добавляется одна резервная. Здесь всегда важно правильно определить значение N. Рассмотрим этот аспект, условно приняв, что штатный простой одной единицы оборудования составляет S0 часов в год (вероятность отказа равна P0=S/(24ч/дн*365дн)=S/8760).

Очевидно, если N=0, то время простоя в год S(N=0)=S0, а вероятность отказа P(N=0)=S/8760= P0.

Если N=1, то вероятность отказа соответствует случаю, когда одновременно не работают обе единицы оборудования. P(N=1)=P1=P0*P0, S(N=1)=S1=P0*P0*8760.

При N≥2 система неработоспособна, если одновременно отключилось не менее двух любых единиц оборудования. Таким образом, в случае N=2 должны отключиться (1 и 2), (2 и 3), (1 и 3) единицы оборудования (вероятность каждого события равна P1=P0*P0) при условии работоспособности третьей единицы (вероятность 1-P0) или все три (1, 2 и 3) вместе (вероятность равна P0*P0*P0). Получаем следующую вероятность отказа системы: P2=3*P0*P0*(1-P0)+P0*P0*P0.

Для N=3 имеем три случая отказа:

  • вышли из строя любые две единицы оборудования (шесть вариантов с вероятностью P1=P0*P0 каждый) при условии работоспособности оставшихся двух единиц (вероятность (1-P0)*(1-P0)),
  • вышли из строя  любые три единицы оборудования (четыре варианта вероятностью P0*P0*P0 каждый) при условии работоспособности оставшейся единицы (вероятность 1-P0),
  • вышли из строя все четыре единицы оборудования (вероятность P0*P0*P0*P0).

Итоговая вероятность P3=6*P0*P0*(1-P0)*(1-P0)+4*P0*P0*P0*(1-P0)+ P0*P0*P0*P0.

Существует и общая формула для любого N, состоящая из N слагаемых. Однако, заметим, что, ввиду малости P0, первое слагаемое наиболее велико, а остальные практически не дают вклада в итоговую вероятность. Таким образом, немного потеряв в точности можно сократить число слагаемых до одного — первого. Тогда:

P1=P0*P0,

P2=3*P0*P0*(1-P0),

P3=6*P0*P0*(1-P0)*(1-P0),

…………

P(N)≈С(N+1,2)*P0^2*(1-P0)^(N-1), где B(2,N+1) — количество вариантов выборки 2 элементов из N+1 (на языке комбинаторики: сочетание из N+1 по 2), С(N+1,2) = (N+1)! / (2!·(N+1-2)!) = (N+1)! / (2·(N-1)!) = N*(N+1)/2. Итак,

P(N)≈N*(N+1)*P0^2*(1-P0)^(N-1)/2; S(N)=P(N)*8760.

Рассмотрим применение полученных формул на примере.

Пример №1. Штатный простой оборудования в год составляет 100 часов. Каков будет простой оборудования без резервирования и при схеме резервирования N+1 с различными N?В данном случае S0=100, P0=100/8760=0.0114=1.14%. Используя формулу для P(N) заполняем таблицу 1:
КонфигурацияВероятность отказа, %Время простоя за год, ч
11.14%100
1+10.0130%1.14
2+10.0335%2.93
3+10.0764%6.69
4+10.1260%11.03
5+10.1867%16.35

Вывод: Вероятность отказа и время простоя на порядок ниже при использовании схемы резервирования N+1, чем при отсутствии резерва вовсе. Однако, вероятность отказа и время простоя растет с ростом N, т.е. с ростом общего числа элементов в системе. Тем самым выполняется принцип “чем сложнее система, тем она менее надежна”. Интересно, что в этом примере вероятность отказа при N=14 сравняется с конфигурацией без резерва.

Данные, приведенные в примере, характерны, например, для ИБП. Если учесть, что простой системы бесперебойного питания означает отсутствие питания как такового, а, значит, и простой всего ЦОД. По данным Berkeley Internet Week 2000 Contingency Planning Research, приблизительные потери, которые могут быть вызваны простоем продолжительностью в 1ч на предприятиях различных типов в США составляют (таблица 2):

Тип предприятияСтоимость часа простоя
Биржевые транзакцииНесколько млн. долл.
Авторизация кредитных карт (банки)$2 000 000
Amazon$180 000
Бронирование билетов на самолеты$89 000
Резервирование (отелей, автомобилей и т.п.)$41 000
Банкоматы$14 000

Поэтому разница между конфигурациями 1+1 и 3+1 для компании по бронированию билетов может обойтись в __________$45 000.

Схема резервирования 2N

Согласно схеме резервирования 2N каждый элемент системы дублируется аналогичным.

Вероятность отказа ИБП и российские электросети

Большинство ИТ-оборудования, устанавливаемого в ЦОД требует высокого качества питания. Именно такое электропитание призваны обеспечить источники бесперебойного питания. При расчете рисков, связанных с обесточиванием ЦОД, огромное значение имеет доступность ИБП. В интернете можно найти следующие данные по доступности ИБП при различных конфигурациях системы бесперебойного питания (таблица 3 (Журнал сетевых решений “LAN”, №10 за 2008г.)):

Конфигурация ИБПДоступность (с байпасом), %MTBF
1+199.999999322182.9
2+199.999998991455.3
3+199.999998651091.5
4+199.99999831873.2
5+199.99999797728.4
6+199.99999763624.3
7+199.99999730545.3
8+199.99999696485.6
9+199.99999662437.0
10+199.99999628397.3

Как видно, доступность системы весьма велика, а время простоя для случая “1+1″ составит всего 0.2 секунды в год. Означает ли это, что Заказчик может рассчитывать на простой ЦОД в течение 200 миллисекунд в год?

Конечно, ответ “нет”! Но он скрыт в словах “с байпасом” во второй колонке таблицы. Оказывается, что в течение 0.2с ЦОД будет просто без питания, а всё остальное время он хоть грязное питание из сети (по линии байпаса), но получит. Обратимся к первоисточнику: что нам обещают предоставить электросети?

Согласно ГОСТ 13109-87 п.6.2, качество электрической энергии не должно выходить за рамки допустимого диапазона в течение 95% времени (438 часов в год). А длительность подачи электроэнергии пониженного качества не должна превысить 90 часов за год.

Таким образом, порядка 90 часов в год ЦОД будет запитан низкокачественной электроэнергией, что по сути можно приравнять к его простою (если ещё не выходу из строя некоторого (наиболее чувствительного и, как правило, наиболее дорогого) серверного оборудования). Следовательно, вместо доступности 99.99999932% получаем доступность 99.99999932%*95%=94.999999354%≈95%.

Вывод: в течение 438 часов ежегодно ЦОД будет лишен требуемого качества электропитания, а убытки компании по резервированию отелей, согласно таблице 2, составят $17.5 млн.

Автор: Хомутский Юрий / alldc.ru

telecombloger.ru

Последовательное резервирование (Serial Redundancy)


Часть I

Схема «Резервирование Hot-standby / Serial Redundancy»

Большинство промышленных ИБП имеют два входа — главный (вход выпрямителя, rectifier input, main input) и резервный (вход байпаса, Bypass input).

Все ИБП имеющие два входа могут использоваться в системе с последовательным резервированием. Примеры ИБП поддерживающих схему включения «Serial Redundancy»: Power-Vision Black THD 3/1, Power-Vision 3F, Safe-Power Evo, Power-Vision Black MP 3/3, Power-Vision HF, Power-Vision W и др.

Схему с последовательным резервированием также называют «Serial Redundancy», «Hot-standby redundancy» или «Резервирование Hot-standby»

Cистема «Последовательное резервирование Hot-standby» показана ниже на рис. 1.

Цель последовательного резервирования — повышение надежности системы электроснабжения критичного оборудования путем последовательного соединения ИБП. Так же растёт время автономии по сравнению с одиночным ИБП.

Стандартная система с последовательным резервированием состоит из одного основного (ведущего/ master) модуля ИБП и одного резервного (ведомого/slave) модуля ИБП (для нестандартных систем количество как основных так и резервных модулей больше). Основной модуль работает на нагрузку. Резервный модуль используется в качестве резервного источника питания для входа Байпас основного модуля системы.

При пропадании питания на входе, оба ИБП переходят в автономный режим работы, нагрузка потребляет энергию батарейного комплекта основного ИБП. Если к моменту его разряда питание не восстановится, произойдет автоматический переход основного ИБП в Байпас, т. е. в итоге нагрузка будет питаться от резервного блока ИБП (нагрузка потребляет энергию батарейного комплекта резервного ИБП).

Можно считать, что эта система является частным случаем системы с избыточным резервированием N+1(N+X) так как имеет следующую логику работы: если велинчина нагрузки не превышает нагрузочную способность N блоков ИБП, то поломка* одного любого (и более до X) ИБП не приведёт к отключению нагрузки, и оставшийся исправный ИБП (или N блоков ИБП) продолжит питать нагрузку.

Возможность системы продолжить питание нагрузки при поломке одного из модулей (с учётом своевременного ремонта вышедшего из строя ИБП) резко повышает надёжность системы так как вероятность одновременной поломки обоих ИБП ничтожно мала.

Отличие по логике от стандартной параллельной системы (N+1)N+X (parallel redundant) заключается в поочерёдном, а не синхронном исчерпании энергии батарей (при использовании единого батарейного кабинета этого отличия нет), а также в отсутствии распределения нагрузки между блоками ИБП. Применение данной схемы особенно эффективно для On-Line ИБП имеющих нулевое время переключения Байпас<->Инвертор, таких как Power-Vision Black 3/1(1/1). Если же используются ИБП с ненулеым временем прехода Байпас<->Инвертор, то, тот факт, что время переключения не равно нулю -является серьёзным отличием (ухудшением) по сравнению с системой с параллельным резервированием (в параллельных системах, для большинства типов OnLine ИБП, время переключения между блоками равно нулю).

 

Рис.1 Cистема «резервирование Hot-standby»

 

Принцип работы схемы «Резервирование Hot-standby»

Нормальный режим работы (входная сеть в норме):

 

Рис.2 Поток энергии при нормальном режиме работы

 

Рис. 2 показывает нормальный поток энергии когда входная сеть в норме. Поток энергии поступает на основной ИБП и с него на нагрузку. Резервный ИБП работает в холостом режиме. Если на основном ИБП произойдёт авария, он перейдёт в байпас и нагрузка будет запитана от резервного ИБП как показано на рис.3:

 

Рис.3 Поток энергии в аварийном режиме работы (основной ИБП неисправен)

 

Если сеть не в норме или отсутствует, то оба ИБП перейдут в батарейный режим . Поток энергии поступает из батарей основного ИБП на нагрузку. Резервный ИБП работает в холостом режиме. Если на основном ИБП разрядются батареи или произойдёт авария, он перейдёт в байпас и нагрузка будет запитана от резервного ИБП который будет питать нагрузку до разряда батарей. Если сеть восстановится, то система переходит в нормальный режим работы.

 

 


* это справедливо для случая если авария ведущего (основного/Master) ИБП — любая авария любого блока (инвертор, ЗУ и др.) при которой остаётся исправной линия Байпас. Для классического случая системы с избыточным резервированием N+1(N+X) этого ограничения нет.

 

По этой причине MTBF системы Hot Standby меньше чем MTBF системы Parallel Redundant.


Часть II

Отличия системы бесперебойного питания с последовательным резервированием «Hot-Standby» от системы с параллельным резервированием «N+X».

Ниже приведён пример сравнения 2х систем:

  • Система #1: 10кВА(9кВт) +10кВА(9кВт) паралл. резерв. N+1 (с отдельными бат. блоками)
  • Система #2: 10кВА(9кВт) +10кВА(9кВт) послед. резервирование (с отдельными бат блоками)

Ниже рассмотрен пример когда пользователь выбрал систему #2 (10кВА(9кВт) +10кВА(9кВт) с последовательным резервированием (с отдельными бат блоками))

вместо системы #1 (10кВА(9кВт) +10кВА(9кВт) с паралл. резерв. N+1 (с отдельными бат. блоками)):

 

Система #1 Параллельное резервирование 1+1
Система #2 Последовательное резервирование Hot-Standby

 

1 если нагрузка равна 9…18кВт, то система#1 будет нормально работать как единый ИБП мощностью 20кВА/18кВт

в то время как #2 работать не может т.к. её макс. нагрузочная способность равна 0…10кВА(0…9кВт). Это справедливо когда ИБП системы #1 поддерживают как избыточное так и силовое (power redundant parallel operation) резервинование.

 

2 если нагрузка равна 0-9 кВт то разница в логике приведена ниже:

-в системе #1 равномерно делится нагрузка между ибп то-есть износ равный, а в системе#2 износ поочередный -сначала ибп-master затем ибп-slave

-в системе #1 равномерно делится нагрузка между сборками акб (в бат. режиме) то-есть износ равный а в системе#2 износ поочередный -сначала работает акб ибп-master затем уже акб ибп-slave

-в системе#1 mtbf(наработка на отказ) выше (при условии своевременного ремонта любого ибп при возм. аварии)

потому что, при поломке любого ибп, оставшийся исправный ибп продолжает питать(защищать) нагрузку, в то время как

в системе#2 при тяжёлой аварии в master-ибп (поломка блока Байпаса), нагрузка обесточится даже при условии что slave-ибп и его акб исправны.

 

— Недостатки Hot Standby по сравнению с N+X parallel:

  • ресурс ибп и акб исчерпывается неравномерно
  • если авария главного ибп тяжелая, так что повреждена его линия Электронного Байпаса то нагрузка обесточится (в таком же случае в N+X системе нагрузка не обесточится, но продолжит питаться от оставшегося второго исправного ибп)
  • power redundant невозможно (power redundant — это мощностное резервирование, то-есть когда система из 2х ибп способна питать нагрузку мощность которой равна сумме мощностей обоих ибп системы)
  • в большинстве случаев единый батарейный кабинет невозможен (не рекомендован) хотя возможны исключения (В параллельных системах более часты случаи когда производитель допускает/рекомендует использовать единый батарейный кабинет для всей параллельной системы. Преимущество единого бат. кабинета заключается в том, что, при поломке одного из ИБП часть АКБ (то-есть их энергия) не теряются для системы несмотря на потерю ИБП, в то время как в параллельной системе где каждый ИБП имеет свой бат. кабинет — с потерей(при аварии) ИБП теряются и его АКБ.)
  • время переключения между блоками может быть не равно нулю если в ТХ ИБП указано что время перехода на Байпас не равно нулю -итог: провал на нагрузке длительностью обычно 2-6мс, что обычно некртично для нагрузок имеющих импульсные блоки питания (компьютеры, сетевые устройства, телевизоры, светодиодные лампы и т.п. ).
  • MTBF (наработка на отказ) хуже

 

+ Преимущества Hot Standby по сравнению с N+X parallel:

  • нет коммуникационных (электропровода или оптика) кабелей между ИБП системы- меньше связей -меньше риск их повреждений -выше надёжность (общий mtbf хуже, но для условий где повышена опасность повреждения коммуникаций -mtbf выше). Таким образом есть 2 независимых блока ИБП соединённых только силовыми кабелями и не обменивающихся никакими сигналами -надёжность повышенная в тяжёлых условиях. Точных подтверждений и стандартов не имеется, но имеются факты приобретения таких систем военными связистами, что предположительно связано именно с повышенной надёжностью и как следствие, возможно, наличием спецтребований именно на такую схему резервирования.
  • ремонтопригодность системы высокая так как блоки ИБП могут быть заменены даже на ИБП другой марки.
  • В параллельной N+X системе это невозможно: при необходимости замены одного из ИБП требуется такой же ИБП с аналогичными прошивкой и платой параллельной работы что может быть затруднено по двум) причинам:
    — ИБП даже одного года выпуска могут иметь разные прошивки и не работать в параллель
    -на момент когда потребуется сменить один из ибп, например через 8 лет, невозможно будет приобрести парный ибп с такой же прошивкой, по той причине, что он мог быть снят с производства и техподдержка по прошивкам прекращена, то же касается и комплектации запчастями]
  • дешевле, кроме случаев когда опция «N+X параллель» включена по умолчанию в стандартную поставку ИБП, что бывает далеко не всегда
  • можно строить системы с числом ИБП более 3 и комбинированные системы содержащие и послед. и паралл. резервированные подсистемы
  • при общей простоте схемы, есть возможность строить схемы с питанием от 2х независимых фидеров в том числе несинхронизированных.

 

Особенности

  • в отличии от Parallel Redundant нельзя чинить/обслуживать главный ИБП с полным его выводом из линии. Но можно чинить/обслуживать главный ИБП с переводом его на ручной байпас.

 

 



Дополнение 1

 

Выше приведена стандартная терминология Последовательная система/Параллельная система.

Термин N+X используется для обозначения системы состоящей из N+X ИБП (например 3+2=5 блоков ИБП), где:

———

N – это число ИБП суммарной мощности которых достаточно чтоб тянуть нагрузку (например N=3).

X – это число избыточных (резервных) ИБП суммарная мощность которых может быть потеряна для системы (X штук ИБП могут сломаться) без ущерба для защищённого питания нагрузки (например X=2).

(Пример -имеем систему 3+2=5 ИБП (N=3, X=2): если 2 любых ибп сломаются то три оставшиеся продолжат питать нагрузку)

В различных источниках, в том числе в интернете может встретиться другая терминология и много похожих и близких терминов. Это связано с отсутствием единых нормативов на эту терминологию и с тем фактом что эти термины используются не только для резервирования ДГУ и ИБП но и в другой технике — например дублирование систем управления в летательных аппаратах, причём каждый производитель может вводить свою терминологию.

 

Пример разных терминнов для систем с резервирование — вот пример терминологии

[согласно источника

https://en.wikipedia.org/wiki/N%2B1_redundancy

«Redundancy: N+1, N+2 vs. 2N vs. 2N+1». datacenters.com. 2014-03-21. Retrieved 2014-06-29.

https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1-part-ii

]:

Одиночная система
(система с одним выходом содержащая несколько БП)

Термин

Перевод /Замечания

Основные термины:

Подразумевается что есть единственная нагрузка.

N is simply the amount required for operation.

Число N — это число блоков питания (БП) требуемых для питания нагрузки

N+1 represents the amount required for operation plus a backup.

N+1 — система состоящая из N штук БП плюс одни запасной БП

N+X means amount required for operation plus X of whatever you need to ensure resiliency.

N+X — система состоящая из N штук БП плюс X штук запасных БП

2N+X

термин применим только к мультисистемам (cм. ниже)

[[[[ Примеры Дополнительных терминов:

__

Замечание 1- в применении к одной системе с одним выходом эти термины некорректные так как затрудняют понимание количиства рабочих и резервных блоков

Пример возможной путаницы для данной терминологии:

— например для N=2 термины 2N+2 может читаться как 4+2 (4 ИБП рабочих, 2 ИБП избыточных(резервных)), а может читаться как 2+2+2=2+4 (2 ИБП рабочих, 4 ИБП избыточных(резервных))

— например для N=2: термин 2N может значить систему 2+2 (2 ИБП рабочих, 2 ИБП избыточных(резервных)) -это нормально, но при этом непонятно как отличить его от термина 2N означающего двухвыходную мультисистему содержащую 2 подсистемы (каждая подсистема содержит N штук ИБП)

Чаще эти термины применяются только к мультисистема -см  таблицу ниже. (Для обычных систем достаточно терминов N/N+1/N+X описанных выше)

В целом следует отметить, что, если кроме основных терминов N/N+1/N+X пытаются ввести новые термины -2N+2 и т.п., то основная проблема заключается в невозможности понять что термин описывает -одиночную систему или мультисистему, например 2N+2 может значить одиночную систему а может значить мультисистему (N+1)+(N+1).

Во избежание ошибок рекомендуется для мультисистем указывать подсистемы в круглых скобках, тогда путаницы нет -см Дополнение 2.

]]]]

2N means that you have two times the amount required for operation.

2N (или 2*N)- система состоящая из N штук БП (достаточных для работы нагрузки)плюс ещё N штук запасных БП тоесть система N+X где X=N

2N+1 means that you have two times the amount required for operation plus a backup.

2N+1 — система состоящая из N штук БП (достаточных для работы нагрузки)плюс ещё N+1 штук запасных БП

2N+X means that you have two times the amount required for operation plus X backup units.

2N+X — система состоящая из N штук БП (достаточных для работы нагрузки)плюс ещё N+X штук запасных БП

 

 

Система содержащая несколько подсистем (Мультисистема)
Каждая подсистема имеет один выход и содержит несколько БП

(мультисистема содержит нескольких (под)систем «System plus System redundant» (isolated parallel / multiple parallel bus / double-ended / ))

Термин

Замечания

Основные термины

Подразумевается что есть единственная нагрузка.

2*(N+X)             или в общем случае Y(N+X)

Возможны другие обозначения того же самого:

Например имеем N=1, X=1, имеем систему 2(N+1), так же она может обозначаться как:

…2N+2-ложный термин тк можно подумать что это мультисистема из 2 подсистем (для которой правильная запись: (N)+(N+2)

 

…(N+1)+(N+1) -правильный номальный термин

2*(N+X) — имеется 2 параллельных системы (каждая N+X)

Такая система может питать как двухвходовые нагрузки так и одновходовые нагрузки через STS

См. рис. ниже:

 

 

 

 

Дополнительные термины:

__

Замечание 1- в применении к мульти-системе эти термины чаще всего могут иметь следующие значения:

Более правильно указывать подсистемы в скобках -см Дополнение 1.

2N правильное обозначение (есть 2 подсистемы)

2N — система имеет два выхода и содержит 2 подсистемы, каждая подсистема содержит N блоков БП.

Более правильная запись: (N)+(N).

2N+1

2N+1 — система имеет два выхода и содержит 2 подсистемы: одну подсистему N+1 и одну подсистему N

Более правильная запись: (N)+(N+1).

2N+X

2N+X — система имеет два выхода и содержит 2 подсистемы: одну подсистему N+X и одну подсистему N

Более правильная запись: (N)+(N+X).

Редкие термины -используются для многовыходных «System plus System redundant» а также для обычных многовыходных систем (система содержит несколько одиночных ИБП, а нагрузки имеют несколько входов или STS)

Ниже -пример термина для обычной системы (немультиситема):

Термины с дробями применяются когда система БП не имеет одного выхода и соответственно не имеет одной нагрузки, а имеет несколько выходов и распределённые многовходовые нагрузки (например собственные блоки питания серверов имеют два входа тоесть они имеют микро-АВР на входе)

3N/2 — you could have three different UPS systems. Each system could be backing up a separate system. Sound confusing? It is. For example, UPS A could be backing up Server Group B and Server Group C. UPS B could be backing up Server Group A and Server Group B. UPS C could be backing up Server Group A and Server Group C. This means that there are three UPSs always backing up at least two Server Groups. This type redundancy design can be immensely chaotic. It requires a lot of attention to detail and special configuration when balancing and managing load.

 

3N/2  -эта запись означает что:

N -это число ИБП достаточное для защиты такого числа нагрузок которое указано после дроби -в данном случае для защиты (для питания) 2х нагрузок

3 -общее число подсистем

2 -число нагрузок которые способен тянуть один ИБП (в аварийном режиме если др. ИБП сломается).

_

Пример:

Система 3*1/2

N=1 -это число ИБП достаточное для питания двух нагрузок. (одна подсистема это один ИБП)

3 -общее число подсистем

2 -число нагрузок которые способен питать один ИБП

ИБП1 подаёт питание на сервер 2 и сервер 3

ИБП2 подаёт питание на сервер 1 и сервер 2

ИБП3 подаёт питание на сервер 1 и сервер 3

Когда нет аварий:

— Сервер2 (приоритетный ввод) питается от ИБП1

— Сервер1 (приоритетный ввод) питается от ИБП2

— Сервер3 (приоритетный ввод) питается от ИБП3

Если ИБП1 сломается то источнику ИБП2 придётся питать две нагрузки -сервера 1 и 2.

4N/3, 4N/2

—-//—-


Дополнение 2

Рекомендуемые Правильные термины:

N — это число блоков питания (БП) достаточных для питания нагрузки

X — число резервных (избыточных ) ИБП которые могут быть убраны/сломаны без ущерба для нагрузки

N+X или N+[X] -сумма где вначале идёт число рабочих а затем резервных ИБП в одной системе

[ ] — (для одиночных систем) в квадратных скобках указываются резервные блоки ИБП (которые могут быть убраны/сломаны без ущерба для нагрузки). Если скобок квадратных нет, то в любой сумме -число N в первом слагаемом означает рабочие ИБП (достат. для питания нагрузки), второе слагаемое -означает резервные ИБП. Суммы содержащей более двух слагаемых быть не может так как в системе только 2 типа ИБП рабочие и резервные и они учтены.

[ ] — (для мультисистем) в квадратных скобках указываются резервные подсистемы (которые могут быть убраны/сломаны без ущерба для нагрузки). Если скобок квадратных нет, то в любой сумме первая подсистема -это рабочая подсистема, остальные -резервные.

Когда нагрузкой являются двухвходовые сервера, то более двух рабочих подсистем сделать невозможно, так как в стандартной мультисистеме «без дробления нагрузки», только 2 подсистемы своими двумя выходами способны питать двухвходовую нагрузку поэтому остальные подсистемы -резервные

() — скобки круглые -в круглых скобках указывается одна подсистема при обозначениях в мультисистемах

* -(для одиночных систем) после знака умножения пишется число N тоесть число рабочих ИБП способных тянуть нагрузку. Произведение полученное в результате умножения -это общее число ИБП в системе (рабочие +резервные).

* -(для мультисистем) знак умножения означает увеличение числа подсистем в столько раз на сколько умножаем. После знака умножения указывается подсистема могущая питать одну нагрузку, перед знаком умножения -число подсистем. В общем, при таких обозначениях, системой может быть и один ИБП.

/ — (дробь- знак деления) в мультисистемах после дроби стоит число нагрузок которое способна питать одна подсистема, при этом подразумеваются многовходовые нагрузки (нагрузка с АВР на входе или добавление STS) и симметричное распределение нагрузок. Нагрузок несколько. Таким образом нагрузка дробится между подсистемами.

Замечание: -в параллельных одиночных системах выходы ибп запараллелены. Но в мультисистеме выходы подсистем параллелить нельзя (так как есть проблема синхронизации инверторов подсистем).

Замечание: если для сокращения термина пишется умножение, то подразумевается 2 слагаемых например 2(N)+1 это тоже что (N)+(N+1). Для мультисистем состоящих из трёх и более подсистем надо писать подробно всю сумму например есть система (N)+(N+1)+(N+2) -это правильная запись, а сокращать вот так нельзя-3(N)+3 так как тогда неясно сколько подсистем и сколько в каждой из них резервных блоков.

Замечание: в системах с дроблением нагрузки возможно нет строго деления (ко количеству) на рабочие подсистемы и резервные подсистемы так как возможен случай (при аварии) когда часть нагрузок при аварии будет питаться, а часть -нет. Но при необходимости можно ввести строгое определение для числа рабочих подсистем — это количество рабочих подсистем достаточное для питания всех имеющихся нагрузок.

Пример обозначений:

 

2N -одиночная система N+X где X=N

(пример для N=2 получаем систему N+2 или 2+2:

2 ИБП рабочих, 2 ИБП избыточных(резервных))

Parallel redundant 2*2 или Parallel redundant 2+2 система

2(N) — двухвыходная мультисистема содержащая 2 подсистемы (каждая подсистема содержит N штук ИБП в режиме power parallel)

2*(2) или (2)+(2) мультисистема

2N+1 то же что N+X где X=N+1

N-число блоков достат. для питания нагрузки.

например для N=1 получаем систему 1+2

или N+2 где N=1 (это более правильная запись!)

(считать что 2N это число рабочих(нерезервных) ИБП неправильно т.к. во всех источниках указано что N- число рабочих ИБП способных питать нагрузку, а коэффициент на который умножается N-это запас// …. times the amount required for operation. )

Параллельная система 1+2

(или 2N+1 для случая N=1)

2(N)+1 это тоже что (N)+(N+1)

подсистема c количеством (N) ИБП способна питать нагрузку, остальное-резерв

мультисистема 2(N)+1 для N=1      или  (1)+(1+1)

2+1 или 2+[1] или N+1 где N=2

(или N+[X] где N=2, X=1)

одна одновыходная система содержащая 2 рабочих и один резервный ИБП

 

Параллельная система 2+1

(1+1)+[(1+1)] — двухвыходная мультисистема содержащая 2 подсистемы типа (N+1)

где одна подсистема рабочая, а вторая подсистема является избыточной (резервной)

другая запись того же самого:

(N+1)+[(N+1)] где N=1

2*(1+1)

2*(N+1)  где N=1

2(N+1)  где N=1

система 2(1+1)

(1+1)+[(1+1)]+[(1+1)]  — двухвыходная мультисистема содержащая 3 подсистемы типа (N+1)

где одна подсистема рабочая, а вторая и третья подсистемы являются избыточными (резервными)

другая запись того же самого:

(N+1)+[(N+1)]+[(N+1)] где N=1

(1+1)+2*[(1+1)]

3*(1+1)

3*(N+1)  где N=1

3(N+1)  где N=1

система 3(1+1)

(1+1)+(1+1)+[(1+1)]

эта система невозможна без дробления нагрузки

(возможный пример — 3(1+1)/2 см. ниже)

 

3N/2 -пример для N=1:

Каждая из трёх подсистем содержит всего один ИБП.

ИБП питают отдельные группы нагрузок

система 3*1/2 (красный цвет -случай аварии на системе 1)

4N/3, -пример для N=1

Каждая из трёх подсистем содержит всего один ИБП.

4N/2 -пример для N=1

Каждая из трёх подсистем содержит всего один ИБП.

3(N+1)/2

-та же схема что 3N/2 но только каждая подсистема содержит не N ИБП, а N ИБП + один резервный ИБП. Схема распределения выходов нагрузок не меняется.

 

 

 


 

1 https://en.wikipedia.org/wiki/N%2B1_redundancy

«Redundancy: N+1, N+2 vs. 2N vs. 2N+1». datacenters.com. 2014-03-21. Retrieved 2014-06-29.

https://www.datacenters.com/news/redundancy-n-1-n-2-vs-2n-vs-2n-1-part-ii

2 Comparing UPS System Design Configurations / KevinMcCarthy, EDG2Inc. Viktor Avelar, Schneider Electric

3 https://whatis.techtarget.com/definition/N1-UPS

4 https://www.ecopowersupplies.com/blog/parallel-ups-systems-configurations

5 https://community.hpe.com/t5/BladeSystem-General/N-N-and-N-1-Redundancy/td-p/4566399

Если сеть не в норме или отсутствует, то оба ИБП перейдут в батарейный режим . Поток энергии поступает из батарей основного ИБП на нагрузку. Резервный ИБП работает в холостом режиме. Если на основном ИБП разрядются батареи или произойдёт авария, он перейдёт в байпас и нагрузка будет запитана от резервного ИБП который будет питать нагрузку до разряда батарей. Если сеть восстановится, то система переходит в нормальный режим работы.

____________

* это справедливо для случая если авария ведущего (основного/Master) ИБП — любая авария любого блока (инвертор, ЗУ и др.) при которой остаётся исправной линия Байпас. Для классического случая системы с избыточным резервированием N+1(N+X) этого ограничения нет.

По этой причине MTBF системы Hot Standby меньше чем MTBF системы Parallel Redundant.

www.xn--80aacyeau1asblh.xn--p1ai

принцип резервирования n 1 — с русского на все языки

 

принцип резервирования N+1
Системы бесперебойного электроитания (СБЭ), использующие принцип резервирования N+1, представляют собой системы с так называемым «горячим» (т. е. находящимся под нагрузкой) резервом.
[А. Воробьев. Классификация ИБП http://www.osp.ru/lan/2003/10/138056/ с изменениями]

EN

N+1 redundancy
A redundant method based on one module more than needed to fulfill the required performance. For instance, three parallel systems, each rated 2KVA, form a 2+1 redundant system for a 4KVA consumer. Failure of a single UPS will not affect systems operational performance.
[ http://www.upsonnet.com/UPS-Glossary/]

Параллельные тексты EN-RU

N+X redundancy
Load remains secure in the event of a module failure.
One Ensuring a high level of availability while reducing the initial investment.
(N+1) or more (N+X) redundant modules could be added to the system

[GUTOR Electronic LLC]

Резервирование по принципу N+X
Электропитание нагрузки в случае выхода модуля из строя не прерывается.
Обеспечивается высокий уровень эксплуатационной готовности при сокращении первоначальных затрат.
В системе может быть один (резервирование по принципу N+1) или Х (резервирование по принципу N+X) резервных модулей.

[Перевод Интент]

 

 

N + 1 Redundancy ensures maximum uptime and continuous availability

Резервирование по принципу N + 1 минимизирует время простоя и обеспечивает постоянную готовность оборудования

Symmetra Power Array achieves N+1 redundancy and higher through proven power sharing technology.

Power sharing means that all of the power modules in a Power Array run in parallel and share the load evenly.

N+1 redundancy means running one extra module than will support your full load.


В ИБП семейства Symmetra Power Аггау резервирование по принципу N+1 или с более высокой избыточностью реализуется на основе проверенной практикой технологии распределения нагрузки.

Все модули электропитания работают параллельно и несут одинаковую нагрузку.

Резервирование по принципу N+1 означает, что число модулей электропитания превышает на 1 необходимое для питания защищаемых устройств при их работе на максимальную мощность.

In this way, all of the modules support one another.

Таким образом, каждый модуль подстраховывает другие модули

For example, if your computer load is 15kVA, you achieve N+1 with five 4kVA Power Modules.

Например, если максимальная потребляемая мощность компьютерной системы составляет 15 кВА, то для резервирования по принципу N+1 требуется пять модулей электропитания по 4 кВА каждый.

If a module fails or is removed, the other modules instantaneously begin supporting the full load.
It does not matter which module fails because all of the modules are always running and supporting your load.

В случае аварии или отключения одного из модулей нагрузка мгновенно перераспределяется на остальные модули.
Не имеет значения, какой именно из модулей прекратит работу — каждый одновременно выполняет функции и основного и резервного.

Тематики

EN

translate.academic.ru

0 comments on “Резервирование n 1 что это – резервирование инженерных систем / Группа Компаний ХОСТ corporate blog / Habr

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *