Резонанс в цепи переменного тока
В данной статье рассказано о явлении резонанса в цепи переменного тока, состоящей из катушки, конденсатора и активного сопротивления, соединенных последовательно. Введены понятия резонансной частоты, добротности контура, а также разобраны соответствующие примеры задач из ЕГЭ по физике.
Явление резонанса в цепи переменного тока
Явление резонанса в контуре, состоящем из последовательно соединённых катушки индуктивности , конденсатора и активного сопротивления , заключается в резком возрастании амплитуды вынужденных колебаний силы тока при совпадении циклической частоты
Напомним, что частота переменного тока связана с циклической частотой переменного тока простым соотношением:
|
Цепь, состоящую из катушки индуктивности, конденсатора и активного сопротивления, соединённых последовательно, сокращенно называют RLC-цепью. Резонанс в RLC-цепи возникает при такой циклической частоте , что реактивное сопротивление катушки
Векторная диаграмма для случая резонанса в цепи переменного тока, состоящей из катушки, конденсатора и активного сопротивления, соединенных последовательно, имеет вид:
Добротность RLC-цепи
Резонансные цепи используют для того, чтобы выделить сигнал на нужной частоте, отфильтровав остальные сигналы на других частотах. Если отложить по вертикали действующее значение силы тока вынужденных колебаний в RLC-контуре, а по горизонтали — частоту генерируемой источником переменной ЭДС, то получится резонансная кривая данного RLC-контура, подобная той, что изображена на рисунке:
Если резонансная кривая имеет острый пик на резонансной частоте, говорят, что схема обладает высокой «селективностью». Параметр, характеризующий данное свойство, в физике называют добротностью . Добротность RLC-контура определяется как отношение его резонансной частоты к ширине резонансной полосы на полувысоте максимума :
Добротность RLC-цепи зависит от величины активного сопротивления. Чем меньше активное сопротивление , тем больше добротность при данных значениях индуктивности и электроемкости . Для RLC-контура добротность определяется по формуле:
Задача из ЕГЭ по физике про резонанс в цепи переменного тока
При подключении трех неизвестных элементов A, B и C электрической цепи к выходу генератора переменного тока с изменяемой частотой гармонических колебаний при неизменной амплитуде колебаний напряжения, обнаружены следующие зависимости действующих значений силы тока от частоты: Установите соответствие между буквой графика и соответствующим элементом из списка, который был подключен: 1) активное сопротивление |
- Правильный ответ для графика A — 1 (активное сопротивление) , поскольку из представленных в списке элементов лишь активное сопротивление не имеет зависимости от частоты в цепи переменного тока.
- Правильный ответ для графика B — 2 (катушка), поскольку индуктивное сопротивление катушки возрастает пропорционально частоте переменного тока. Тогда действующее значение силы переменного тока уменьшается обратно пропорционально частоте.
- Правильный ответ для графика B — 4 (RLC-контур), так как на кривой зависимости действующего значения силы переменного тока от частоты имеется ярко выраженный резонансный максимум, что является характерным признаком RLC-контура.
Материал подготовлен репетитором по физике на Юго-Западной, сергеем Валерьевичем
Резонанс токов: применение, принцип резонса тока, расчет контура
Знание физики и теории этой науки напрямую связано с ведением домашнего хозяйства, ремонтом, строительство и машиностроением. Предлагаем рассмотреть, что такое резонанс токов и напряжений в последовательном контуре RLC, какое основное условие его образования, а также расчет.
Что такое резонанс?
Определение явления по ТОЭ: электрический резонанс происходит в электрической цепи при определенной резонансной частоте, когда некоторые части сопротивлений или проводимостей элементов схемы компенсируют друг друга. В некоторых схемах это происходит, когда импеданс между входом и выходом схемы почти равен нулю, и функция передачи сигнала близка к единице. При этом очень важна добротность данного контура.
Соединение двух ветвей при резонансеПризнаки резонанса:
- Составляющие реактивных ветвей тока равны между собой IPC = IPL, противофаза образовывается только при равенстве чистой активной энергии на входе;
- Ток в отдельных ветках, превышает весь ток определенной цепи, при этом ветви совпадают по фазе.
Иными словами, резонанс в цепи переменного тока подразумевает специальную частоту, и определяется значениями сопротивления, емкости и индуктивности. Существует два типа резонанса токов:
- Последовательный;
- Параллельный.
Для последовательного резонанса условие является простым и характеризуется минимальным сопротивлением и нулевой фазе, он используется в реактивных схемах, также его применяет разветвленная цепь. Параллельный резонанс или понятие RLC-контура происходит, когда индуктивные и емкостные данные равны по величине, но компенсируют друг друга, так как они находятся под углом 180 градусов друг от друга. Это соединение должно быть постоянно равным указанной величине. Он получил более широкое практическое применение. Резкий минимум импеданса, который ему свойствен, является полезным для многих электрических бытовых приборов. Резкость минимума зависит от величины сопротивления.
Схема RLC (или контур) является электрической схемой, которая состоит из резистора, катушки индуктивности, и конденсатора, соединенных последовательно или параллельно. Параллельный колебательный контур RLC получил свое название из-за аббревиатуры физических величин, представляющих собой соответственно сопротивление, индуктивность и емкость. Схема образует гармонический осциллятор для тока. Любое колебание индуцированного в цепи тока, затухает с течением времени, если движение направленных частиц, прекращается источником. Этот эффект резистора называется затуханием. Наличие сопротивления также уменьшает пиковую резонансную частоту. Некоторые сопротивление являются неизбежными в реальных схемах, даже если резистор не включен в схему.
Применение
Практически вся силовая электротехника использует именно такой колебательный контур, скажем, силовой трансформатор. Также схема необходима для настройки работы телевизора, емкостного генератора, сварочного аппарата, радиоприемника, её применяет технология «согласование» антенн телевещания, где нужно выбрать узкий диапазон частот некоторых используемых волн. Схема RLC может быть использована в качестве полосового, режекторного фильтра, для датчиков для распределения нижних или верхних частот.
Резонанс даже использует эстетическая медицина (микротоковая терапия), и биорезонансная диагностика.
Принцип резонанса токов
Мы можем сделать резонансную или колебательную схему в собственной частоте, скажем, для питания конденсатора, как демонстрирует следующая диаграмма:
Схема для питания конденсатораПереключатель будет отвечать за направление колебаний.
Конденсатор сохраняет весь ток в тот момент, когда время = 0. Колебания в цепи измеряются при помощи амперметров.
Схема: ток в резонансной схеме равен нулюНаправленные частицы перемещаются в правую сторону. Катушка индуктивности принимает ток из конденсатора.
Когда полярность схемы приобретает первоначальный вид, ток снова возвращается в теплообменный аппарат.
Теперь направленная энергия снова переходит в конденсатор, и круг повторяется опять.
В реальных схемах смешанной цепи всегда есть некоторое сопротивление, которое заставляет амплитуду направленных частиц расти меньше с каждым кругом. После нескольких смен полярности пластин, ток снижается до 0. Данный процесс называется синусоидальным затухающим волновым сигналом. Как быстро происходит этот процесс, зависит от сопротивления в цепи. Но при этом сопротивление не изменяет частоту синусоидальной волны. Если сопротивление достаточно высокой, ток не будет колебаться вообще.
Обозначение переменного тока означает, что выходя из блока питания, энергия колеблется с определенной частотой. Увеличение сопротивления способствует к снижению максимального размера текущей амплитуды, но это не приводит к изменению частоты резонанса (резонансной). Зато может образоваться вихретоковый процесс. После его возникновения в сетях возможны перебои.
Расчет резонансного контура
Нужно отметить, что это явление требует весьма тщательного расчета, особенно, если используется параллельное соединение. Для того чтобы в технике не возникали помехи, нужно использовать различные формулы. Они же Вам пригодятся для решения любой задачи по физике из соответствующего раздела.
Очень важно знать, значение мощности в цепи. Средняя мощность, рассеиваемая в резонансном контуре, может быть выражена в терминах среднеквадратичного напряжения и тока следующим образом:
R ср= I2конт * R = (V2конт / Z2) * R.
При этом, помните, что коэффициент мощности при резонансе равен cos φ = 1
Сама же формула резонанса имеет следующий вид:
ω0 = 1 / √L*C
Нулевой импеданс в резонансе определяется при помощи такой формулы:
Fрез = 1 / 2π √L*C
Резонансная частота колебаний может быть аппроксимирована следующим образом:
F = 1/2 р (LC) 0.5
Где: F = частота
L = индуктивность
C = емкость
Как правило, схема не будет колебаться, если сопротивление (R) не является достаточно низким, чтобы удовлетворять следующим требованиям:
R = 2 (L / C) 0.5
Для получения точных данных, нужно стараться не округлять полученные значения вследствие расчетов. Многие физики рекомендуют использовать метод, под названием векторная диаграмма активных токов. При правильном расчете и настройке приборов, у Вас получится хорошая экономия переменного тока.
www.asutpp.ru
физический смысл и применение, формулы и способы расчета
Физическое явление параллельного резонанса широко применяется в радиоэлектронике. Для построения колебательных контуров, состоящих из активного и реактивного сопротивлений, следует собрать цепь из сопротивления, емкости, а также индуктивности. Для этого необходимо разобраться в назначении резонанса, нахождении сопротивления радиокомпонентов, его основном применении в радиотехнике, а также условии его возникновения.
Общие сведения
Электрическим сопротивлением проводника является свойство проводить электрический ток. Для построения и расчета колебательного контура необходимо знать способы нахождения активного и реактивного сопротивлений. Сопротивление для цепей, питающихся от переменного тока (ЦПТ), бывает следующих видов: активное, реактивное и полное.
Активным сопротивлением ® является обыкновенный резистор. Реактивное состоит из следующих типов нагрузки: индуктивное и емкостное. Индуктивное (Xl) — сопротивление катушки индуктивности в цепи переменного тока, а емкостное (Xc) определяется наличием емкости в цепи (конденсатора).
При сложении активного и реактивного сопротивлений получается полное сопротивление участка электрической цепи, которое обозначается литерой Z.
Активное сопротивление
Активным сопротивлением в ЦПТ называется наличие любой нереактивной нагрузки. Его можно рассчитать следующими способами: при помощи измерения величины сопротивления и расчетным методом. Для измерения R применяется прибор, который называется омметром. Омметр входит в состав комбинированных приборов измерения электрических величин, которые называются мультиметрами. Он подключается параллельно нагрузке, причем для проведения измерений следует выключить электрическую цепь, поскольку наличие тока приведет прибор к выходу из строя.
Существует еще один способ, который является расчетным, однако он требует знаний в области физики. При вычислении величины R следует произвести измерения силы тока и напряжения, а точнее, их амплитудных значений (Uм и Iм соответственно). Это возможно сделать при помощи соответствующих приборов.
Для измерения величины напряжения применяется вольтметр, а силу тока можно измерить при помощи амперметра. Кроме того, эти приборы измеряют только действующие значения напряжения (Uд) и силы тока (Iд). Для расчета амплитудных значений следует воспользоваться следующими формулами:
- Uм = Uд * sqrt (2).
- Iм = Iд * sqrt (2).
Для расчета R, которое можно найти, используя закон Ома для участка цепи (Iм = Uм / R): R = Uм / Iм. Воспользовавшись соотношениями зависимостей амплитудных значений от действующих, возможно рассчитать R: R = Uд * sqrt (2) / Iд * sqrt (2) = Uд / Iд. На практике применяют способ измерения сопротивления омметром.
Другие виды нагрузок
При наличии в ЦПТ катушки индуктивности возникает Xl, которую необходимо только рассчитывать. Индуктивное сопротивление рассчитывается по формуле, для которой необходимы циклическая частота (w) и индуктивность катушки (L): Xl = w * L.
Циклическая частота рассчитывается по следующей формуле, для которой необходимо только знать частоту переменного тока (f) и число ПИ (3,1416): w = 2 * 3,1416 * f. Индуктивность катушки рассчитывается, исходя из значений диаметра катушки (D в мм), числа витков (n) и длины намотки (l): L = (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l). Если подставить в формулу расчета индуктивного сопротивления все соотношения, то получается: Xl = 2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l).
Если в ЦПТ присутствует конденсатор с емкостью C, то добавляется еще и емкостное сопротивление — Xl, которое рассчитывается по следующей формуле: Xc = 1 / (w * C) = 1 / (2 * 3,1416 * f * C). Полное сопротивление в ЦПТ обозначается литерой Z и рассчитывается по формуле: Z = sqrt [sqr® +sqr (Xс — Xl)]. Если подставить в формулу полного сопротивления соотношения, по которым находятся R, Xl и Xc, то получается следующая формула: Z = sqrt [sqr (Uд / Iд) +sqr ((1 / (2 * 3,1416 * f * C)) — (2 * 3,1416 * f * (sqr (D/10) * sqr (n)) / (4,5 * D + 10 * l))]. Для упрощения вычисления можно рассчитать отдельно значения R, Xc и Xl.
Понятие о резонансе
Резонанс в цепи переменного тока происходит при образовании резонансной частоты, при которой некоторые сопротивления компенсируют друг друга. Основными признаками резонанса являются:
- Совпадения по фазе U и I в цепи.
- Значение активного и полного сопротивлений совпадают: Z = R.
- Сила тока является максимальной.
- Падение величины U на R равно U, которое приложено к контуру LC.
- Выполняется равенство падений U на индуктивности и емкости, а также противоположность по фазе и больше приложенного напряжения: Ul > U, Ul = I * Xl = I * Xc и U = I * R.
В последнем случае коэффициент усиления по напряжению рассчитываются следующим способом: Ku = Ul / U = sqrt (L/C) / R = p / R. Этот коэффициент называется добротностью контура и обозначается литерой Q. Волновое сопротивление контура обозначается p, которое вычисляется по формуле: p = sqrt (L/C).
Резонанс в ЦПТ бывает двух видов: последовательный и параллельный. Для последовательного резонанса условием является минимальное сопротивление и нулевая фаза. В основном он применяется в схемах с реактивными составляющими L и C. При параллельном типе резонанса происходит равенство емкостных и индуктивных сопротивлений, которые компенсируют друг друга. Этот тип соединения должен постоянно быть равен расчетной величине. Он получил широкое применение, благодаря резкому минимуму импеданса. Импеданс — полное сопротивление в цепи переменного тока, который обозначается Z.
Контур является схемой, в которой подключены параллельно или последовательно следующие элементы: резистор, катушка индуктивности и конденсатор.
Эта схема образует осциллятор для тока с гармонической составляющей. Наличие сопротивления в схеме приводит к затуханию и уменьшает резонансную пиковую частоту.
Во всей силовой радиоэлектронике применяются колебательные контуры. Примером его является силовой трансформатор. Кроме того, контур используется для настройки телевизоров, согласования антенн. Возможно применение в качестве полосового и режекторного фильтров, которые применяются в датчиках для распределения низких и высоких частот. Эффект резонанса применяется и в медицине при микротоковой терапии, и при проведении биорезонансной диагностики.
Случаи для тока и напряжения
В радиоэлектронике применяется резонанс напряжений и токов. Они отличаются друг от друга и применяются в определенных случаях. Резонанс напряжений возникает при последовательном соединении в RLC-цепи (схема 1):
Схема 1 — Последовательное соединение элементов.
Основным условием возникновения резонанса является равенство частот источника питания и колебательного контура. Кроме того, Xc = Xl, они являются противоположными величинами (по знаку) и равны 0. Напряжения Uc и Ul противоположны по фазам и компенсируют друг друга, следовательно, Z = R. В результате этого происходит увеличение тока, так как при уменьшении сопротивления по закону Ома происходит увеличение I. Вырастает не только I, но и значения U на элементах схемы. При резонансе значения напряжений на конденсаторе и катушке индуктивности могут быть больше относительно напряжения источника питания.
При увеличении частоты значение Xl увеличивается, а Xc — уменьшается. При равенстве частот резонансной и источника питания значение Z будет уменьшаться. Резонансная частота находится по формуле: w = sqrt (1 / (L * C)). Резонанс в ЦПТ зависит от следующих величин: частоты источника питания — f, параметров L и C. Обмен электрической энергией осуществляется между катушкой и конденсатором через источник питания.
Резонанс токов в цепи переменного тока возникает при параллельном включении активных и реактивных нагрузок. На схеме 2 изображен контур с параллельным соединением:
Схема 2 — Параллельное соединение в RLC-контуре.
В этом случае резонанс возникает при равенстве частот источника питания и резонансной, а также равенства проводимостей конденсатора (Bc) и катушки (Bl). Проводимость — величина, обратная сопротивлению. При увеличении частоты источника питания происходит рост полного сопротивления, при котором ток уменьшается. В результате этого, ток уменьшается и равняется активной составляющей. Для определения резонансной частоты следует воспользоваться алгоритмом нахождения этой величины:
- Удельные проводимости для резистора, катушки индуктивности и конденсатора: G = 1 / R, Bl = 1 / (w * L) и Bc = w * C соответственно.
- 1 / (w * L) = w * C.
- Резонансная частота вычисляется по формуле: w = sqrt (1 / (L * C)).
Явление резонанса может привести к выходу из строя элементов схемы, приборов или устройств. Для того чтобы избежать этого, необходимо производить точные расчеты колебательных контуров.
Расчет параллельного контура
Необходимо сделать параллельный контур, частота резонанса которого равна 1,5 МГц. Для его изготовления нужно осуществить расчет, исходя из которого возможно будет его изготовить. Рассчитывать контур следует точно, поскольку любая неточность может привести к негативным последствиям. Основной задачей является расчет нужных индуктивности катушки и емкости конденсатора. Расчет осуществляется по следующему алгоритму:
- Вычислить необходимую индуктивность в мкГн при заданной емкости и частоте: L = sqr (159,12 / f) / C.
- Рассчитать количество витков (n) и диаметр каркаса (d в мм) катушки: n = 32 * sqrt (L / d).
Пусть С = 2000 пФ, тогда L = sqr (159,12 / 2) / 2000 = 5,6 мкГн. Количество витков для катушки с d = 3 мм: n = 32 * sqr (5,6 / 3) = 112.
Этот метод является приближенным, поскольку не учитывается межвитковое пространство катушки. Радиолюбители часто применяют уже готовые катушки, имеющие длину 15 мм с диаметром d = 3 мм. Вычислить можно, используя другую формулу: n = 8,5 * sqrt (L) = 8,5 * 2,3664 = 21.
Таким образом, явление резонанса применяется при построении различной радиоаппаратуры и требует выполнения верных расчетов, поскольку даже при незначительных ошибках могут выйти из строя дорогостоящие детали.
220v.guru
Резонанс токов и напряжений: условия возникновения и применение
Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Векторная диаграмма:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Векторная диаграмма:
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
U=I/X
Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
Период колебаний определяется по формуле Томпсона:
Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
K=Q
А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
Uк=Uвх*Q
При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:
Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.
Коэффициент мощности будет равен:
cosФ=1
Эта формула показывает, что потери происходят за счет активной мощности:
S=P/Cosф
Резонанс токов
Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.
Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:
В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:
- Частота питания аналогична резонансной у контура.
- Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Заключение
Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:
- Где и в каких цепях наблюдается явление резонанса?
В индуктивно-емкостных цепях.
- Какие условия возникновения резонанса токов и напряжений?
Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.
- Как найти резонансную частоту?
В обоих случаях по формуле: w=(1/LC)^(1/2)
- Как устранить явление?
Увеличив активное сопротивление в цепи или изменив частоту.
Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:
Материалы по теме:
samelectrik.ru
Резонанс напряжений
Явление совпадения по фазе напряжения и тока в R,L,C-цепи называется электрическим резонансом.
В цепях переменного тока с последовательным соединением R,L,C- элементов при равенствевозникает резонанс напряжений.
При
т.е. резонанс напряжений наступает при равенстве реактивных сопротивлений.
Условием резонанса напряжений является равенство
(6-43)
или
(6-44)
Поэтому в цепи переменного тока резонанс напряжений может наступить:
если при постоянных LиCчастота сигнала, подаваемого в цепь, изменяясь, становится равной ν ==; ()
если при постоянной частоте входного сигнала и постоянной индуктивности емкость конденсатора меняется и становится равной: С = ;
если при постоянной частоте входного сигнала и постоянной емкости меняется индуктивность и становится равной: L=;
если при постоянной частоте входного сигнала изменение обеих величин LиCприводит к равенству:.
Таким образом, чтобы в цепи наступил резонанс напряжений, необходимо обеспечить определенное соотношение между величинами ν, L,C, т.е. резонанса в цепи можно добиться путем регулирования (подбора) параметров индуктивного и емкостного элементов, а также с помощью изменения частоты питающего тока. При резонансе частота тока (напряжения) равна частоте собственных колебаний цепи (контура).
Рис. 77 Графики и векторная диаграмма для резонанса напряжений.
При резонансе напряжений выражение
U==(6-45)
так как .
Полное сопротивление цепи
Z==R, (6-46)
так как =.
Полная мощность цепи
S==P, (6-47)
так как .
Фазовый сдвиг между током и напряжением
(6-48)
так как =следовательно.
Коэффициент мощности
= 1, (6-49)
так как Z=R
Таким образом, электрическая цепь переменного тока в режиме резонанса представляет собой чисто активную нагрузку.
Зависимость параметров цепи от частоты. Практический интерес представляют соотношения между параметрами цепи и их зависимость от частоты тока. На рис.78 а показаны
а б
Рис.78
кривые R=R(v). Т.к. активное сопротивление практически от частоты не зависит то графикR=R(v) представляет прямую параллельную оси абсцисс. Индуктивное сопротивлениепрямо пропорционально, а емкостное сопротивлениеобратно пропорционально частоте тока.
До резонанса , при резонансе, после резонанса. При резонансе полное реактивное сопротивление
=
Полное сопротивление цепи Z, также зависит от частоты. До и после резонанса оно растет за счет увеличенияили. При резонансеZ=R.
По закону Ома ток в последовательной R,L,C– цепи
. (6-50)
При резонансе (XL=XC) и ток равен максимальному значению, в то время как до (XL<XC) и после (XL>XC) резонанса он уменьшается. Приv=0,XC= ∞,I= 0. Аналогично приv=∞,XL=∞,I= 0. На рис. б показаны графикиI(v).
Кривая зависимости тока от частоты называется резонансной кривой. По характеру изменения тока в R,L,C– цепи легко установить состояние резонанса в ней – максимальное значение тока в цепи указывает на момент резонанса.
Рис. 79 Рис.80
Напряжение на резистивном элементе изменяется пропорционально току: При резонансе, когда ток максимален, напряжениеUaтакже максимально и равно напряжению источника питанияUист (рис. ). Приω= 0; ∞ токI= 0;Ua= 0. На рис.79а изображена зависимость
Напряжение на индуктивном элементе пропорционально токуIи частоте..
При увеличении частоты напряжение на индуктивном элементе растет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток, а следовательно, и индуктивное напряжение уменьшаются. При поэтому индуктивное напряжение равно напряжению источника питания. Криваяизображена на рис. 79а .
Напряжение на емкостном элементеследовательно, оно пропорционально токуIи обратно пропорционально частоте. ПриПоэтому емкостное напряжение компенсирует приложенное напряжение к цепи, т.е.При увеличении частоты напряжениерастет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток и емкостное напряжение уменьшаются. ПриКриваяизображена на рис. .
Сдвиг фаз определяется из выражения
При т.е., что соответствует.
При что соответствует
При т.е.График зависимостиизображен на рис. 80 .
studfile.net
Резонанс токов — описание явления и области применения
Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.
В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.
Что такое резонанс?
Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная мощность равняется нулю и цепью потребляется исключительно активная мощность.Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.
Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:
Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.
Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.
Применение токового резонанса
Основная область активного применения широко востребованных резонансных токов сегодня представлена:
- некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
- радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
- асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
- установками высокоточной электрической сварки;
- колебательными контурами внутри узлов генераторов электронного типа;
- приборами, отличающимися высокочастотной закалкой;
- снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.
Схема цепи
Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.
Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.
Принцип резонанса токов
Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:
- включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
- отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
- токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
- максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
- весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
- катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.
Резонанс в параллельной цепи (резонанс токов)
Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.
Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.
Резонанс токов в цепи с переменным током
Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.
В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.
Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.
В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.
Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.
Расчет резонансного контура
Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.
В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:
Формула расчета
С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:
Резонансные кривые
Резонанс колебательной частоты аппроксимируется по следующей формуле:
Резонанс колебательного контура
Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.
Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.
Заключение
Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.
Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.
proprovoda.ru
Резонанс в электрической цепи — Класс!ная физика
Резонанс в электрической цепи
«Физика — 11 класс»
В механике резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы.
Резонанс возможен и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.
При механике резонанс выражен при малом трении.
В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R.
Наличие активного сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника (проводник нагревается).
Поэтому резонанс в электрическом колебательном контуре выражен отчетливо при малом активном сопротивлении R.
Если активное сопротивление мало, то собственная циклическая частота колебаний в контуре:
Сила тока при вынужденных колебаниях достигает максимальных значений, когда частота переменного напряжения, приложенного к контуру, равна собственной частоте колебательного контура:
Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.
Амплитуда силы тока при резонансе.
При резонансе в колебательном контуре создаются условия для поступления энергии от внешнего источника в контур.
Мощность в контуре максимальна в том случае, когда сила тока совпадает по фазе с напряжением.
В механике аналогично: при резонансе в механической колебательной системе внешняя сила (аналог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).
После включения внешнего переменного напряжения амплитуда колебаний силы тока нарастает постепенно, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:
тогда:
ImR = Um
Отсюда амплитуда установившихся колебаний силы тока при резонансе определяется уравнением
При R → 0 резонансное значение силы тока неограниченно возрастает: (Im)рез → ∞.
Наоборот, с увеличением R максимальное значение силы тока уменьшается.
Зависимость амплитуды силы тока от частоты при различных сопротивлениях (R1 < R2 < R3):
Одновременно с увеличением силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке индуктивности.
Эти напряжения при малом активном сопротивлении во много раз превышают внешнее напряжение.
Использование резонанса в радиосвязи
Явление электрического резонанса используется в радиосвязи.
На явлении резонанса основана вся радиосвязь.
Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте.
С антенной индуктивно связан колебательный контур.
Из-за электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот.
Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте.
Настройка контура на нужную частоту ω0 осуществляется путем изменения емкости конденсатора.
В этом обычно состоит настройка радиоприемника на определенную радиостанцию.
Необходимость учета возможности резонанса в электрической цепи
Если цепь не рассчитана на работу в условиях резонанса, то его возникновение может привести к аварии.
Чрезмерно большие токи могут перегреть провода.
Большие напряжения приводят к пробою изоляции.
Итак,
при вынужденных электромагнитных колебаниях возможен резонанс — резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний.
Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин
Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика
Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях — Аналогия между механическими и электромагнитными колебаниями — Уравнение, описывающее процессы в колебательном контуре. Период свободных электрических колебаний — Переменный электрический ток — Активное сопротивление. Действующие значения силы тока и напряжения — Конденсатор в цепи переменного тока — Катушка индуктивности в цепи переменного тока — Резонанс в электрической цепи — Генератор на транзисторе. Автоколебания — Краткие итоги главы
class-fizika.ru