Шим регулятор оборотов двигателя для шуруповерта – Регулятор оборотов шуруповерта и схема его элементов

Регулятор оборотов шуруповерта и схема его элементов

В этой статье мы рассмотрим устройство шуруповерта. Уделим особое внимание таким ответственным деталям в конструкции, как регулятор оборотов шуруповерта. Кроме того, разберемся, как устроен регулятор усилия шуруповерта. Подробно опишем процесс изготовления регулятора оборотов своими руками, а также ознакомимся с такой функцией шуруповерта, как автоматическая регулировка оборотов.

Регулятор оборотов шуруповерта

Электрический шуруповерт работает либо от сети 220 В, либо от аккумуляторной батареи. Его мощность зависит от величины напряжения аккумулятора. Скорость вращения шуруповерта начинается от 15 000 об/мин. Кроме того, шуруповерт, который работает от сети, имеет 2 скорости вращения: более медленную для вкручивания, более высокую для сверления. Внутри кнопки подачи питания располагается регулятор оборотов. Довольно миниатюрный размер этого узла инструмента достигается при помощи микропленочной технологии. Его основной деталью является симистор. Принцип работы регулятора следующий:

  • При включении кнопки на управляющий электрод симистора подается переменный ток, имеющий синусоидальную фазу.
  • Происходит открытие симистора, ток начинает проходить через нагрузку.

Время срабатывания симистора зависит от амплитуды управляющего напряжения. Чем больше амплитуда, тем раньше происходит срабатывание симистора. Величина амплитуды задается при помощи переменного резистора, соединенного с кнопкой пуска. Схема подключения кнопки отличается в разных моделях. К регулятору оборотов возможно подключение конденсатора.

Зачастую в нынешних экономических условиях не всегда покупатель может себе позволить полноценный дорогой шуруповерт от именитых фирм. В более дешевых моделях такой функции может и не быть. Но это не повод отчаиваться. Регулятор оборотов можно собрать самостоятельно, о чем мы и поговорим ниже.

Регулятор оборотов шуруповерта собирается на основе ШИМ – контроллера и ключевого многоканального полевого транзистора. Управление работой этого узла инструмента осуществляет резистор. Его положение зависит от давления на кнопку пуска шуруповерта.

Направление вращения рабочего органа меняется путем смены полюсов напряжения, которое подается на щетки двигателя. Инструментально это осуществляется при помощи перекидных контактов, приводящихся в действие рычажком реверса.

Собрать такой регулятор возможно своими руками. Как это сделать, мы рассмотрим ниже.

Схема элементов, входящих в состав регулятора оборотов, представлена на рисунке ниже.

Схема

В данном случае используется микросхема сдвоенного компаратора LM 393. Здесь первый компаратор работает как генератор пилообразного напряжения, на втором выполнена ШИМ. Сигналом управления для ШИМ служит падение напряжения на контактах двигателя. Если говорить упрощенно, то на схеме электродвигатель выглядит как активное и индуктивное сопротивления, соединенные последовательно между собой. При изменении нагрузки изменяется соотношение этих сопротивлений соответственно, регулятор же контролирует это и меняет заполнение ШИМ, тем самым стабилизируя обороты.

В качестве источника питания для ШИМ следует использовать электронный трансформатор. Он представляет собой полумостовой преобразователь напряжения из 220 в 12 В, который используется для питания галогеновых ламп освещения. Его размеры сопоставимы с размерами спичечного коробка. Цена колеблется в пределах 2–3 у. е. К нему необходимо добавить выпрямитель на выход (это четыре диода, к примеру, КД 213), а также конденсатор емкостью в несколько тысяч микрофарад на 25 вольт. Все это будет составлять импульсный источник питания с постоянным напряжением на выходе.

Отдельно стоит поговорить об изготовлении печатной платы для регулятора. Для ее изготовления необходим лист фотобумаги, лазерный принтер. Сначала необходимо напечатать рисунок на фотобумаге с помощью лазерного принтера, затем перенести его на заготовку платы с помощью нагретого утюга. Заготовка платы с прилепившейся бумагой ложится в емкость и подставляется под струю горячей воды. Это делается для того, чтобы желатиновый слой фотобумаги набух, и она отлепилась от платы. Оставшийся рисунок на плате протравливается хлорным железом.

Регулятор усилия шуруповерта

Регулятор усилия представляет собой муфту, ограничивающую усилие при вращении патрона. Она выполнена в виде вращающегося пластикового барабана. Величина ее затяжки регулируется с помощью цифровой шкалы, размещенной по окружности барабана. Увеличивая величину затяжки, тем самым вы глубже ввинчиваете саморез.

Эта функция будет необходима при работе с материалом изделий различной степени твердости, поскольку при работе с мягким материалом тело самореза будет легко утапливаться в нем, слишком высокая твердость материала будет способствовать нарушению геометрии шурупа, особенно если он небольших размеров. Трещотка, как еще называют регулятор, предотвращает срезание шлицев у саморезов, а также износ насадок шуруповерта. Затягивать регулировочное кольцо следует поэтапно начиная с самого небольшого усилия. В тех шуруповертах, в которых возможно производить сверление, последняя пиктограмма на кольце будет в виде сверла. В этой позиции достигается максимальный крутящий момент.

Электронная регулировка частоты вращения шуруповерта

Регулировать скорость вращения насадки шуруповерта возможно механически или автоматически. Автоматическая регулировка оборотов происходит при помощи процессора. Задать нужные параметры работы можно при помощи тумблера выбора скорости. Он расположен сверху корпуса. Во многих моделях регулировка оборотов реализована через кнопку пуска. Чем сильнее давление пальца на нее, тем выше будут обороты.

Прочитав эту статью, вы получили информацию о том, как собрать регулятор оборотов шуруповерта своими руками, ознакомились с конструкцией регулятора усилия, разобрались с функцией электронной регулировки инструмента. Надеемся, статья была вам полезной.

pro-instrument.com

Схема регулятора оборотов шуруповерта 12в

Схема регулятора оборотов шуруповерта 12вШирокое применение таймер 555 находит в устройствах регулирования, например, в ШИМ — регуляторах оборотов двигателей постоянного тока.

Все, кто когда – либо пользовался аккумуляторным шуруповертом, наверняка слышали писк, исходящий изнутри. Это свистят обмотки двигателя под воздействием импульсного напряжения, порождаемого системой ШИМ.

Другим способом регулировать обороты двигателя, подключенного к аккумулятору, просто неприлично, хотя вполне возможно. Например, просто последовательно с двигателем подключить мощный реостат, или использовать регулируемый линейный стабилизатор напряжения с большим радиатором.

Вариант ШИМ — регулятора на основе таймера 555 показан на рисунке 1.

Схема достаточно проста и базируется все на мультивибраторе, правда переделанном в генератор импульсов с регулируемой скважностью, которая зависит от соотношения скорости заряда и разряда конденсатора C1.

Заряд конденсатора происходит по цепи: +12V, R1, D1, левая часть резистора P1, C1, GND. А разряжается конденсатор по цепи: верхняя обкладка C1, правая часть резистора P1, диод D2, вывод 7 таймера, нижняя обкладка C1. Вращением движка резистора P1 можно изменять соотношение сопротивлений его левой и правой части, а следовательно время заряда и разряда конденсатора C1, и как следствие скважность импульсов.

Схема регулятора оборотов шуруповерта 12в

Рисунок 1. Схема ШИМ — регулятора на таймере 555

Схема эта настолько популярна, что выпускается уже в виде набора, что и показано на последующих рисунках.

Схема регулятора оборотов шуруповерта 12в

Схема регулятора оборотов шуруповерта 12в

Рисунок 2. Принципиальная схема набора ШИМ — регулятора.

Здесь же показаны временные диаграммы, но, к сожалению, не показаны номиналы деталей. Их можно подсмотреть на рисунке 1, для чего он, собственно, здесь и показан. Вместо биполярного транзистора TR1 без переделки схемы можно применить мощный полевой, что позволит увеличить мощность нагрузки.

Кстати, на этой схеме появился еще один элемент – диод D4. Его назначение в том, чтобы предотвратить разряд времязадающего конденсатора C1 через источник питания и нагрузку — двигатель. Тем самым достигается стабилизация работы частоты ШИМ.

Кстати, с помощью подобных схем можно управлять не только оборотами двигателя постоянного тока, но и просто активной нагрузкой – лампой накаливания или каким-либо нагревательным элементом.

Схема регулятора оборотов шуруповерта 12в

Рисунок 3. Печатная плата набора ШИМ — регулятора.

Если приложить немного труда, то вполне возможно такую воссоздать, используя одну из программ для рисования печатных плат. Хотя, учитывая немногочисленность деталей, один экземпляр будет проще собрать навесным монтажом.

Схема регулятора оборотов шуруповерта 12в

Рисунок 4. Внешний вид набора ШИМ — регулятора.

Правда, уже собранный фирменный набор, смотрится достаточно симпатично.

Вот тут, возможно, кто-то задаст вопрос: «Нагрузка в этих регуляторах подключена между +12В и коллектором выходного транзистора. А как быть, например, в автомобиле, ведь там все уже подключено к массе, корпусу, автомобиля?»

Да, против массы не попрешь, тут можно только рекомендовать переместить транзисторный ключ в разрыв «плюсового» провода. Возможный вариант подобной схемы показан на рисунке 5.

Схема регулятора оборотов шуруповерта 12в

На рисунке 6 показан отдельно выходной каскад на транзисторе MOSFET. Сток транзистора подключен к +12В аккумулятора, затвор просто «висит» в воздухе (что не рекомендуется), в цепь истока включена нагрузка, в нашем случае лампочка. Такой рисунок показан просто для объяснения, как работает MOSFET транзистор.

Схема регулятора оборотов шуруповерта 12в

Для того, чтобы MOSFET транзистор открыть, достаточно относительно истока подать на затвор положительное напряжение. В этом случае лампочка зажжется в полный накал и будет светить до тех пор, пока транзистор не будет закрыт.

На этом рисунке проще всего закрыть транзистор, замкнув накоротко затвор с истоком. И такое вот замыкание вручную для проверки транзистора вполне пригодно, но в реальной схеме, тем более импульсной придется добавить еще несколько деталей, как показано на рисунке 5.

Как было сказано выше, для открывания MOSFET транзистора необходим дополнительный источник напряжения. В нашей схеме его роль выполняет конденсатор C1, который заряжается по цепи +12В, R2, VD1, C1, LA1, GND.

Чтобы открыть транзистор VT1, на его затвор необходимо подать положительное напряжение от заряженного конденсатора C2. Совершенно очевидно, что это произойдет только при открытом транзисторе VT2. А это возможно лишь в том случае, если закрыт транзистор оптрона OP1. Тогда положительное напряжение с плюсовой обкладки конденсатора C2 через резисторы R4 и R1 откроет транзистор VT2.

В этот момент входной сигнал ШИМ должен иметь низкий уровень и шунтировать светодиод оптрона (такое включение светодиодов часто называют инверсным), следовательно, светодиод оптрона погашен, а транзистор закрыт.

Чтобы закрыть выходной транзистор, надо соединить его затвор с истоком. В нашей схеме это произойдет, когда откроется транзистор VT3, а для этого требуется, чтобы был открыт выходной транзистор оптрона OP1.

Сигнал ШИМ в это время имеет высокий уровень, поэтому светодиод не шунтируется и излучает положенные ему инфракрасные лучи, транзистор оптрона OP1 открыт, что в результате приводит к отключению нагрузки – лампочки.

Как один из вариантов применения подобной схемы в автомобиле, это дневные ходовые огни. В этом случае автомобилисты претендуют на пользование лампами дальнего свете, включенными вполнакала. Чаще всего эти конструкции на микроконтроллере, в интернете их полно, но проще сделать на таймере NE555.

ШИМ-регулятор оборотов для шуруповёрта БОШ 18 Вольт

Читайте так же

Создатель: Радио Любитель

Читайте так же

Плата, схема.
Мяукнула кнопка на рабочем шурупике, вскрытие показало, что мотор живой, кнопка тоже живая совместно со интегрированным сопротивлением. Однако сам ШИМ умер в неравной борьбе с нескончаемыми нагрузками на шуруповёрт. Но что самое увлекательное, силовые транзисторы остались ЦЕЛЫЕ, а ШИМ отошёл в мир другой. Так как схемы отыскать не удалось и плата с Обоестороннем расположением массы СМД деталей была обильно пролита лаком с обоих сторон, то шансов на реанимацию я не увидел. А воспользоваться шуруповёртом без регулировки оборотов как то не совсем комфортно. Вспомнил о простом ШИМ регуляторе для жигулёвской печки на 40 Вт не без помощи ножика, ратфиля и некий мамы присобачил всё это хозяйство к Германцу.
И труды не прошли зря. РАБОТАЕТ.
С маленьким писком на малой скорости пришлось смириться, если повысить частоту работы ШИМа писка не слышно, однако начинает под критической нагрузкой нагреваться транзистор. Пошёл на компромис. маленькой писк в угоду термическому режиму транзистора. И долговечности работы схемы.

Теги youtube: #заменашимавшуруповёрте #Самодельныйшимвшурупик #ШимдляшуруповёртаBOSCH #Самодельныйрегулятороборотовшуруповёрта #Шимнатаймередляшуруповёрта #.

Регулировка оборотов электродвигателей в современной электронной технике достигается не изменением питающего напряжения, как это делалось раньше, а подачей на электромотор импульсов тока, разной длительности. Для этих целей и служат, ставшие в последнее время очень популярными — ШИМ (широтно-импульсно модулируемые) регуляторы. Схема универсальная — она же и регулятор оборотов мотора, и яркости ламп, и силы тока в зарядном устройстве.

Схема ШИМ регулятора

Схема регулятора оборотов шуруповерта 12в

Указанная схема отлично работает, печатная плата прилагается.

Схема регулятора оборотов шуруповерта 12в

Без переделки схемы напряжение можно поднимать до 16 вольт. Транзистор ставить в зависимости от мощности нагрузки.

Схема регулятора оборотов шуруповерта 12в

Схема регулятора оборотов шуруповерта 12в

Можно собрать ШИМ регулятор и по такой электрической схеме, с обычным биполярным транзистором:

Схема регулятора оборотов шуруповерта 12в

А при необходимости, вместо составного транзистора КТ827 поставить полевой IRFZ44N, с резистором R1 — 47к. Полевик без радиатора, при нагрузке до 7 ампер, не греется.

Схема регулятора оборотов шуруповерта 12в

Схема регулятора оборотов шуруповерта 12в

Работа ШИМ регулятора

Таймер на микросхеме NE555 следит за напряжением на конденсаторе С1, которое снимает с вывода THR. Как только оно достигнет максимума — открывается внутренний транзистор. Который замыкает вывод DIS на землю. При этом на выходе OUT появляется логический ноль. Конденсатор начинает разряжаться через DIS и когда напряжение на нем станет равно нулю — система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.

Заряд конденсатора С1 идет по пути: «R2->верхнее плечо R1 ->D2«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS. Когда вращаем переменный резистор R1, у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе. Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1. Меняя отношение сопротивлений заряда/разряда — меняем скважность. Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Рекомендации по сборке и настройке

Диоды можно ставить любые, конденсаторы примерно такого номинала, как на схеме. Отклонения в пределах одного порядка не влияют существенно на работу устройства. На 4.7 нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно.

Если после сборки схемы греется ключевой управляющий транзистор, то скорее всего он полностью не открывается. То есть на транзисторе большое падение напряжения (он частично открыт) и через него течет ток. В результате рассеивается большая мощность, на нагрев. Желательно схему параллелить по выходу конденсаторами большой емкости, иначе будет петь и плохо регулировать. Чтобы не свистел — подбирайте С1, свист часто идет от него. В общем область применения очень широкая, особенно перспективным будет её использование в качестве регулятора яркости мощных светодиодных ламп, LED лент и прожекторов, но про это в следующий раз. Статья написана при поддержке ear, ur5rnp, stalker68.

Обсудить статью СХЕМА ШИМ РЕГУЛЯТОРА

Схема регулятора оборотов шуруповерта 12вЗарядное устройство SPARK-3 предназначено для заряда аккумуляторов с напряжением 6 — 24 вольт током от 0,5 до 9,9 ампер до заданного напряжения или заданное время.

morflot.su

Регулятор скорости шуруповерта схема

Доброго времени суток всем читающим этот пост!
Пролог. Я понимаю, что большинство участников сего сообщества — матерые «электронные» волки, но вдруг кому-то мой пост, все же, будет полезен…
С недавних пор немного увлекся радиоэлектроникой, не в последнюю очередь из-за появления автомобиля. Изготовив пару печатных плат для контроля заряда АКБ(раз, два), я понял, что больше не хочу сверлить миллиметровые отверстия шуруповертом. И принялся изучать матчасть по теме микродрелей для печатных плат. Перечитал кучу форумов, пересмотрел гигабайты видео и полез в закрома. А в закромах был найден блок питания от отслужившего верой и правдой с десяток лет струйного принтера(24В/1А) и два моторчика из него же с маркировкой QK1-0889. Как ни искал, но точного даташита на этот моторчик я так и не нашел. Но крутится он от данного б/п очень даже шустро. Померял вал(2,3 мм) и заказал на AliExpress цанговый патрон с набором цанг. Пока набор был в пути я продолжал постигать тонкости сверления печатных плат. И вот, наткнулся на автоматический регулятор оборотов. Скажу сразу, что регуляторов для микродрелей существует великое множество. Я решил идти от простого к сложному.

Так вот самый простой регулятор, как у меня, состоит всего лишь из:
резисторы — 4шт.(3 постоянных, 1 подстроечный)

транзисторы — 2шт.
конденсатор-1 шт.
И размещается на платке размером, примерно, 30*30 мм.
Кое-какие детали пришлось заменить. Конденсатора на 220мкФ оказалось мало-мотор работал рывками, взял на 1000 мкФ. Вместо КТ817 взял КТ819, уж какой был под рукой. Подстроечник на 4,7к, что тоже не критично. R1 нашел на 9,1 Ома. Вообще R1 подбирается под кадждый двигатель индивидуально.

ШИМ-регулятор оборотов для шуруповёрта БОШ 18 Вольт

Читайте так же

Создатель: Радио Любитель

Читайте так же

Плата, схема.
Мяукнула кнопка на рабочем шурупике, вскрытие показало, что мотор живой, кнопка тоже живая совместно со интегрированным сопротивлением. Однако сам ШИМ умер в неравной борьбе с нескончаемыми нагрузками на шуруповёрт. Но что самое увлекательное, силовые транзисторы остались ЦЕЛЫЕ, а ШИМ отошёл в мир другой. Так как схемы отыскать не удалось и плата с Обоестороннем расположением массы СМД деталей была обильно пролита лаком с обоих сторон, то шансов на реанимацию я не увидел. А воспользоваться шуруповёртом без регулировки оборотов как то не совсем комфортно. Вспомнил о простом ШИМ регуляторе для жигулёвской печки на 40 Вт не без помощи ножика, ратфиля и некий мамы присобачил всё это хозяйство к Германцу.

И труды не прошли зря. РАБОТАЕТ.
С маленьким писком на малой скорости пришлось смириться, если повысить частоту работы ШИМа писка не слышно, однако начинает под критической нагрузкой нагреваться транзистор. Пошёл на компромис. маленькой писк в угоду термическому режиму транзистора. И долговечности работы схемы.

Теги youtube: #заменашимавшуруповёрте #Самодельныйшимвшурупик #ШимдляшуруповёртаBOSCH #Самодельныйрегулятороборотовшуруповёрта #Шимнатаймередляшуруповёрта #.

Кнопка шуруповерта, элемент управления, который отвечает за несколько функций работы инструмента. В этом небольшом и очень важном узле управления, совмещены: кнопка включения, переключатель направления вращения электродвигателя, устройство плавного пуска и регулятор скорости рабочего инструмента.

Каждый из этих устройств регулировки и включения, встроенный в кнопку шуруповерта, сам по себе, отдельно, полноценно и правильно работать не может. Единственный элемент конструкции переключатель вращения (реверс), практически сделан как отдельный функциональный блок.

В большинстве дрелей и шуруповертов, имеющих хождение по магазинам и рынкам электроинструмента России кнопка пуска имеет обозначение JIN DING EA-12/Z1 DC16-18V. Судя по ее надежности в работе, производитель, скорее всего Китай.

Общее устройство кнопки шуруповерта таково: Корпус, собранный из трех отсеков, в которых собственно и находятся рабочие узлы всей конструкции. В нижней части блока расположен узел управления включением и скоростью вращения электродвигателя, а значит и рабочим инструментом, закрепленным в патроне.

В средней части конструкции располагается кнопка включения, от величины ее перемещения вглубь зависит скорость вращения электродвигателя. Кнопка, чисто механический узел конструкции, перемещающий переменный резистор регулятора электронной схемы.

В верхней части находится переключатель направления вращения электродвигателя. Направление вращения электродвигателя зависит от полярности подающегося на него напряжения. Электродвигатель коллекторный постоянного тока имеет одну обмотку. Обмотка расположена на вращающейся части электродвигателя называемой якорем.

Для того чтобы создать вращающий момент ротора, его обмотка помещена в магнитное поле двух постоянных магнитов расположенных внутри неподвижной части электродвигателя называемой статором.Изменяя направление тока протекающего через обмотку якоря, с помощью рычага переключения направления вращения, производится изменение направления вращения рабочего инструмента.

Приподняв застежку, находящуюся с тыльной стороны кнопки можно отстегнуть механизм переключения и отделить его от кнопки. На него из нижней части кнопки приходят два провода питания, плюсовой и минусовой. Изменяя вращающимся барабанным переключателем, подключение этих проводов на начало, или конец обмотки якоря, меняется направление вращения электродвигателя.

Нижняя часть, где собрана вся электронная начинка, самый интересный узел. Здесь собрана электронная схема широтно-импульсного регулятора, который управляет силовым транзистором. Данный транзистор в зависимости от положения резистора управления ШИМ регулятором, открывает силовой транзистор шуруповерта, через которую протекает некоторое количество электричества на обмотку электродвигателя. От величины открытия этого транзистора, а значит и величины протекающего через неё тока, зависит скорость вращения электродвигателя шуруповерта.

Вот таким образом работает кнопка шуруповерта, или дрели имеющей плавный пуск.

mytooling.ru

Motor Control: ШИМ-регулятор оборотов

   Управление двигателем постоянного тока проще всего организовать с помощью ШИМ — регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется  PWM — Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.  Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ-регулятором мы будем изменять скважность импульсов от 0 до 100 %  и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

   Рассмотрим первый ШИМ-регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ-регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809 , мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна. 



Печатку этой платы можно скачать — ШИМ 5А

   В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.



Печатку этой платы можно скачать — ШИМ 10А    Подключение ШИМ-регулятора очень простое. Вы видите 4 клеммы  —  две клеммы для подачи питания   и  , и две клеммы для подключения мотора    и .
   Сделал ещё ШИМ-регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817.  При превышении тока, который мы задаём подстроечником R12, срабатывает триггер-защёлка на операционнике DA3.1, оптронах DA4 и  DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.
 ШИМ-регуляторы все работоспособны , проверил их работу с помощью двигателя от шуруповёрта.
 Снял видео —

www.motor-r.info

Мощный ШИМ регулятор своими руками


Приветствую, Самоделкины!
Совсем недавно Роману, автору YouTube канала «Open Frime TV», понадобился мощный ШИМ-регулятор. Начались поиски и проверки разных схем. В итоге он остановился на данном варианте:

Автор уже не однократно снимал ролики про шим-регуляторы, но на момент их создания не особо разбирался в схемотехнике, да и не было оборудования для того, чтобы полностью протестировать получившиеся устройства.

Теперь же у автора появился осциллограф, с помощью которого можно увидеть все косяки.

Давайте разберемся в ошибках, чтобы в дальнейшем их не допускать. Самая важная ошибка — это непонимание принципа работы полевого транзистора. Те, кто не первый год занимается электроникой знают, что для открытия полевика нужно не только напряжение, но некий ток.


Это же касается и закрытия. Если этого тока недостаточно, то транзистор будет медленнее открываться и, следовательно, сильнее греться.

Нагрев мосфетов в ключевом режиме появляется именно в моменты переключения, и чем быстрее мы будем коммутировать транзистор, тем меньше он будет нагреваться. Большинство новичков этого не знают и поэтому, в некоторых схемах, силовой транзистор довольно сильно нагревается. У автора было точно также и на тот момент ему было непонятно почему так происходит.

Думаю, все кто искал схему шим-регулятора, натыкались на вариант с микросхемой ne555 и кучей транзисторов, но стоит заглянуть в ее datasheet и мы увидим максимальный выходной ток 200 мА.


Этого тока явно недостаточно для корректной работы устройства. Как же тогда собрать отличный шим-регулятор и уменьшить его нагрев? Все очень просто, необходимо на выход управляющей микросхемы поставить драйвер, который сможет обеспечить достаточный ток для открытия и закрытия мосфетов.

На осциллограммах четко видно, как переключается транзистор без драйвера и когда он есть. Тут даже невооруженным взглядом можно увидеть преимущества драйвера.


Теперь давайте взглянем на схему устройства:

Как видим, в качестве задающий микросхемы, автор применил TL494. Почему именно ее? Да потому, что она очень популярна и легка в настройке.

Автор также пробовал собирать ШИМ на Uc3843, но там есть свои особенности, которые затрудняют сборку. Делал и на 555-ой, но больше всего приглянулась именно 494-ая. В нее можно без особых проблем добавить ограничитель тока, но это уже будете делать под ваши нужды.

Теперь пару слов про работу схемы. TL494 генерирует прямоугольные импульсы, частота которых задается с помощью вот этого конденсатора и резистора:


Потом эти импульсы усиливаются драйвером и поступают на затворы транзисторов.


У каждого транзистора на затворе свой резистор. Это сделано с целью убрать звон при закрытии.

Так как это полевые транзисторы, то при параллельном включении им не нужны токоограничивающие резисторы, что повышает КПД схемы. Также на схеме можем видеть 2 входных напряжения.

Это сделано с целью расширения пределов работы самого шим-регулятора. Если входное напряжение находится в районе 13-30В, то можно установить перемычку и питать схему одним напряжением.

Также нужно сказать пару слов про транзисторы.

IRFZ44N рассчитан на напряжение 50В.

Если вам нужно управлять более высоким напряжением, то необходимо заменить транзисторы под ваши параметры. К примеру, IRF540 рассчитаны уже на напряжение 100В.

Со схемой закончили, рассмотрим печатную плату.

Тут в глаза бросаются силовые дорожки. Они не очень большие, но все компенсируется после сборки устройства. Их придется пропаять медным проводом для повышения токопроводимости. Это будет лучшим решением, так как делать саму дорожку еще больше нету смысла, она имеет маленькое сечение и не сможет провести большой ток.

С платой тоже разобрались. Давайте ее соберем. Это не составит трудностей, деталей немного и сложность минимальная.
э


С обратной стороны пропаяли силовые дорожки. Теперь необходимо установить транзисторы на радиатор, вы же не думаете, что мы полностью избавились от нагрева.


При установке можно не использовать изолирующие подложки, так как транзисторы включены параллельно.

С таким радиатором можно коммутировать токи до 20А. При б0льших токах требуется б0льший радиатор.

Ну и в конце можно производить тесты. Подаем напряжение на схему (в данном случае оно составляет 28В) и производим включение.

Для начала подключаем 2 лампы накаливания мощностью 100Вт, рассчитанные на напряжение 36В.


Но это такое, детский сад, схема справляется на раз-два. Теперь можно взять нагрузку помощнее, к примеру, вот такую нихромовую спираль.

Как видим ток идет довольно таки большой, но схема держится молодцом. Саму плату автор собирал одному человеку для мощного двигателя постоянного тока. Пока жалоб не было, поэтому можно советовать ее к повторению. Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Регулятор оборотов шуруповерта схема


РЕГУЛЯТОР ОБОРОТОВ ДЛЯ ЭЛЕКТРОИНСТРУМЕНТА

электроника для дома

При работе с электроинструментом (электродрелью шлифовальным устройством и пр ) желательно иметь возможность плавно изменять его обороты. Но простое уменьшение питающего напряжения приводит к снижению развиваемой инструментом мощности В предлагаемой схеме (рис.1) используется регулирование с обратной связью по току двигателя, в результате чего при увеличении нагрузки соответственно увеличивается и крутящий момент

на валу. Резистивно-емкостная цепочка R1-R2-C1 формирует регулируемое опорное напряжение, которое с движка R2 поступает в цепь управляющего электрода тиристора VS1 и компенсирует остаточную противо-ЭДС двигателя М1 Если скорость вращения двигателя падает из-за возрастания нагрузки, уменьшается и его противо-ЭДС. Благодаря этому в очередном полупериоде сетевого напряжения тиристор за счет опорного напряжения открывается раньше. Соответствующее повышение напряжения на двигателе приводит к увеличению мощности на валу двигателя. При увеличении оборотов в случае снижения нагрузки описанный процесс происходит наоборот

Настройка устройства сводится практически к подбору сопротивления R1, чтобы при минимальных оборотах двигатель вращался ровно, без рывков, и, в то же время, обеспечивался полный диапазон изменения оборотов. Возможно, к нижнему по схеме выводу R2 придется подключить небольшой резистор, ограничивающий минимальные обороты двигателя. Если тиристор VS1 будет сильно греться, его нужно установить на теплоотвод.

Упрощенный вариант регулятора показан на рис.2. Если в патрон электродрели зажать насадку-отвертку, с помощью этой приставки можно закручивать винты и шурупы (саморезы).

Литература

1    И.Семенов. Регулятор мощности с обратной связью. — Радиолюбитель, 1997, N12, С.21.

2    Р.Граф. Электронные схемы 1300 примеров — М Мир, 1989, С 395.

3. В Щербатюк Заворачиваем шурупы электродрелью. — Радиолюбитель, 1999 N9, С 23

Cмотрите также: Регулятор мощности на MOSFETах

radiopolyus.ru

Схема регулятора оборотов дрели

Все современные дрели выпускают с встроенными в них регуляторами числа оборотов двигателя, но наверняка, в арсенале каждого радиолюбителя имеется старая советская дрель, у которых изменение числа оборотов не было задумано, что, резко снижает эксплуатационные характеристики.

Схема регулятора оборотов для советской дрели

На рисунке ниже рассмотрена схема регулятора оборотов электродвигателя дрели, собранного в виде отдельного внешнего блока и подходящего для любых дрелей мощностью до 1,8 кВт, а также для других подобных устройств, в которых используется коллекторный двигатель переменного тока, допустим, в болгарках. Детали регулятора на схеме подобраны для типовой дрели мощностью около 270 Вт, 650 об/мин, напряжение 220В.

Тиристор типа КУ202Н с целью его нормального охлаждения смонтирован на радиаторе. Чтобы задать нужную частоту вращения электродвигателя шнур регулятора подсоединяют в сетевую розетку 220 В, а дрель включают уже в нее. Затем, двигая ручку переменного сопротивления R задают требуемые обороты для старой дрели.

Регулятор оборотов болгарки принципиальная схема

Представленная схема достаточно проста для повторения даже начинающим радиолюбителем. Необходимые для сборки компоненты и детали дешевы и легко доступны. Рекомендуется сборка конструкции в отдельном коробе с розеткой. Такое устройство можно применять в роли переноски с типовым регулятором мощности

Регулятор оборотов самодельной микродрели

Принцип работы этой радиолюбительской самоделки следующий, когда нагрузка небольшая, то ток течет маленький, а как только нагрузка возрастает, обороты плавно повышаются.

Микросборку LM317 требуется установить на радиатор. Диоды 1N4007 можно заменить на аналогичные рассчитанные на ток не ниже 1А. Печатная плата сделана на одностороннем стеклотекстолите. Сопротивление R5 мощностью не ниже 2Вт, или проволочное.

Источник питания на напряжение 12В должен иметь небольшой запас по току. Резистором R1 задаем необходимую частоту вращения на холостом ходу. Сопротивление R2 необходимо для установки чувствительности по отношению к нагрузке, им задается требуемый момент увеличения числа оборотов микродрели. Если увеличить емкость C4, то растет время задержки высоких оборотов.

Регулятор скорости микродрели для сверления небольших отверстий в печатных платах

Представленная ниже схема позволяет собрать очень простой, дешевый и полезный регулятор скорости вращения 12-вольтной микродрели для сверления отверстий в печатных платах в радиолюбительской практике.

Микросборка LM555 используется в роли широтно-импульсного модулятора. Питающее напряжение для ШИМ понижается и стабилизируется с помощью микросхемы LM7805). Прецизионный подстр

i-perf.ru

ШИМ регулятор оборотов: схема модуля управления мотором

ШИМ регулятор оборотов-1ШИМ регулятор оборотов-1

ШИМ регулятор оборотов электродвигателя постоянного тока рассчитанного на напряжение 12 В


ШИМ регулятор оборотов двигателя постоянного тока проще всего организовать с помощью ШИМ регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM — Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.

Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ регулятором мы будем изменять скважность импульсов от 0 до 100% и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

ШИМ регулятор оборотов-2ШИМ регулятор оборотов-2

Рассмотрим первый ШИМ регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809, мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.

ШИМ регулятор оборотов-3ШИМ регулятор оборотов-3

ШИМ регулятор оборотов-4ШИМ регулятор оборотов-4
Печатку этой платы можно скачать — ШИМ 5A

В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.

ШИМ регулятор оборотов-5ШИМ регулятор оборотов-5

ШИМ регулятор оборотов-6ШИМ регулятор оборотов-6

Блок управления мотором-7Блок управления мотором-7
Печатку этой платы можно скачать — ШИМ 10A

Подключение ШИМ регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания (+) и (-), и две клеммы для подключения мотора (M+) и (M-).

Сделал еще ШИМ регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаем подстроечником R12, срабатывает триггер-защелка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.

Блок управления мотором-8Блок управления мотором-8

Блок управления мотором-9Блок управления мотором-9
Печатку этой платы можно скачать — ШИМ 10А с защитой

ШИМ регуляторы все работоспособны, проверил их работу с помощью двигателя от шуруповерта.

ШИМ регулятор оборотов

Источник: motor-r.info

usilitelstabo.ru

0 comments on “Шим регулятор оборотов двигателя для шуруповерта – Регулятор оборотов шуруповерта и схема его элементов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *