Устройства резистивного заземления нейтрали NERC сетей 3-35 кВ |
Дополнительные файлы для скачивания
- Сертификат ГОСТ Р на резисторы NER NERC
Описание
Устройства резистивного заземления нейтрали предназначены для организации резистивного заземления нейтрали в сетях 6-10 кВ, в которых нейтральная точка отсутствует (обмотки 6-10 кВ силового питающего трансформатора соединены в треугольник).
Типовая серия устройств для резистивного заземления нейтрали
- номинальное напряжение сети 6, 10 кВ
- номинальный ток от 40 до 400 А (в том числе нестандартные значения по заказу потребителя)
- время работы в режиме с однофазным замыканием в сети от 5 до 10 секунд
- диапазон рабочих температур от -25ºС до +40ºС
- исполнение для внутренней установки
- высота установки над уровнем моря не более 1000 м
Устройства резистивного заземления нейтрали в сетях 6 кВ
Тип устройства резистивного заземления | Номинальное сопротивление,Ом | Номинальное напряжение сети, кВ | Номинальный ток резистора, А | Допустимое время протекания номинального тока, с |
NERС-40-6 | 87 | 6 | 40 | 10 |
NERС-100-6 | 35 | 6 | 100 | 10 |
NERС-200-6 | 17,3 | 6 | 200 | 10 |
NERС-400-6 | 8,7 | 6 | 400 | 10 |
Устройства резистивного заземления нейтрали в сетях 10 кВ
Тип устройства резистивного заземления | Номинальное сопротивление,Ом | Номинальное напряжение сети, кВ | Номинальный ток резистора, А | Допустимое время протекания номинального тока, с |
NERС-40-10 | 144 | 10 | 40 | 10 |
NERС-100-10 | 58 | 10 | 100 | 10 |
NERС-200-10 | 29 | 10 | 200 | 10 |
NERС-400-10 | 14,4 | 10 | 400 | 10 |
Конструкция
Устройство резистивного заземления нейтрали NERC представляет собой шкаф из нержавеющей стали, в котором размещены трансформатор вывода нейтрали (фильтр нулевой последовательности с обмотками 6-10 кВ с сухой изоляцией, соединенными в зигзаг), высоковольтный резистор и трансформатор тока. Шкаф имеет съемные опорные катки для перемещения. Ввод кабеля в шкаф выполняется снизу через сальники (возможно другое исполнение).
Устройство резистивного заземления нейтрали NERC подключается к сети через линейную ячейку КРУ 6-10 кВ со стандартным набором релейных защит (МТЗ, отсечка, защита от замыканий на землю).
Преимущества устройств резистивного заземления нейтрали NERС
- комплектное изделие полной заводской готовности, позволяющее реализовать резистивное заземление нейтрали в любой сети 6-10 кВ (при наличии незанятой ячейки на секции)
- стабильность параметров резистора в течение срока эксплуатации (рабочие элементы резистора выполнены из металла)
- устойчивость к коррозии (шкаф резистора выполнен из нержавеющей стали)
- защита персонала от прямого прикосновения к токоведущим частям (шкаф со степенью защиты IP23)
- малые габариты и масса
- мобильность (устройство может перемещаться за счет наличия съемных катков)
- простота обслуживания (доступ организован через съемные боковые панели)
- встроенный трансформатор тока для организации релейной защиты
- взрывобезопасность и пожаробезопасность (охлаждение и изоляция резистора воздушные, в составе резистора нет горючих материалов)
www.ege-energan.ru
Нейтраль трансформатора, назначение заземления нейтрали
Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:
- требованиями техники безопасности и охраны труда персонала,
- допустимыми токами замыкания на землю,
- перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле,
- пределяющих уровень изоляции электротехнических устройств,
- необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
- возможностью применения простейших схем электрических сетей.
Используются следующие режимы нейтрали:
- глухозаземленная нейтраль,
- изолированная нейтраль,
- эффективно заземленная нейтраль.
Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок. при однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.
Глухозаземленная нейтраль
Глухозаземленная нейтраль трансформатораЕсли нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью.
Изолированная нейтраль
Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.
Компенсированная нейтраль
Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.
Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.
Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:
- электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
- электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
- электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
- электроустановки напряжением до 1 кВ с изолированной нейтралью.
Режимы нейтрали трехфазных систем
Напряжение, кВ | Режим нейтрали | Примечание |
0,23 | Глухозаземленная нейтраль | Требования техники безопасности. Заземляются все корпуса электрооборудования |
0,4 | ||
0,69 | Изолированная нейтраль | Для повышения надежности электроснабжения |
3,3 | ||
6 | ||
10 | ||
20 | ||
35 | ||
110 | Эффективно заземленная нейтраль | Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции |
220 | ||
330 | ||
500 | ||
750 | ||
1150 |
Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.
Назначение заземления нейтрали трансформатора для повышения чувствительности защиты от однофазных замыканий на землю.
В нормальном режиме высокоомный резистор, и при необходимости дугогасящий реактор (ДГР) подключаются к нейтрали специального трансформатора заземления нейтрали (ТЗН).
Чтобы обеспечить чувствительность и селективность защиты от ОЗЗ необходимо кратковременно увеличить ток через устройство защиты. Обоснование возможности кратковременного индуктивного заземления нейтрали специальным трансформатором заземления нейтрали. При возникновении на линии ОЗЗ трансформатор через 0,5 с кратковременно подключается выключателем к сборным шинам. Благодаря глухому заземлению нейтрали создается ограниченный индуктивностью ТЗН ток однофазного короткого замыкания, достаточный для обеспечения чувствительности от ОЗЗ и создания условия гашения дуги.
Защита действует без выдержки времени на отключение линии. Выключатель с заданной выдержкой времени отключается. Отключение линии предотвращает двойные замыкания на землю (ДЗЗ) и многоместные замыкания на землю (МЗЗ), неизбежные в сетях напряжением 6-10 кВ с высокой изношенностью кабелей и оборудования.
Такой режим отключения поврежденных кабельных линий несколько лет проходит опытную эксплуатацию в ОАО «Пятигорские электрические сети». Однако, отключение линий возможно только при наличии надежного резервирования и в случаях, оговоренных правилами устройств электроустановок.
Предотвращения перехода ОЗЗ в ДЗЗ или МЗЗ осуществляется резистором Rн (см. рисунок 1), подключенным к нейтрали ТЗН. В нормальном режиме выключатель Q3) в цепи ТЗН отключен. При ОЗЗ срабатывают реле контроля изоляции KSV1 и (или) реле тока КА1, или устройство определения поврежденной фазы (см. рисунок 1).
После замыкания контактов срабатывает реле времени КТ1, замыкающиеся контакты которого включают выключатель Q3. Выключатель Q3 шунтирует сопротивление Rн и ДГР.
Замыкающиеся контакты реле КТ1 с выдержкой времени 0,3 с отключают выключатель Q3. При замыкании этих контактов срабатывает промежуточное реле KL1. Размыкающие контакты реле разрывают цепь КТ1. Возврат схемы осуществляется дежурным с помощью ключа SА. При этом реле К13 замыкает свои контакты в цепи реле КТ1. После отключения выключателя Q3 сеть вновь переходит в режим с заземленной нейтралью через высокоомное сопротивление и при необходимости через ДГР.
При увеличении тока через реле срабатывает защита от ОЗЗ с действием на сигнал с выдержкой времени 0,2 с. Отключение выключателя выполняется с выдержкой времени 0,2 с. Сеть вновь переходит в режим с нейтралью, заземленной через резистор.
Видео: Виды заземления нейтрали
transformator220.ru
Трансформатор заземления нейтрали в сети генераторного напряжения
В данной статье речь пойдет о трансформаторе заземления нейтрали (ТЗН) устанавливаемый в сети генераторного напряжения.
В сетях 6 и 10 кВ с изолированной нейтралью наиболее распространенным видом повреждений являются однофазные замыкания на землю (ОЗЗ) с перемежающейся дугой. Возникающие при этом перенапряжения [до (3 — 4)Uф] весьма опасны для электрооборудования и в первую очередь для генераторов, электродвигателей, кабелей и трансформаторов напряжения.
Шаговое напряжение и напряжение прикосновения в месте ОЗЗ опасно для людей и животных.
При ОЗЗ в обмотках высоковольтных генераторов для предотвращения прожигания стали статора должно быть обеспечено их быстрое отключение защитой от замыканий на землю. Однако во многих случаях релейная защита не способна отключить при соединение с ОЗЗ из-за недостаточной чувствительности и малых значений емкостною тока ОЗЗ, поэтому вся сеть 6 — 10 кВ длительно находится под воздействием указанных перенапряжений.
Для предотвращения возникновения перенапряжений при ОЗЗ, быстрого отключения ОЗЗ, максимального охвата обмоток генераторов защитой от ОЗЗ, а также предотвращения феррорезонансных явлений в сетях с малыми токами ОЗЗ применяют низкоомное резистивное заземление нейтрали сети 6 (10) кВ с помощью трансформаторов заземления нейтрали (ТЗН).
Отметим, что ТЗН обеспечивают заземление нейтрали сети в режиме, когда генераторы остановлены, поэтому не допускается подключение заземляющего резистора непосредственно в нейтрали статорных обмоток генератора. Подключение заземляющего резистора в нейтрали генератора допускается только при отсутствии связи электростанции с энергосистемой или для блочных схем «генератор — трансформатор».
Ниже рассмотрен способ низкоомного резистивного заземления нейтрали, рекомендованный институтами «Атомэнергoпроект» и «Тяжпромэлектропроект» и широко применяемый на электростанциях ЕЭС России и промышленных предприятиях.
К секции сборных шин через выключатель подключается специальный трансформатор заземления нейтрали со схемой соединения Y/∆. Между нулевой точкой обмотки ВН и «землей» включается резистор Rn c сопротивлением 100 Ом для сетей 6 кВ или 150 Ом для сетей 10 кВ (см. рис. 2.2).
В месте ОЗЗ проходит геометрическая сумма емкостного тока сети Iс и тока IR создаваемого устройством заземления нейтрали.
При малом емкостном токе Iс им можно пренебречь и считать, что ток ОЗЗ равен току через резистор RN [Л2]:
Значение тока ОЗЗ при принятых значениях сопротивления RN по выражению (1) составит при напряжении 6,3 кВ — 36 А, при 10,5 кВ — 40 А [Л2].
Естественно, что эти значения тока обеспечивают четкую работу токовых защит от ОЗЗ на отключение. Рассмотрим, насколько эффективно работают эти защиты при внутренних ОЗЗ в обмотках электрических машин.
Обмотки статора генераторов и электродвигателей обычно соединяют в звезду для исключения потерь от циркуляции токов третьей гармоники. Зону защиты такой обмотки при внутренних ОЗЗ можно определить по выражению [Л2]:
гдe:
- w — число витков обмотки, %, считая от зажимов;
- Iс.з — ток срабатывания защиты от ОЗЗ.
Отсюда видно, что при Iс.з = 4 А и токе ОЗЗ 40 А защита охватывает 90 % витков. Увеличить зону защиты обмотки статора при ОЗЗ можно, снижая ток срабатывания защиты или сопротивление заземляющего резистора [Л2].
Ток ОЗЗ по мере удаления от выводов в глубь статора составит [Л2]:
где: w — число витков от зажимов до точки замыкания, % общего числа витков поврежденной фазы.
Трансформатор и резистор устанавливают в отдельном шкафу заземления нейтрали. Например, АО «Московский завод Электрощит» серийно выпускает шкаф заземления нейтрали ШЗН серии К-118УЗ. В нем установлены трансформатор типа ТСНЗ-63/10 мощностью 63 кВ. А на напряжение 6 или 10 кВ и включенные в нейтраль резистор и трансформатор тока типа ТЛК10-0,5/10Р-50/5. Стойкость резистора состовляет 1,5 с при токе 40 А и 1 ч при токе 5 А. Трансформатор ТСНЗ-63/10 на напряжение 10 кВ имеет облегченную изоляцию.
Резистор RN, примененный в схеме низкоомного резистивного заземления нейтрали, нетермостойкий, поэтому на случай редких, но возможных отказов защиты или выключателя присоединения с ОЗЗ на ТЗН предусматривается защита нулевой последовательности, которая отключает ТЗН, переводя сеть в режим с изолированной нейтралью.
Шкафы заземления нейтрали устанавливают в помещении ЗРУ — 6 (10) кВ по одному на секцию, предпочтительно не в ряд с ячейками КРУ, а отдельно у стены (на всякий случай, из-за нетермостойкого резистора).
Выводы:
Итак, низкоомное резистивное заземление нейтрали обеспечивает:
- подавление перенапряжений при ОЗЗ и феррорезонансных явлений;
- четкую работу релейной защиты от ОЗЗ на отключение поврежденного присоединения;
- максимальный охват обмоток электрических машин защитой от ОЗЗ;
- снижение броска емкостного тока присоединения при внешних ОЗЗ примерно в 2,5 раза по сравнению с режимом изолированной нейтрали. Поэтому ток срабатывания защиты присоединения от замыканий на землю может быть существенно снижен.
Литература:
1. А.В. Беляев. Защита, автоматика и управление на электростанциях малой энергетики. Часть 1.
2. Методические указания по выбору режима заземления нейтрали в сетях 6 и 10 кВ дочерних обществ и организаций ОАО «Газпром». СТО ГАЗПРОМ 2-1.11-070-2006.
Поделиться в социальных сетях
raschet.info
Режимы работы нейтрали трансформатора: разновидности, достоинства и недостатки
В высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:
- изолированная;
- компенсированная;
- высокоомное резистивное заземление;
- низкоомное резистивное заземление;
- эффективное заземление нейтрали.
Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению.
Изолированная нейтраль
Это некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами.
Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения.
Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство.
При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное.
Режимы работы нейтрали по уровню напряжения
К тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь.
При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.
Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки.
Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.
Компенсированная нейтраль
Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.
Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью.
Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.
Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.
Про ферромагнитный резонанс смотрите в видео ниже:
Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти.
Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.
Высокоомное резистивное заземление нейтрали
Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима. Есть два случая высокоомного заземления:
- Первый – установка резистора в нейтраль трансформатора, аналогично дугогасящему реактору.
- Второй – использование для этой цели обмотки, соединенной в разомкнутый треугольник.
Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ.
Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.
Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.
Про резистивное заземление нейтрали можно посмотреть в видео ниже:
Низкоомное заземление нейтрали
Уменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой.
При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.
Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.
Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты.
Эффективно заземленная нейтраль
Схемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше.
Главная задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль.
А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ.
Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей.
pue8.ru
1.7. Заземление нейтралей и защита разземленных
нейтралей трансформаторов от перенапряжений.
В современных энергосистемах сети 110 кВ и выше эксплуатируются с эффективным заземлением нейтралей обмоток силовых трансформаторов. Сети напряжением 35 кВ и ниже работают с изолированной нейтралью или заземлением через дугогасящие реакторы.
Каждый вид заземления имеет свои преимущества и недостатки.
Всетяхс изолированной нейтралью однофазное замыкание на землю не приводит к короткому замыканию. В месте замыкания проходит небольшой ток, обусловленный емкостью двух фаз на землю. Значительные емкостные токи обычно компенсируются полностью или частично включением в нейтраль трансформатора дугогасящего реактора. Остаточный в результате компенсации малый ток не способен поддерживать горение дуги в месте замыкания, поэтому поврежденный участок, как правило, не отключается автоматически. Металлическое однофазное замыкание на землю сопровождается повышением напряжения на неповрежденных фазах до линейного, а при замыкании через дугу возможно появление перенапряжений, распространяющихся на всю электрически связанную сеть, в которой могут находиться участки с ослабленной изоляцией. Чтобы уберечь трансформаторы, работающие в сетях с изолированной нейтралью или с компенсацией емкостных токов, от воздействия повышенных напряжений, изоляцию их нейтралей выполняют на тот же класс напряжения, что и изоляцию линейных вводов. При таком уровне изоляции не требуется применение никаких средств защиты нейтралей, кроме вентильных разрядников, включаемых параллельно дугогасящему реактору.
В сетях с эффективным заземлением нейтрали (рис. 1.19.) однофазное замыкание на землю приводит к короткому замыканию. Ток короткого замыкания (КЗ) проходит от места повреждения по земле к заземленным нейтралям трансформаторов Т1 и Т2, распределяясь обратно пропорционально сопротивлениям ветвей. Поврежденный участок выводится из работы действием защит от замыканий на землю. Через трансформаторы (Т3 и Т4), нейтрали которых не имеют глухого заземления, ток однофазного КЗ не проходит.
С учетом того, что однофазное КЗ является частым (до 80% случаев КЗ в энергосистемах приходится на однофазные КЗ) и тяжелым видом повреждений,
Сеть с эффективным заземлением нейтрали – сеть, в которой заземлена большая часть нейтралей обмоток силовых трансформаторов. При однофазном замыкании в такой сети напряжение на неповрежденных фазах не должно превышать 1,4 фазного напряжения нормального режима работы сети. В СССР сети напряжением 110 кВ и выше, работающие, как правило, с глухозаземленной нейтралью, относят к сетям с эффективно заземленной нейтралью.
принимают меры по уменьшению токов КЗ. Одной из таких мер является частичное разземление нейтралей трансформаторов.
Нейтрали автотрансформаторов не разземляются, так как они рассчитаны для работы с обязательным заземлением концов общей обмотки.
Число заземленных нейтралей на каждом участке сети устанавливается расчетами и принимается минимальным. При выборе точек заземления нейтралей в энергосистеме руководствуются как требованиями релейной защиты в части поддержания на определенном уровне токов замыкания на землю, так и обеспечением защиты изоляции разземленных нейтралей от перенапряжений. Последнее обстоятельство вызвано тем, что все трансформаторы 110 – 220 кВ отечественных заводов имеют пониженный уровень изоляции нейтралей. Так, у трансформаторов 110 кВ с регулированием напряжения под нагрузкой уровень изоляции нейтралей соответствует стандартному классу напряжения 35 кВ, что обусловлено включением со стороны нейтрали переключающих устройств с классом изоляции 35 кВ. Трансформаторы 220 кВ имеют также пониженный на класс уровень изоляции нейтралей. Во всех случаях это дает значительный экономический эффект, и тем больший, чем выше класс напряжения трансформатора.
Выбор указанного уровня изоляции нейтралей трансформаторов, предназначенных для работы в сетях с эффективно заземленной нейтралью, технически обосновывается значением напряжения, которое может появиться на нейтрали при однофазном КЗ. А оно может достигнуть почти 1/3 линейного напряжения (например, для сетей 110 кВ около 42 кВ – действующее значение). Очевидно, что изоляция класса 35 кВ разземленной нейтрали нуждается в защите от повышенных напряжений. Кроме того, при неполнофазных отключениях1 (или включениях) ненагруженных трансформаторов с изолированной нейтралью переходный процесс сопровождается кратковременными перенапряжениям. Достаточно надежной защитой нейтралей от кратковременных перенапряжений является применение вентильных разрядников. Нейтрали трансформаторов 110 кВ защищаются разрядниками 2хРВС-20 с наибольшим допустимым действующим напряжением гашения 50 кВ.
Однако практика показывает, что на нейтрали трансформаторов могут воздействовать не только кратковременные перенапряжения. Нейтрали могут оказаться под воздействием фазного напряжения промышленной частоты (для сетей 110 кВ 65 – 67 кВ), которое опасно как для изоляции трансформатора, так и для разрядника в его нейтрали. Такое напряжение может появиться и длительно (десятки минут) оставаться незамеченным при неполнофазных режимах коммутации выключателями, разъединителями и отделителями ненагруженных трансформаторов, а также при некоторых аварийных режимах.
Неполнофазное включение ненагруженных трансформаторов. На рис. 1.20. показан трехфазный трансформатор с изолированной нейтралью. Из векторной диаграммы видно, что при симметричном напряжении сети и параметрах схемы токи намагничивания и магнитные потоки в сердечнике также симметричны, т.е.
а напряжение на нейтрали равно нулю.
1 Неполнофазным отключением (включением) называется коммутация, при которой выключатели, разъединители или отделители в цепи оказываются включенными не тремя, а двумя или даже одной фазой.
При полной фазной коммутации трансформатора его электрическое и магнитное состояние изменяется. Включение трансформатора со стороны обмотки, соединенной в звезду, двумя фазами (рис 1.20,б) приводит к исчезновению потока Фс и появлению на нейтрали и на отключенной фазе напряжения, равного половине фазного:
Напряжение на разомкнутых контактах коммутационного аппарата Uс = Uс — Uc.
При подаче напряжения по одной фазе все обмотки трансформатора и его нейтраль будут находиться под напряжением включенной фазы. Между разомкнутыми контактами аппарата напряжение U = Uл.
В эксплуатации задержка в устранении неполнофазных режимов ненагруженных трансформаторов неоднократно приводила к авариям. Лучшей мерой защиты пониженной изоляции трансформаторов от опасных напряжений является глухое заземление от сети (разъединителями, отделителями или воздушными выключателями) трансформаторов 110 – 220 кВ, у которых нейтраль защищена вентильными разрядниками, глухо заземлять нейтраль включаемой под напряжение или отключаемой обмотки, если к тем же шинам или к питающей линии не подключен другой трансформатор с заземленной нейтралью.
Испытаниями установлено, что глухое заземление нейтрали трансформатора облегчает процессы отключения и включения намагничивающих токов. Дуга при отключении трансформатора горит интенсивно и быстро гаснет.
Отключение заземляющего разъединителя в нейтрали трансформатора, работающего нормально с разземленной нейтралью, защищенной разрядником, следует производить сразу же после включения под напряжение и проверки полнофазности включения коммутационного аппарата. Нельзя длительно оставлять заземленной нейтраль, если это не предусмотрено режимом работы сети. Заземлением нейтрали вносится изменение в распределение токов нулевой последовательности и нарушается селективность действия защит от однофазных замыканий на землю.
Схемы питания от одиночных и двойных проходящих линий 110 – 220 кВ подстанций, выполненных по упрощенным схемам,в настоящее время получили широкое распространение. Число присоединяемых к линии трансформаторов не регламентируется и доходит до четырех – пяти. Если к линии присоединены два трансформатора и более (рис. 1.21.), то целесообразно постоянно (или на время производства операций) хотя бы у одного из них иметь глухое заземление нейтрали (трансформаторы Т2 и Т3 на рис. 1.21). Это позволит избежать появления опасных напряжений на изолированных нейтралях других трансформаторов в случае неполнофазной подачи напряжения на линию вместе с подключенными к ней трансформаторами.
Так, приоднофазном включении (фаза В) питающей линии под напряжение (рис. 1.22, а) в сердечниках отключенных фаз трансформатора с глухозаземленной нейтралью Т1 замкнется магнитный поток Фв неотключенной фазы. Он наведет в обмотках фаз А и С примерно равные ЭДС взаимоиндукции ЕА и Ес. Трансформатор Т1 будет находиться в уравновешенном однофазном режиме. При однофазной симметричной системе напряжений на линейных выводах трансформатора (сумма этих напряжений равна нулю) напряжение на незаземленной нейтрали Т2 относительно земли также равно нулю:
Придвухфазном включении (фаз А и В) питающей линии (рис. 1.22, б) по сердечнику отключенной фазы замыкается суммарный магнитный поток ФА + ФВ = ФС, который наведет в обмотке отключенной фазы ЭДС взаимоиндукции ЕС, равную по значению и направлению напряжению фазы UС, если бы она была включена. Таким образом, на линейных вводах всех подключенных трансформаторов образуется симметричная трехфазная система напряжений, при которой напряжение на изолированной нейтрали трансформатора Т2 равно нулю:
В сетях с эффективно заземленной нейтралью трансформаторы подвержены опасным перенапряжениям в аварийных режимах, когда, например, при обрыве и соединении провода с землей выделяется по тем или иным причинам участок сети, не имеющий заземленной нейтрали со стороны источника питания. На таком участке напряжение на нейтралях трансформаторов становится равным по значению и обратным по знаку ЭДС заземленной фазы, а напряжение неповрежденных фаз относительно земли повышается до линейного. Возникающие при этом в результате колебательного перезаряда емкостей фаз на землю перенапряжения представляют собой серьезную опасность для изоляции трансформаторов и другого оборудования участка.
В сетях с эффективно заземленной нейтралью на случай перехода части сети в режим работы с изолированной нейтралью от замыканий на землю предусматривают защиты, регулирующие на напряжение нулевой последовательности 3 Uо, которое появляется на зажимах разомкнутого треугольника трансформатора напряжения при соединении фазы с землей. Защиты действуют на отключение выключателей трансформаторов с незаземленной нейтралью. Защиты от замыканий на землю в сети настраивают таким образом, чтобы при однофазном повреждении первыми отключались питающие сеть трансформаторы с изолированной нейтралью. На тех подстанциях 110 кВ, где силовые трансформаторы могут получать подпитку со стороны СН и НН, такие защиты от замыканий на землю не устанавливаются, не производится также и глухое заземление нейтралей.
Рекомендации оперативному персоналу. На основании изложенного оперативному персоналу могут быть даны следующие рекомендации.
При выводе в ремонт силовых трансформаторов, а также изменениях схем подстанций необходимо следить за сохранением режима заземления нейтралей, принятого в энергосистеме, и не допускать при переключениях в сетях с эффективно заземленной нейтралью выделения участков без заземления нейтралей у питающих сеть трансформаторов.
Во избежание же автоматического выделения таких участков на каждой системе шин подстанции, где возможно питание от сети другого напряжения, желательно иметь трансформатор с заземленной нейтралью с включенной на нем токовой защитой нулевой последовательности. В случае вывода в ремонт трансформатора, нейтраль которого заземлена, необходимо предварительно заземлить нейтраль другого параллельно работающего с ним трансформатора.
Без изменения положения нейтралей других трансформаторов производится отключение трансформаторов с изолированной нейтралью (трансформаторы старых выпусков с равнопрочной изоляцией выводов) или нейтралью, защищенной вентильным разрядником.
studfile.net
Резистивное заземление нейтрали. Достоинства и недостатки
В данной статье речь пойдет о достоинствах и недостатках резистивного заземления нейтрали в сетях 6-35 кВ.
Резистивное заземление нейтрали (заземление нейтрали через резистор) в электрических сетях среднего напряжения достаточно широко применяется во Франции, Германии и некоторых других странах. Принято различать два варианта заземления нейтрали через резистор: высокоомное и низкоомное. При высокоомном заземлении нейтрали сопротивление R заземляющего резистора выбирается из условия [Л1,с.16]:
R = (1 — 2)*Xc∑ = (1 — 2)* Uфном./Iс∑ (1)
где:
- Uфном. – фазное номинальное напряжение, кВ;
- Iс∑ — суммарный емкостной ток сети, А.
При выборе сопротивления заземляющего резистора из условия (1) эффект накопления зарядов на фазах сети при дуговом перемежающемся ОЗЗ сводится к минимуму, и перенапряжения на неповрежденных фазах при повторных зажиганиях дуги не превышают значений (2,4 — 2,5) Uф.ном.
Основные характеристики высокоомного заземления нейтрали приведены в таблице 1.
Если принять, что при высокоомном заземлении нейтрали ток замыкания на землю не должен превышать предельных значений, принятых для сети с изолированной нейтралью, то при R = Xc∑, суммарный емкостный ток сети Iс∑ должен быть в √2 раз меньше, чем для сети с изолированной нейтралью.
Поэтому область применения высокоомного режима заземления нейтрали будет еще более ограничена (по значению Iс∑), чем режима изолированной нейтрали. По мнению многих специалистов применение высокоомного режима заземления нейтрали целесообразно прежде всего в сетях с Uном = 6 — 10 кВ при Iс∑ не более 5 — 10 А [2]. К таким сетям относятся, в частности, большинство воздушных сетей 6 – 10 кВ, непротяженные кабельные шахтные, карьерные сети, сети торфоразработок и др.
При низкоомном заземлении нейтрали через резистор минимальное значение тока О33 в месте повреждения ограничивается двумя условиями:
- обеспечение устойчивости функционирования простых токовых защит нулевой последовательности от ОЗЗ во всех режимах работы сети;
- полное исключение возможности возникновения наиболее опасных дуговых перемежающихся ОЗЗ.
В зависимости от параметров электрической сети и линий условия устойчивости функционирования токовых защит нулевой последовательности обеспечиваются при значениях тока ОЗЗ от десятков до сотен ампер [3]. Для исключения возможности возникновения дуговых перемежающихся ОЗЗ минимальное значение тока замыкания должно быть не менее 100 А.
При указанных значениях тока ОЗЗ защита от этого вида повреждений должна действовать только на отключение.
Максимально допустимое значение тока ОЗЗ ограничивается условием недопущения серьезных повреждений элементов сети за время действия защиты.
Основные характеристики низкоомного заземления нейтрали приведены в таблица 2.
Основным недостатком низкоомного заземления нейтрали является возможность существенного увеличения числа отключений элементов сети из-за переходов кратковременных самоустраняющихся (при других режимах заземления нейтрали) пробоев изоляции в устойчивые повреждения.
Опыт применения низкоомногo заземления нейтрали в сети 6 кВ собственных нужд Рефтинской ГРЭС, показал, что число отключений электродвигателей на секциях с низкоомным заземлением нейтрали оказалось больше, чем на секциях, работающих с изолированной нейтралью или с компенсацией емкостногo тока. Увеличение числа отключений элементов сети при недостаточной степени автоматизации и резервирования электрической сети и технологических процессов потребителей может привести к увеличению ущербов от ОЗЗ, т.е. к снижению надежности.
Уменьшить число излишних отключений элементов в сетях, работающих с низкоомным заземлением нейтрали, можно при использовании быстродействующего автоматического кратковременного заземления (АЗФ) поврежденной фазы, обеспечивающего эффективное самогашение дуги в большинстве случаев пробоев изоляции на землю. Однако в России, несмотря на наличие соответствующих разработок, необходимая для реализации быстродействующего АЗФ аппаратура промышленностью не выпускается.
С учетом сказанного, низкоомное заземление нейтрали целесообразно применять только в тех сетях, где допустимо (с учетом условий электрическогo и технологического резервирования, степени автоматизации распределительных сетей, систем электроснабжения, технологических процессов) отключение любого элемента сети.
Сочетание резонансного и высокоомногo режима заземления нейтрали, предложенное в [2], предполагает шунтирование ДГР резистором, выбранным из условия:
Rn = Uф/∆Iз (2)
где: ∆Iз = |Iдгр — Iс| — ток расстройки компенсации;
Применение выслкллмного резистора, шунтирующего ДГР, приводит к прекращению биений напряжения на фазах после погасания дуги даже при достаточно больших расстройках компенсации и уменьшает кратности перенапряжений на неповрежденных фазах до значений 2,5.
К достоинствам данного режима заземления нейтрали следует отнести также улучшение режима работы сети с большой несимметрией емкостей фаз на землю. Недостатком является некоторое увеличение тока в месте повреждения и увеличение вероятности повторных зажиганий дуги.
Литература:
- В.А.Шуин, А.В.Гусенков. Защиты от замыканий на землю в электрических сетях 6-10 кВ.
- Евдокунин Г. А., Гудилин С. В., Корепанов А. А. Выбор способа заземления нейтрали в сетях 6 — 10 кВ // Электричество. 1998.
- Правила технической эксплуатации электрических станций и сетей. 15-e изд. М.: Энерrоатомиздзт,1996.
Поделиться в социальных сетях
raschet.info
Зачем и как делают заземление трансформаторов
От производителей электроэнергии передается ток высокого напряжения. Чтобы им могли пользоваться потребители на бытовом уровне, применяют понижающие трансформаторы. Согласно ПУЭ для них необходимо применять защитное заземление. Предусмотрен внешний и внутренний контур заземления. Устанавливают также защиту от ударов молнии.
Принципы устройства
Трансформатор преобразует (трансформирует) параметры переменного электрического тока. Происходит это благодаря явлению электромагнитной индукции. Основные детали прибора – катушки (обмотки) с проводами и ферромагнитный сердечник.
На одну катушку ток поступает, и она называется первичной. Вторичных катушек может быть 1, 2 и больше. С них снимается ток с уже измененными характеристиками.
У повышающего трансформатора число витков на вторичной обмотке больше, чем на первичной. В прямой связи увеличивается индуцированное напряжение с одновременным понижением силы тока.
Устройство понижающих трансформаторов другое. Они сделаны с точностью наоборот. Число витков в первичной обмотке у них больше, чем на вторичной обмотке, поэтому индуцированное напряжение снижается.
На большие расстояния выгоднее передавать электричество высокого напряжения и низкой силы тока, поскольку потери энергии на выделения тепла наименьшие.
Так и поступают. А трансформаторы впоследствии преобразуют ток до необходимых параметров.
Способ соединения обмоток трансформатора может быть выбран «треугольник», «звезда» или «зигзаг». В случае «треугольника» обмотки соединены последовательно, образуя замкнутый контур. Способ «звезда» предполагает соединение концов фазных обмоток в одну точку. Ее называют нулевой (нейтральной) точкой.
В случае «зигзага» каждая фазная обмотка состоит из 2-х частей на разных стержнях. Соединение 2-х частей происходит навстречу друг другу. Образовавшиеся три вывода соединяют, как «звезду».
Для трансформаторов высокого напряжения применяют соединение «звезда». Заземляется нулевая точка или конец вторичной обмотки. При объединении в «звезду» заземляют фазный провод.
Применение
Для преобразования тока, который передается по электрическим сетям, применяют силовые трансформаторы. Такие устройства способны работать с большими мощностями. Они преобразуют напряжение на линиях с 35…750 кВ в напряжение 6 и 10 кВ и далее в 400 В. После этого электроэнергией могут пользоваться потребители на бытовом уровне.
Трансформаторы тока используют, чтобы снижать ток до требуемой величины. Их применяют в схемах бесконтактного управления, чтобы обезопасить людей и технику от поражения током.
Трансформаторы тока применяют также в измерительных и защитных устройствах, схемах сигнализации и в других приборах.
Особенность трансформатора тока в том, что его вторичная обмотка работает в режиме, близком к короткому замыканию. Если по какой-то причине происходит разрыв цепи на вторичной обмотке, то напряжение на ней повышается до значительных величин.
Скачек напряжения может вызвать поломку оборудования, включенного в сеть. Поэтому должно присутствовать защитное заземление.
Существуют также трансформаторы напряжения, импульсные трансформаторы, автотрансформаторы, сварочные и другие. Для каждого из них существуют своя схема и особенности подключения заземления. Чтобы правильно его выполнить, необходимо изучить техническую документацию к оборудованию.
Зачем заземлять
Заземление нейтрали трансформатора необходимо для создания стабильной работы электроустановки и безопасности людей, которые могут находиться на подстанции.
Рабочее заземление на трансформаторе является частью защитного. Это значит, что заземление, предназначенное для стабильной работы устройства, также защищает от поражения током.
Правила устройства электроустановок требуют, чтобы все силовые трансформаторы были заземлены.
В трансформаторах напряжения заземляется только трансформатор. Согласно правилам устройства электроустановок у трансформатора напряжения заземление вторичной обмотки происходит путем соединения общей точки или одного из концов обмотки с заземляющим проводником.
В трансформаторах тока заземляются вторичные обмотки. Для подключения проводников предусмотрены специальные зажимы. Обмотки нескольких установок можно соединять одним проводником и подключать к одной шине.
В электротехнике выделяют понятие сети с эффективно заземленной нейтралью. Оно применимо для силового трансформатора, у которого заземлено большинство нейтралей обмоток (глухое заземление нейтрали).
Если произойдет однофазное замыкание, то напряжение на поврежденных фазах не должно быть выше 1,4 напряжения на рабочих фазах в нормальных условиях.
Дугогасящие реакторы
В сетях, рассчитанных на 110 кВ и выше, предусмотрена защита с глухозаземленной нейтралью. Если сеть рассчитана на 35 кВ и ниже, то применяется заземление с изолированной нейтралью.
Преимущество изолированной нейтрали в том, что если произойдет замыкание фазы на земли, то это не приведет к короткому замыканию.
На трансформаторах с системой изолированной нейтрали устанавливают дугогасящие реакторы. Они компенсируют емкостные токи, возникающие при замыкании на землю.
Дело в том, что вдоль линии электропередачи накапливается электрический заряд (емкостное электричество). И как только происходит разрыв или иное повреждение изоляции, при контакте с землей возникает ток.
Если он достигает 30 А, образуется разрядная дуга. В результате кабель нагревается, начинает разрушаться изоляция и вместе с ней проводник.
Такое явление приводит к двухфазному и трехфазному замыканию. Срабатывает защита, и трансформатор полностью отключается. Обесточенными остаются сотни и тысячи потребителей электроэнергии.
Чтобы этого не произошло, устанавливают дугогасящие реакторы. Нейтраль заземляют через них. Во время однофазного замыкания на землю возрастает индуктивность дугогасящего реактора. Индуктивная проводимость компенсирует емкостную, и электрическая дуга не возникает.
Через дугогасящие реакторы заземляют нейтраль первичной обмотки одного из трансформаторов сети, в которой соединение обмоток происходит по типу «звезда-треугольник».
Если произошло замыкание на землю, то благодаря такой системе заземления, трансформатор сможет работать на протяжении еще 2-х часов, пока неполадки не будут устранены.
Создание внешнего контура
Чтобы сделать внешний контур заземления трансформатора, применяют вертикальные электроды, соединенные горизонтальными перемычками. Перемычки выполняют из листовой стали толщиной 4 мм и шириной 40 мм. Электроды втыкают в грунт по периметру трансформатора.
Проверяют удельное сопротивление грунта. Оно должно составлять максимум 100 Ом*м. Исходя из этого, требуется создать контур сопротивлением максимум 4 Ом.
Если взять круг диаметром 16 м, с условным трансформатором посередине, то для создания заземляющего контура потребуется минимум восемь электродов длиной по 5 м каждый.
Их размещают на расстоянии приблизительно 1 м от фундамента трансформаторной станции. Чем ближе стержни будут располагаться к стене, тем лучше. Горизонтальные полоски-соединения укладывают на ребро на глубину 0,5-0,7 м.
Такое требование к расположению связано с вопросами безопасности. Заземлитель не должен быть поврежден при проведении каких-либо ремонтных и строительных работ.
Защита от молний
Чтобы выполнить молниезащиты трансформаторной подстанции с металлической крышей, необходимо соединить крышу с внешним контуром заземления.
Соединение происходит в двух противоположных точках. То есть в одной точке кровля соединяется с внешним контуром, и со стороны, расположенной напротив, также происходит соединение кровли с контуром. Соединительным проводником становится проволока толщиной 8 мм.
Если кровля не металлическая, то на ней наверху создают специальный молниеприемник.
Создание внутреннего контура
Трансформаторная подстанция разделена на 3 помещения. Отдельно делают помещения для высокого и низкого напряжения – это помещения распределительных устройств (для входа и выхода). И отдельно предусмотрена трансформаторная камера, непосредственно для трансформатора.
В каждом отделении должна быть проложена заземляющая полоса. Ее прикрепляют к стенам на высоте 0,4…0,6 м, чтобы заземлить все части из металла, не предназначенные для проведения тока. Для крепления применяют дюбеля или специальные держатели круглых и плоских заземляющих проводников.
К заземляющей полосе подключают швеллер, предназначенный для установки трансформатора. Он размещен в стяжке пола. Подсоединяют и другие детали (шинный мост, металлические элементы барьера, крепежные детали, место присоединения переносного заземления). К системе заземления подключают все опорные конструкции из металла и стальные каркасы.
Для разборных соединений применяют болты, в остальных случаях элементы сваривают между собой. Для закрепления переносного заземления используют гайку с ушками «барашек».
Перемычки делают из гибкого медного провода ПВ3. Однако изоляционную оболочку с такого провода надо снять, чтобы можно было следить за целостностью жил.
Заделку в стены осуществляют посредством вставки гильз и заполнением свободного пространства негорючим материалом. Полосу окрашивают в желтый цвет с зелеными полосами. Такую окраску имеет защитный нулевой провод.
Нулевую шину подключают к заземляющему контуру. Корпус трансформатора соединяют с контуром перемычками.
При осмотре трансформатора на вход ставят оградительный барьер и навешивают табличку «Осторожно! Высокое напряжение!».
evosnab.ru