Сопротивление цепи фаза – ноль
Таблица 1
Сечение фазных жил мм2 | Сечение нулевой жилы мм2 | Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов | |||||
Материал жилы: | |||||||
|
| Алюминий | Медь | ||||
| R фазы | R нуля | Z цепи (кабеля) | R фазы | R нуля | Z цепи (кабеля) | |
1,5 | 1,5 | — | — | — | 14,55 | 14,55 | 29,1 |
2,5 | 2,5 | 14,75 | 14,75 | 29,5 | 8,73 | 8,73 | 17,46 |
4 | 4 | 9,2 | 9,2 | 18,4 | 5,47 | 5,47 | 10,94 |
6 | 6 | 6,15 | 6,15 | 12,3 | 3,64 | 3,64 | 7,28 |
10 | 10 | 3,68 | 3,68 | 7,36 | 2,17 | 2,17 | 4,34 |
16 | 16 | 2,3 | 2,3 | 4,6 | 1,37 | 1,37 | 2,74 |
25 | 25 | 1,47 | 1,47 | 2,94 | 0,873 | 0,873 | 1,746 |
35 | 35 | 1,05 | 1,05 | 2,1 | 0,625 | 0,625 | 1,25 |
50 | 25 | 0,74 | 1,47 | 2,21 | 0,436 | 1,309 | |
50 | 50 | 0,74 | 0,74 | 1,48 | 0,436 | 0,436 | 0,872 |
70 | 35 | 0,527 | 1,05 | 1,577 | 0,313 | 0,625 | 0,938 |
70 | 70 | 0,527 | 0,527 | 1,054 | 0,313 | 0,313 | 0,626 |
95 | 50 | 0,388 | 0,74 | 1,128 | 0,23 | 0,436 | 0,666 |
95 | 95 | 0,388 | 0,388 | 0,776 | 0,23 | 0,23 | 0,46 |
120 | 35 | 0,308 | 1,05 | 1,358 | 0,181 | 0,625 | 0,806 |
120 | 70 | 0,308 | 0,527 | 0,527 | 0,181 | 0,313 | 0,494 |
120 | 120 | 0,308 | 0,308 | 0,616 | 0,181 | 0,181 | 0,362 |
150 | 50 | 0,246 | 0,74 | 0,986 | 0,146 | 0,436 | 0,582 |
150 | 150 | 0,246 | 0,246 | 0,492 | 0,146 | 0,146 | 0,292 |
185 | 50 | 0,20 | 0,74 | 0,94 | 0,122 | 0,436 | 0,558 |
185 | 185 | 0.20 | 0,20 | 0,40 | 0,122 | 0,122 | 0,244 |
240 | 240 | 0,153 | 0,153 | 0,306 | 0,090 | 0,090 | 0,18 |
Таблица 2
Мощность трансформатора, кВ∙А | 25 | 40 | 69 | 100 | 160 | 250 | 400 | 630 | 1000 |
Сопротивление трансформатора, Zт/3, Ом (Δ/Υ) | 0,30 | 0,19 | 0,12 | 0,075 | 0,047 | 0,03 | 0,019 | 0,014 | 0,009 |
Таблица 3
I ном. авт. выкл, А | 1 | 2 | 6 | 10 | 13 | 16 | 20 | 25 | 32-40 | 50 и более |
R авт., Ом | 1,44 | 0,46 | 0,061 | 0,014 | 0,013 | 0,01 | 0,007 | 0,0056 | 0,004 | 0,001 |
Таблица 4
R цепи, Ом | 0,05 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,8 | 1,0 | 1,5 | 2 и более |
Rдуги, Ом | 0,015 | 0,022 | 0,032 | 0,04 | 0,045 | 0,053 | 0,058 | 0,075 | 0,09 | 0,12 | 0,15 |
При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:
RL—N= Rрасп + Rпер.гр + Rавт.гр+ Rnгр∙Lnгр +Rдуги (2)
где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.
Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.
Исходные данные:
— трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» — по таблице 2 находим Zт/3=0,014 Ом;
— питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм2 и нулевой – 50 мм2. По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;
— распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм2. По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:
1,25 Ом/км∙0,05 км=0,0625 Ом;
— групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм2. По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:
17,46 Ом/км∙0,035 км=0,61 Ом;
— автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;
— переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.
Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RL—N=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.
Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RL—N=0,80 Ом+0,075 Ом=0,875 Ом.
В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.
Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.
В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину
Uф/ RL—N=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.
Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом — 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм2 определим при помощи таблицы 1.
L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.
Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.
Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.
9 марта 2013 г.
К ОГЛАВЛЕНИЮ
electromontaj-proekt.ru
что это, методика измерения прибором, пример протокола
Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.
Что подразумевается под термином петля фаза-ноль?
Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль. Электроэнергия, подаваемая потребителям, поступает с выходных обмоток трехфазного трансформатора, который подключен по схеме звезда. В результате естественного перекоса фаз по цепи нейтрали может протекать ток, поэтому для предотвращения проблемы измеряют фазу-ноль.
Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:
- сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
- невозможно рассчитать влияние аварийной ситуации на сопротивление.
Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.
Для чего проверяют сопротивление петли фаза-ноль
Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. К примеру, распространенная проблема, когда в розетку включается чайник или другой электроприбор, а автомат отключает нагрузку.
Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.
Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:
- неплотный контакт на клеммах;
- несоответствие тока характеристикам провода;
- уменьшение сопротивления провода из-за устаревания.
Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.
Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.
Периодичность проведения измерений
Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:
- После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
- При требовании со стороны обслуживающих компаний.
- По запросу потребителя электроэнергии.
Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.
Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.
Какие приборы используют?
Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:
- М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
- MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
- ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.
Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.
Как измеряется сопротивление петли фаза ноль
Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:
- Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
- Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
- Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.
Методика измерения
Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:
- между одной из фаз и нулевым проводом;
- между фазой и проводом РЕ;
- между фазой и защитным заземлением.
После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.
Справка! Нагрузку подключают в наиболее отдаленную точку (розетку) от источника питания.
Анализ результатов измерения и выводы
Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующие:
- Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
- Поиск проблемных зон для модернизации линии электроснабжения помещения.
- Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.
Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.
Форма протокола измерения
Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.
В конце составленной формы подводят итоги испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.
В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.
odinelectric.ru
Петля фаза-ноль | Заметки электрика
Уважаемые, читатели!!!
Приветствую Вас на своем ресурсе «Заметки электрика».
На повестке сегодняшнего дня у нас статья на тему петля фаза-ноль.
Что же такое петля фаза-ноль?
Все об этом Вы узнаете, прочитав материал ниже.
Мы с Вами знаем, что все электрооборудование, будь то в квартире или на производстве, должно работать исправно и долговечно.
Во время повреждений (короткое замыкание, перегруз и др.) электрооборудования или же самой электропроводки, должны мгновенно срабатывать аппараты защиты, отключая поврежденный участок цепи.
Но мы забываем о том, что в процессе эксплуатации электрооборудования и электрических сетей необходимо заранее и заблаговременно обследовать и выявлять неисправности (отказы).
Чаще всего никто этого правила не придерживается, а обращаются к специалистам-электрикам уже при возникновении самой неисправности. А иногда бывает так, что обращаться уже поздно.
Нет, уважаемые, я Вас не пугаю. Так оно и есть.
Просто примите себе за правило, что для выявления, предупреждения и устранения всех неисправностей Ваших электрических сетей и электрооборудования необходимо с определенной периодичностью производить комплекс следующих электрических измерений:
Кто имеет право проведения вышеперечисленных измерений? Об этом читайте в статье про электролабораторию.
Что это такое «петля фаза-ноль»?
Мы уже с Вами знакомы с системами заземления электроустановок до 1000 (В) TN-C, TN-C-S, TN-S. Все они являются глухозаземленными.
Если соединить фазный проводник L на нулевой рабочий проводник N или защитный проводник PE, то образуется контур, называемый петля фаза-ноль.
Т.е. эта петля состоит из электрической цепи фазного проводника L и нулевого рабочего проводника N, либо из электрической цепи фазного проводника L и защитного проводника PE, которая обладает своим сопротивлением.
Можно, конечно, и самостоятельно рассчитать сопротивление петли фаза-ноль, но это достаточно сложно и проблематично из-за ряда следующих факторов:
переходные сопротивления всех коммутационных аппаратов (автоматических выключателей, предохранителей, рубильников, разъединителей, контакторов и др.)
- точный путь тока в аварийном режиме (металлические конструкции, водопроводы, трубопроводы, контур заземления, повторное заземление)
При измерении сопротивления петли фаза-ноль специальным прибором, все вышеперечисленные факторы учитываются автоматически.
Причины и цель измерения
Причины проведения измерения петли Ф-О:
приемосдаточные испытания, т.е. вновь вводимая электроустановка (после монтажа или реконструкции)
по требованию службы Ростехнадзора или других контролирующих организаций
собственное желание
Целью проведения измерений заключаются в определении следующих параметров:
1. Величина сопротивления петли фаза-ноль
В это значение входит сопротивление обмоток питающего трансформатора, фазного проводника L и нулевого (защитного) проводника N (PE), переходных сопротивлений силовых контактов автоматических выключателей, рубильников, контакторов и др.
2. Величина тока короткого замыкания
Величина тока однофазного короткого замыкания может быть получена косвенным путем по нижеприведенной формуле, или же расчитана прибором автоматически.
Iк.з = Uном / Zп
- Uном – номинальное напряжение питающей сети
- Zп – полное сопротивление петли фаза-ноль
Расчитанный или измеренный ток короткого замыкания сравнивают с уставкой автоматического выключателя (либо тепловой, либо электромагнитной).
Заключение об измерении петли фазы-ноль делаем согласно нормативно-технических документов ПТЭЭП и ПУЭ.
Как проводить измерение петли фаза-ноль Вы можете узнать в моей следующей статье — измерение петли фаза-ноль.
В той же статье я наглядно покажу на примере, как сделать правильное заключение по полученным параметрам.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Измерение петли фаза-ноль: самая полная методика
Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них — измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.
Что подразумевается под цепью «фаза-ноль»?
В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.
Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:
- Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
- Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.
Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.
Необходимость в измерениях
Замер сопротивления петли проводится в следующих случаях:
- При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
- Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
- По заявлению потребителя.
В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:
- Общее сопротивление цепи, которое включает в себя:
электросопротивление трансформатора на подстанции;
аналогичный параметр линейного проводника и рабочего нуля;
образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.
- Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IAB <= UН . В данном случае IAB ток, при котором срабатывает АВ или другое устройство защиты, его величина должна уступать IКЗ.
Перед описанием детальных методик измерений, необходимо кратко описать прибор, который будет использоваться в процессе — MZC-300. Мы остановили свой выбор на этом устройстве, поскольку оно чаще всего применяется измерительными лабораториями.
Краткое описание MZC-300
Рассмотрим внешний вид и основные элементы измерителя MZC-300.
Расположение основных элементов прибора MZC-300Обозначения:
- Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
- Кнопка «Старт». Запускает следующие процессы измерений:
- ZП, напомним, это общее сопротивление цепи Ф-Н.
- IКЗ – ожидаемый ток КЗ.
- Активного сопротивления, необходимо для калибровки прибора.
Старт каждого измерения сопровождается характерным звуковым сигналом.
- Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
- Параметры ZП.
- Ожидаемый IКЗ.
- Уровень активного и реактивного сопротивления (R и Х).
- Фазный угол ϕ.
- Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
- Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
- Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
- Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
- Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».
Подготовительный этап
Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.
Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между контуром заземления и основными металлическими элементами конструкции здания.
Методика измерений с использованием MZC-300
Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:
- Соблюдение определенных условий, обеспечивающих необходимую точность.
- Выбор способа подключения устройства.
- Получение информации о напряжении сети.
- Измерение основных характеристик петли «Ф-Н».
- Считывание полученной информации.
Рассмотрим каждый из перечисленных выше этапов.
Соблюдение определенных условий
Следует принять во внимания некоторые особенности работы измерителя:
- Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
- При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
- Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
- Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.
Выбор способа подключения устройства
Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:
- Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N. Испытание петли С-N
- Измерение в петле между одной из фаз и проводником РЕ. Испытание петли С-РЕ
- Измерения в цепях ТТ.
- Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.
Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.
Получение информации о напряжении сети
Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).
Измерение основных характеристик петли «Ф-Н»
Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.
Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).
Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).
Процесс измерения характеристик петли запускается кнопкой «Старт».
Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.
Считывание полученной информации
Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».
Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.
Устройство MZC-303E для измерения характеристик петли «Ф-Н»Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.
Меры безопасности при измерении петли «Ф-Н»
Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.
Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.
Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.
Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.
По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).
www.asutpp.ru
Петля фаза ноль. Для чего проверяют сопротивление петли фаза-ноль
Электричество в настоящее время – это не только удобство и качество проживания, но это и большая опасность для человека. И хорошо, если проводку в доме делают профессионалы. Ведь свою работу они обязательно проверяют на степень безопасности. Каким образом? Для этого используется метод, основанный на создании высокой нагрузки в электрической разводке. Этот метод электрики называют измерением сопротивления петля фаза ноль.
Что это такое, и как формируется проверочная схема
Начать надо с пути, который проходит электрический ток от подстанции до розетки в доме. Обращаем ваше внимание, что в старых домах в электрике чаще всего присутствует сеть без заземляющего контура (земля), то есть, к розетке подходит фазный провод и нулевой (фаза и ноль).
Итак, от подстанции до дома сеть может быть длиною в несколько сот метров, к тому же она разделена на несколько участков, где используются разного сечения кабели и несколько распределительных щитов. То есть, это достаточно сложная коммуникация. Но самое главное, весь участок имеет определенное сопротивление, которое приводит к потерям мощности и напряжения. И это независимо от того, качественно ли проведена сборка и монтаж или не очень. Этот факт известен специалистам, поэтому проект сети делается с учетом данных потерь.
Конечно, грамотно проведенный монтаж – это гарантия корректной работы сетевого участка. Если в процессе сборки и разводки были сделаны отклонения от норм и требований или просто сделаны ошибки, то это гарантия увеличения потерь, сбоя работы сети, аварий. Вот почему специалисты проводят измерения показателей сети и анализируют их.Что это такое, и как формируется проверочная схема.
Видео измерения петля фаза ноль
Необходимо отметить, что вся электрическая цепочка – это зацикленный контур, образованный фазным контуром и нулевым. По сути, это своеобразная петля. Поэтому ее так и называют петля фаза ноль.
Как измеряется сеть
Чтобы это понять, необходимо рассмотреть схему, в которой присутствует потребитель, подключенный через обычную розетку. Так вот к розетке, как уже было сказано выше, подводятся фаза и ноль. При этом до розетки происходит потеря напряжения за счет сопротивления магистральных кабелей и проводов. Это известно давно, описан данный процесс формулой Ома:
R=U/I.
Правда, эта формула описывает соотношение величин постоянного электрического тока. Чтобы перевести ее на ток переменный, придется учитывать некоторые показатели:
- Активная составляющая сопротивления сети.
- Реактивная, состоящая из емкостной и индуктивной части.
Что это значит?
Необходимо понять, что электродвижущая сила, которая появляется в обмотках трансформатора, образует электрический ток. Он теряет свое напряжение при прохождении через потребителя и подводящие провода. При этом сам ток преодолевает несколько видов сопротивления:
- Активное – это потребитель и провода. Это самая большая часть сопротивления.
- Индуктивное – это сопротивление встроенных обмоток.
- Емкостное – это сопротивление отдельных элементов.
Как измерить сопротивление петля фаза ноль
Чтобы подсчитать полное сопротивление сети (петля фазы и ноля), необходимо определить электродвижущую силу, которая создается на обмотках трансформатора. Правда, на подстанцию без специального допуска не пустят, поэтому измерение петли фаза-ноль придется делать в самой розетке. При этом учитывайте, что розетка не должна быть нагружена. После чего необходимо замерить напряжение под нагрузкой. Для этого включается в розетку любой прибор, это может быть даже обычная лампочка накаливания. Замеряется напряжение и сила тока.
Внимание! Нагрузка на розетке должна быть стабильной в процессе проведения замеров. Это первое. Второе – оптимальным вариантом считается, если в схеме ток будет силой от 10 до 20 ампер. В противном случае дефекты сетевого участка могут не проявиться.
Теперь по закону Ома можно определить полное сопротивление петли. При этом придется учитывать, что напряжение (замеряемое) в розетке может отклоняться от номинального при нагрузке и без таковой. Поэтому сначала надо высчитать сопротивление при разных величинах напряжения. Понятно, что при нагрузке напряжение будет больше, поэтому полное сопротивление петли – это разница двух сопротивлений:
Rп=R2-R1, где R2 – это сопротивление петли при нагрузке, R1 – без таковой.
Что касается точно проведенных замеров. Самодельными приборами это можно сделать, никаких проблем здесь нет, но вот только точность замеров в данном случае будет очень низкой. Поэтому для этого процесса рекомендуется использовать вольтметры и амперметры с высокой точностью (класс 0,2).
Процесс измерения петля фаза ноль
Хотя надо отдать должное рынку, сегодня можно такие приборы приобрести в свободном доступе. Стоят они недешево, но для профессионала это необходимая вещь.
Где провести замер
Измерение петли фаза-ноль – розетки. Но опытные электрики знают, что это место не единственное. К примеру, дополнительное место – это клеммы в распределительном щите. Если в дом заводится трехфазная электрическая сеть, то проверять сопротивление петли фаза ноль надо на трех фазных клеммах. Ведь всегда есть вероятность, что контур одной из фаз был собран неправильно.
Цель проводимых замеров
Итак, цели две – определение качества эксплуатируемых сетей и оценка надежности защитных блоков и приборов.
Что касается первой позиции, то здесь придется сравнивать полученные замеры, а, точнее, сопротивление петли с проектной. В данном случае, если расчетный показатель оказался выше нормативного, то на поверку явно неправильно произведенный монтаж или другие дефекты магистрали. К примеру, грязь или коррозия контактов, малое сечение кабелей и проводов, неграмотно проведенные скрутки, плохая изоляция и так далее. Если проект электрической сети по каким-то причинам отсутствует, то для сравнения расчетного сопротивления петли с номинальным необходимо будет обратиться в проектную организацию. Чтобы разобраться в таблицах и расчетах самому, надо в первую очередь обладать инженерными знаниями по электрике.
Замер сопротивления петля фаза ноль
Что касается второй позиции. В принципе, здесь также необходимо провести некоторые расчеты, основанные на законе и формуле Ома. Основная задача определить силу тока короткого замыкания, ведь чаще всего от него и надо будет защищать электрическую сеть. Поэтому в данном случае используется формула:
Iкз=Uном/Rп.
Если считать, что сопротивление петли фаза к нулю равно, например, 1,47 Ом, то сила тока короткого замыкания будет равна 150 ампер. Под эту величину и придется подбирать прибор защиты, то есть, автомат. Правда, в правилах ПУЭ есть определенные нормы, которые создают некий запас прочности. Поэтому Iном увеличивают на коэффициент 1,1.
Подобрать автомат под все вышеуказанные величины можно, если сравнить их в таблицах ПУЭ. В нашем случае потребуется автомат класса «С» с Iном=16 А и кратностью 10. В итоге получаем:
I = 16 х 10 х 1,1 = 176 А. Расчетная сила тока короткого замыкания у нас составила – 150 А. о чем это говорит.
- Во-первых, автомат был неправильно выбран и установлен. Его надо обязательно заменить.
- Во-вторых, ток КЗ в сети меньше, чем автомата. Значит, он не отключится. А это может привести к пожару.
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
powercoup.by
существующие методики расчёта, используемые приборы контроля цепи
Представить себе жизнь современного человека без электричества и разнообразных электроприборов попросту невозможно. Сборку различных агрегатов и электрических схем можно выполнить самостоятельно. Необходимо лишь в точности следовать имеющейся документации, а также проводить замер полного сопротивления цепи фаза-ноль, что позволит обеспечить беспроблемность эксплуатации электрооборудования и его полную безопасность.
Параметры защиты
Электрический ток имеет разрушительную силу, поэтому опасен для оборудования, материальных ценностей и живых организмов. Для защиты от поражения высоким напряжением в прошлом использовались различные изоляции из диэлектриков и проводились замеры параметров работы электролиний.
Сегодня при эксплуатации разнообразных электроустройств используются всевозможные устройства защитного отключения и автоматические выключатели, которые обеспечивают полную безопасность эксплуатации оборудования. Также применяются защитные меры, в том числе разделение рабочего нуля и заземление электротехники.
В процессе эксплуатации параметры электросетей и используемого оборудования может изменяться, что объясняется особенностями работы техники и износом силовых линий.
Потребуется на регулярной основе выполнять проверку соответствия текущих характеристик требуемым нормативам по безопасности электрических сетей. Только так можно будет обеспечить полную беспроблемность эксплуатации техники, исключив одновременно поражение электротоком.
Выполняются следующие замеры и контроль:
- Проверка ДИФ-автоматов и УЗО.
- Испытание током нагрузки автоматических выключателей.
- Замер сопротивления цепи.
- Измерение цепи фазы.
- Замер сопротивления изоляции.
- Испытание другого защитного технологического оборудования.
Подобные работы не представляют особой сложности, поэтому, имея начальные навыки в электротехнике и используя соответствующее оборудование, можно все замеры выполнить самостоятельно, что обеспечивает правильность работы техники и экономит расходы домовладельца на обращение к профессиональным специалистам.
Контроль параметров электросети выполняется на постоянной основе, вне зависимости от типа приборов и режимов их эксплуатации.
Для чего осуществляют измерение
Основной задачей выполнения измерения петли фазы-ноль является защита кабелей и электрооборудования от перегрузок, которые могут возникать в процессе эксплуатации техники. Высокое сопротивление электрокабелей приводит к перегреву линии, что, в конечном счёте, может спровоцировать короткое замыкание и пожар. На показатели фазы влияют различные параметры, в том числе окружающая среда, характеристики воздушной линии, качество кабеля.
При выполнении замеров в обязательном порядке включают контакты имеющейся автоматической защиты, контакторы, рубильники, проводники напряжения к электроустановкам. В качестве таких проводников используются силовые кабели, которые подают в фазу-ноль к запитываемой технике.
Полное сопротивление фазы-ноль рассчитывается с помощью специальных формул, которые учитывают материал и сечение проводников, протяжённость линии и ряд других параметров. Получить максимально точные результаты измерений можно лишь обследовав физическую цепь, к которой подключены различные электроустройства.
При наличии в электроцепи устройства защитного отключения его при выполнении измерений в обязательном порядке отключают, что позволяет получить максимально точные данные. Используемые УЗО при прохождении больших токов обесточивают сеть, поэтому получить достоверные результаты будет невозможно.
Существующие методики расчетов
Измерение фазы-ноль может выполняться с помощью различных методик. В промышленности и с электрооборудованием, где требуется максимально возможная точность расчетов, используются специальные приборы, которые имеют минимальную погрешность. Также в таком случае используются соответствующие формулы, которые учитывают различные факторы, влияющие на качество полученных данных. В бытовых условиях будет достаточно использование простейших измерителей, что поможет получить необходимую информацию.
Наибольшее распространение получили следующие методики измерения петли фаза-ноль:
- Метод падения напряжения.
- Метод короткого замыкания в цепи.
- Использование амперметра-вольтметра.
При использовании метода снижения напряжения все замеры проводят при отключении нагрузки, после чего в цепь включают нагрузочное сопротивление с заранее рассчитанной величиной. С помощью специального устройства измеряется величина нагрузки в цепи, после чего полученные результаты сверяются с эталоном, проводятся соответствующие расчеты, которые сравниваются с нормативными данными.
Метод коротких замыканий в цепи подразумевает подключение к сети специального прибора, создающего искусственные короткие замыкания в необходимой потребителю точке. С использованием специальных устройств определяют величину тока короткого замыкания, а также время срабатывания защиты. Полученные данные сверяются с нормативными показателями, после чего рассчитывается соответствие электроцепи действующим нормативам и требованиям.
При использовании метода амперметра-вольтметра снимают с цепи питающее напряжение, после чего подключают к сети понижающий трансформатор, замыкают фазный провод действующей электроустановки. Полученные данные обрабатывают, и, используя специальные формулы, определяют необходимые параметры.
Наибольшее распространение на сегодняшний день получила методика измерения петли фаза-нуль методом подключения нагрузочного сопротивления. Такой способ сочетает простоту использования, максимальную точность, поэтому он применяется как в быту, так и при необходимости получения сверхточных данных. При необходимости контроля показателя фазы в одном здании сопротивление нагрузки подключают в самом дальнем доступном участке цепи. Подключение приборов осуществляется к предварительно защищенным контактам, что позволит избежать падения напряжения и ослабления силы тока.
Первоначальные измерения выполняют без подключения нагрузки, после чего с помощью амперметра производится контроль с точной нагрузкой. По результатам полученных данных рассчитывают сопротивление петли фаза-ноль.
Также имеется возможность использования специальных устройств, которые с помощью соответствующей шкалы позволяют получить нужное сопротивление, обеспечивая максимально возможную точность рассчитанных данных.
При измерении этого показателя рассчитанных данных хватает для определения качества электросети в быту. В промышленности при выполнении соответствующего контроля составляется протокол, куда заносят все полученные величины. В таком протоколе выполняют соответствующие расчеты, после чего бумага подписывается инженерами и прикладывается к общей нормативно-технической документации.
Используемые высокоточные приборы
Для измерений и расчетов фазы могут применяться как стандартные амперметры и вольтметры, использование которых не представляет сложности, так и узкоспециализированные приборы. Последние обеспечивают максимально возможную точность полученных данных по параметрам электросети. Наибольшее распространение получили следующие измерительные приборы.
M417 — это надежный проверенный годами прибор, разработанный специально для измерения показателя сопротивления в цепи фазы-ноль. Одной из особенностей этого прибора является возможность проведения всей работы без снятия питания, что существенно упрощает контроль за состоянием электросети. Этот аппарат использует метод падения напряжения, обеспечивает максимальную возможную точность полученных расчетов. Допускается использование М417 в цепи с глухозаземленной нейтралью и напряжением в 380 Вольт. Единственный недостаток использования этого приспособления — это необходимость калибровки устройства перед началом работы.
MZC-300 — измерительное устройство нового поколения, которое построено на базе мощного микропроцессора. Приборы используют метод падения напряжения с подключением сопротивления в 10 Ом. MZC-300 обеспечивает время замера на уровне 0,03 секунды и может использоваться в сетях с напряжением 180−250 Вольт. Прибор для обеспечения точности данных подключают в дальней точке сети, после чего нажимают кнопку Старт, а полученный результат выводится на небольшой цифровой дисплей. Все расчёты выполняет микропроцессор, что существенно упрощает контроль фазы.
ИФН-200 — многофункциональный прибор, позволяющий выполнять измерения фазы. Работает устройство с напряжением 180−250 Вольт. Имеются соответствующие разъемы для упрощения подключения к сети, а использование этого приспособления не представляет какой-либо сложности. Ограничение на измерении в цепи составляет 1 кОм, при превышении которого срабатывает защита и отключается устройство, предотвращая его перегрузку. Выполнен прибор на базе мощного микропроцессора и имеет встроенную память на 35 последних вычислений.
220v.guru
Сопротивление петли фаза ноль таблица
Что подразумевается под термином петля фаза-ноль?
Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль. Электроэнергия, подаваемая потребителям, поступает с выходных обмоток трехфазного трансформатора, который подключен по схеме звезда. В результате естественного перекоса фаз по цепи нейтрали может протекать ток, поэтому для предотвращения проблемы измеряют фазу-ноль.
Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:
- сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
- невозможно рассчитать влияние аварийной ситуации на сопротивление.
Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.
Для чего проверяют сопротивление петли фаза-ноль
Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. К примеру, распространенная проблема, когда в розетку включается чайник или другой электроприбор, а автомат отключает нагрузку.
Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.
Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:
- неплотный контакт на клеммах;
- несоответствие тока характеристикам провода;
- уменьшение сопротивления провода из-за устаревания.
Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.
Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.
Периодичность проведения измерений
Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:
- После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
- При требовании со стороны обслуживающих компаний.
- По запросу потребителя электроэнергии.
Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.
Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.
Какие приборы используют?
Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:
- М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
- MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
- ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.
Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.
Как измеряется сопротивление петли фаза ноль
Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:
- Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замерят ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
- Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
- Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.
Методика измерения
Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:
- между одной из фаз и нулевым проводом;
- между фазой и проводом РЕ;
- между фазой и защитным заземлением.
Справка! Нагрузку подключают в наиболее отдаленную точку (розетку) от источника питания.
После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.
Анализ результатов измерения и выводы
Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующее:
- Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
- Поиск проблемных зон для модернизации линии электроснабжения помещения.
- Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.
Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.
Форма протокола измерения
Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.
В конце составленной формы подводят итог испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.
В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.
Территория электротехнической информации WEBSOR
- Основы
- Электробезопасность
- Действие на человека
- Защитные меры
- Первая помощь
- Электробезопасность в установках до 1000 В с глухозаземленной и изолированной нейтралью
- Средства защиты
- Указатель высокого напряжения УВНУ-10СЗ ИП
- Указатель низкого напряжения ЭЛИН-1-СЗ
- Когти КРПО
- Теоретические основы электротехники
- Электрические процессы в вакууме и газах
- Термоэлектронная эмиссия металлов
- Термоэлектронная эмиссия оксидного катода
- Электростатическая электронная эмиссия
- Фотоэлектронная эмиссия
- Вторичная электронная эмиссия
- Электронная эмиссия
- Прохождение тока в вакууме
- Столкновение электронов
- Движение электронов
- Виды электрического разряда
- Темный разряд
- Тлеющий разряд
- Дуговой разряд
- Газовая плазма
- Коронный, искровой и высокочастотные разряды
- Измерение величин
- Единицы электрических величин
- Характеристика средств
- Электросчетчик ЦЭ6803ВМ
- Мегаомметр
- Электротехнические материалы
- Классификация веществ по электрическим свойствам
- Диэлектрики
- Классификация диэлектриков
- Поляризация диэлектриков
- Электропроводность диэлектриков
- Пробой диэлектриков
- Электрическая прочность воздушных промежутков
- Разряд по поверхности твердого диэлектрика
- Разряд в масле
- Полупроводниковые материалы
- Электропроводность полупроводников
- Получение и свойства полупроводников
- Характеристики полупроводниковых материалов
- Проводниковые материалы
- Общие сведения
- Медь
- Алюминий
- Задачи и ответы
- Электробезопасность
- Электромашины
- Определения и требования
- Номинальные режимы и номинальные величины
- Общие определения
- Технические требования
- Потери мощности и КПД
- Обозначение обмоток
- Номинальные частоты вращения эл.машин
- Электрические машины переменного тока
- Устройство 3-ф асинхронных и синхронных машин
- Машинная постоянная, электромагнитные нагрузки
- Якорные обмотки и обмотки возбуждения
- Электродвижущая и намагничивающая силы
- Обмотки типа бельчьей клетки
- Активные сопротивления обмоток
- Индуктивные сопротивления обмоток
- Асинхронные машины
- Активные и индуктивные сопротивления обмоток
- Расчет магнитной цепи
- Основные уравнения, схемы замещения и векторная диаграмма
- Основные энергетические соотношения и механическая характеристика
- Потери и КПД
- Круговая диаграмма, рабочие характеристики
- Определение главных размеров двигателей
- Неполадки в работе асинхронного двигателя
- Теория
- Асинхронный двигатель
- Синхронные машины
- Машины постоянного тока
- Трансформаторы
- Трансформаторы
- Трансформаторы силовые масляные
- Текущий ремонт трансформаторов ТМ
- Трансформаторы силовые типа ТМ(Г) и ТМПН(Г)
- Трансформаторы ТМГ11 и ТМГСУ11
- Трансформаторы ТМГ12
- Трансформаторы ТМГ21
- Трансформаторы ОМ, ОМП, ОМГ
- Трансформаторы ТСГЛ, ТСЗГЛ
- Трансформаторы ТС, ТСЗ
- Параллельная работа трансформаторов
- Потеря напряжения в трансформаторе
- Группы соединений обмоток трансформаторов
- Неисправности трансформаторов
- Трансформаторное масло
- Защита электродвигателей
- Определения и требования
- Оборудование
- Защита электрооборудования
- Модульные устройства
- Выключатели автоматические
- Характеристика автомат. выкл.
- Устройства защитного отключения (УЗО)
- Выбор и применение УЗО
- Причины срабатывания УЗО
- Дифференциальные автомат. выкл.
- Выключатели нагрузки
- Контакторы модульные
- Ограничитель импульсных перенапряжений
- Дополнительные устройства
- Таймер электронный
- Электрощитовое оборудование
- Щиты силовые
- Вводно — распределительные устройства ВРУ
- Распредустройство низкого напряжения
- Пункты распределительные ПР
- Распределительные силовые шкафы ШРС
- Панели щитов ЩО 70
- Щиты этажные ЩЭ
- Ящики управления
- Шкафы учета электроэнергии ШУЭ
- Щиты осветительные ОЩВ, УОЩВ
- Ящики и шкафы АВР, блоки и панели управления БУ, ПУ
- Щиты автоматического переключения ЩАП
- Щит учета выносного типа
- Щитки для хозяйственных нужд
- Вводное устройство ВУА
- Корпуса электрощитов
- Щиты распределительные ЩРН, ЩРВ
- Щиты учетно-распределительные ЩРУН
- Щиты с монтажной панелью ЩРНМ, ЩМП
- Устройство этажное распределительное УЭРМС
- Устройство этажное распределительное блочного типа УЭРБ
- Корпус для щита этажного ЩЭ
- Панели для установки однофазного счетчика ПУ
- Шкафы напольные
- Шкафы сборно-разборные
- Каркасы ВРУ
- Шкафы цельносварные
- Шкаф наружного освещения ШНО
- Шкаф управления наружным освещением
- Щиты силовые
- Электромонтажные изделия
- Коробки
- Установочные коробки в сплошные стены
- Установочные коробки в полые стены
- Распаячные (разветвительные) коробки в сплошные стены
- Распаячные (разветвительные) коробки в полые стены
- Коробки с кабельными вводами открытой установки
- Коробки для монолитного строительства
- Коробки для открытой установки с клеммной колодкой, нулевой шиной
- Особенности монтажа
- Трубы
- Лотки
- Электромонтажные короба
- Шина нулевая
- Соединители, сжимы ответвительные, наконечники
- Стяжки(хомуты)
- Термоусаживаемые трубки
- Электроустановочные устройства
- Выключатели и розетки
- Требования к монтажу электроустановочных устройств
- Требования к электрооборудованию ванных и душевых
- Коробки
- Провод и кабель
- Маркировка и характеристика
- Кабельная продукция
- ПРИЛОЖЕНИЕ по кабельной продукции
- ПРИЛОЖЕНИЕ (стационарная прокладка)
- ПРИЛОЖЕНИЕ (нестационарная прокладка)
- ПРИЛОЖЕНИЕ (провода силовые)
- ПРИЛОЖЕНИЕ (провода различного назначения)
- Выбор провода
- Соединение проводов
- Советы по выбору кабеля
- Кабельные муфты
- Автоматические выключатели
- ВА-88
- ВА-99
- ВА-99М
- ВА-99С
- ВА-45
- Выбор ВА
- АПД
- АВМ
- Контакторы
- Контакторы малогабаритные КМЭ
- Контакторы малогабаритные КМИ
- Контакторы КМИ в оболочке
- Контакторы серии КТИ
- Контакторы серии КТ
- Пускатели серии ПРК
- Применение контакторов
- Фазировка оборудования
- Выполняем ВСЕ электромонтажные работы
- Нормы
- ГОСТы, справочная информация, правила
- Все про заземление
- Классификация помещений
- Требования к электрооборудованию
- Характеристика проводниковых и изоляционных материалов
- ГОСТ, СНиП, СП, ТУ
- Содержание по нормативным документам
- СНиП 3.05.06-85 Электротехнические устройства
- ГОСТ 10434-82 Соединения контактные электрические
- ГОСТ 12.1.030-81 ССБТ Электробезопасность
- ГОСТ 13781.0-86. Муфты для силовых кабелей на напряжение до 35 кВ
- ГОСТ 11677-85. Трансформаторы силовые
- ГОСТ 14695-80 ( СТ СЭВ 1127-78). Подстанции трансформаторные комплектные
- ГОСТ 9.032-74. Покрытия лакокрасочные
- Данные для расчета осветительной сети
- Разложение в ряд Фурье
- Свод правил по проектированию и строительству
- Технические условия на СИП
- Электропроводки
- Прокладка кабелей до 35 кВ
- Подстанция
- Комплектные трансформаторные подстанции
- Номенклатура КТП
- Оборудование подстанций
- Выключатели нагрузки ВНР
- Рубильники, ящики силовые
- Разъединители РЕ-19
- Разъединители РЦ
- Разъединители на 630 А
- Шины
- КСО-366, КСО-272, КРУ
- Изоляторы
- Разъединители РВ
- Техническое описание разъединителей
- Предохранители до 1000В
- Высоковольтные предохранители
- Приводы к выключателям напряжением 3-10 кВ
- Техническое описание привода ППВ-10
- Вакуумные выключатели
- ВВ/TEL
- ВР
- ВРО
- ВР1
- ВР1 для КСО
- ВРС
- 3АН5
- ВГГ-10
- Камеры КСО
- КСО-298 НН «Классика»
- КСО 298АТ, КСО 298АТ-М, КСО 292АТ, КСО 285АТ, КСО 272АТ, КСО 2(УМЗ)АТ
- КСО 366АТ, КСО 366АТ-В
- КСО 393АТ, КСО 393АТ-М
- КСО «Новация»
- КРУ «Классика» серии D-12PT
- КРУ серии «Эталон»
- КСО-298 «СТАНДАРТ»
- КСО-298 РУЭЛТА
- КРУ серии R-40 (35 кВ)
- Ограничители перенапряжений 6(10) кВ
- Масляный выключатель
- ВПМ-10
- Техническое описание ВПМ
- ВМП-10
- ВМГ-133
- Выключатель нагрузки автогазовый ВНА
- Описание выключателя
- Изображение выключателя
- Ремонт электрооборудования
- Эксплуатация и ремонт электрооборудования РУ
- Ремонт масляных выключателей
- Ремонт контактных частей РУ
- Ремонт привода ПП-67 масляных выключателей
- Особенности устройства и ремонта привода ППВ (ППО)
- Особенности устройства и ремонта привода ПЭ-11
- Повышение надежности МВ, приводов МВ
- Наладка заводящего устройства пружинного привода
- Наладка механизма включения пружинного привода
- Наладка механизма отключения пружинного привода
- Регулировка МВ с пружинным приводом
- Регулировка МВ с электромагнитным приводом
- Повышение надежности ВМП-10 и ВМГ-133
- Установки компенсации реактивной мощности
- Общие сведения об УКРМ
- УКРМ 0,4 кВ
- УКРМ 6(10) кВ
- Выбор места расположения питающих подстанций
- Комплектные трансформаторные подстанции
- Электроснабжение
- Понятие электроснабжения
- Распределение электроэнергии
- Электроснабжение административных зданий
- Электроснабжение жилых зданий
- Электропроводка
- Расчет нагрузок
- Расчетные нагрузки промышленных предприятий
- Расчетные нагрузки жилых и общественных зданий
- Допустимые токовые нагрузки на провода и кабели
- Выбор максимальной токовой защиты линий
- Выбор сечений по допустимой потере напряжения
- Активные и индуктивные сопротивления линии
- Расчет сети по допустимой потере напряжения без учета индуктивного сопротивления
- Расчет сети по потере напряжения с учетом индуктивности линий
- Расчет сети при помощи вспомогательных таблиц удельных потерь напряжения
- Примеры расчетов сечений проводов и кабелей по допустимой потере напряжения
- Расчет сети по условию наименьшей затраты металла
- Расчет сети по условию постоянной плотности тока
- Короткие замыкания в электрических системах
- Общие указания к расчету токов к.з.
- Трехфазное короткое замыкание
- Несимметричные короткие замыкания
- Короткое замыкание с одновременным разрывом фазы
- Определение токов короткого замыкания для выбора выключателей
- Токи короткого замыкания от электродвигателей
- Выбор проводников по устойчивости к току к.з.
- Проверка условий срабатывания защитного аппарата
- Выбор проводов по экономической плотности тока
- Шины и шинопроводы в системах электроснабжения
- Распределение тока по сечению шин из цветного металла
- Определение активного и реактивного сопротивлений шинопровода
- Потери мощности и напряжения в шинопроводах
- Выбор сечения шинопроводов
- Проверка выбранного сечения шинопровода
- Колебания шинопроводов, имеющих поворот
- Потери мощности в сетях
- Переходные процессы в электрических системах
- Математическое описание переходных процессов
- Переходные процессы при больших кратковременных возмущениях
- Режимы при больших возмущениях
- Режимы при малых возмущениях
- Улучшение пропускной способности электрических систем
- Регулирование напряжения
- Регулирование напряжения в сетях
- Местное регулирование напряжения
- Внутренние перенапряжения сетей
- Перенапряжения и защита от перенапряжений
- Характеристика уровней изоляции сетей 6-35кВ
- Характеристика внутренних перенапряжений
- Понятие электроснабжения
- Освещение
- Величины и единицы освещения
- Источники света
- Методы искусственного освещения
- Расчет и защита осветительных сетей
- Расчет освещения по методу коэф-та использования и удельной мощности
- Расчет освещения по точечному методу
- Специальные случаи светотехнических расчетов
- Расчет качественных характеристик освещения
- Наружное освещение
- Подробный расчет осветительной сети
- Основные требования и выбор освещенности
- Системы и виды освещения
- Управление освещением
- Проектирование освещения
- Ремонт светильников с люминесцентными лампами
- Умный дом
- Воздушная линия
- Проектирование ВЛИ — 0,4кВ
- Расчетные пролеты ВЛ — 0,4 кВ
- Линейная арматура ENSTO для ВЛИ 0,4кВ
- Линейная арматура NILED для ВЛИ 0,4кВ
- Вводы линий электропередачи до 1 кВ в помещения
- Применение линейной арматуры на ВЛЗ 6-20кВ
- Оборудование для ВЛ(З)-6(10)кВ
- Проектирование ВЛЗ — 6(10)кВ
- Нарушения при монтаже СИП
- Установка длинно-искровых разрядников РДИП на ВЛЗ-10кВ
- Стальные конструкции для строительства ВЛИ-0,4кВ, ВЛЗ-6(10)кВ
- Аналоги NILED
- Пример расчета ВЛИ-0,4 кВ
- Заземляющие устройства опор ВЛ
- Узлы и детали соединений заземляющих проводников ВЛ 0,38-35 кВ
Сопротивление цепи фаза – ноль
Таблица 1
Сечение фазных жил мм2 | Сечение нулевой жилы мм2 | Полное сопротивление цепи фаза – ноль, Ом/км при температуре жил кабеля +65 градусов | |||||
Материал жилы: | |||||||
Алюминий | Медь | ||||||
R фазы | R нуля | Z цепи (кабеля) | R фазы | R нуля | Z цепи (кабеля) | ||
1,5 | 1,5 | 14,55 | 14,55 | 29,1 | |||
2,5 | 2,5 | 14,75 | 14,75 | 29,5 | 8,73 | 8,73 | 17,46 |
9,2 | 9,2 | 18,4 | 5,47 | 5,47 | 10,94 | ||
6,15 | 6,15 | 12,3 | 3,64 | 3,64 | 7,28 | ||
3,68 | 3,68 | 7,36 | 2,17 | 2,17 | 4,34 | ||
2,3 | 2,3 | 4,6 | 1,37 | 1,37 | 2,74 | ||
1,47 | 1,47 | 2,94 | 0,873 | 0,873 | 1,746 | ||
1,05 | 1,05 | 2,1 | 0,625 | 0,625 | 1,25 | ||
0,74 | 1,47 | 2,21 | 0,436 | 0,873 | 1,309 | ||
0,74 | 0,74 | 1,48 | 0,436 | 0,436 | 0,872 | ||
0,527 | 1,05 | 1,577 | 0,313 | 0,625 | 0,938 | ||
0,527 | 0,527 | 1,054 | 0,313 | 0,313 | 0,626 | ||
0,388 | 0,74 | 1,128 | 0,23 | 0,436 | 0,666 | ||
0,388 | 0,388 | 0,776 | 0,23 | 0,23 | 0,46 | ||
0,308 | 1,05 | 1,358 | 0,181 | 0,625 | 0,806 | ||
0,308 | 0,527 | 0,527 | 0,181 | 0,313 | 0,494 | ||
0,308 | 0,308 | 0,616 | 0,181 | 0,181 | 0,362 | ||
0,246 | 0,74 | 0,986 | 0,146 | 0,436 | 0,582 | ||
0,246 | 0,246 | 0,492 | 0,146 | 0,146 | 0,292 | ||
0,20 | 0,74 | 0,94 | 0,122 | 0,436 | 0,558 | ||
0,20 | 0,40 | 0,122 | 0,122 | 0,244 | |||
0,153 | 0,153 | 0,306 | 0,090 | 0,090 | 0,18 |
Мощность трансформатора, кВ∙А | |||||||||
Сопротивление трансформатора, Zт/3, Ом (Δ/Υ) | 0,30 | 0,19 | 0,12 | 0,075 | 0,047 | 0,03 | 0,019 | 0,014 | 0,009 |
I ном. авт. выкл, А | 50 и более | |||||||||
R авт., Ом | 1,44 | 0,46 | 0,061 | 0,014 | 0,013 | 0,01 | 0,007 | 0,0056 | 0,004 | 0,001 |
R цепи, Ом | 0,05 | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,8 | 1,0 | 1,5 | 2 и более |
Rдуги, Ом | 0,015 | 0,022 | 0,032 | 0,04 | 0,045 | 0,053 | 0,058 | 0,075 | 0,09 | 0,12 | 0,15 |
При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза – ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:
RL-N= Rрасп + Rпер.гр + Rавт.гр+ Rnгр∙Lnгр +Rдуги (2)
где, Rрасп – измеренное сопротивление цепи фаза – ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; Rпер.гр – сопротивление переходных контактов в групповой линии, Ом; Rавт.гр – суммарное сопротивление автоматических выключателей – вводного группового щита и отходящей групповой линии, Ом; Rnгр – удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Lnгр – длина n-й групповой линии, км.
Рассмотрим процесс вычисления сопротивления цепи фаза – ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.
Исходные данные:
— трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник – звезда» — по таблице 2 находим Zт/3=0,014 Ом;
— питающая сеть – кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм2 и нулевой – 50 мм2. По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;
— распределительная сеть – кабель с медными жилами длиной 50 метров и сечением жил 35 мм2. По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:
1,25 Ом/км∙0,05 км=0,0625 Ом;
— групповая сеть – кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм2. По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:
17,46 Ом/км∙0,035 км=0,61 Ом;
— автоматический выключатель отходящий линии – 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;
— переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.
Суммируем все полученные значения и получаем сопротивление цепи фаза – ноль без учета сопротивления дуги RL-N=0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.
Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины RL-N=0,80 Ом+0,075 Ом=0,875 Ом.
В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.
Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 – 1,25 раза.
В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза – ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину
Uф/ RL-N=220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.
Максимальное сопротивление цепи фаза – ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом — 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом – 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм2 определим при помощи таблицы 1.
L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.
Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза – ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть ток короткого замыкания оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.
Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли требования к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия токов короткого замыкания.
kabel-house.ru