Сопротивление заземлителя молниезащиты – Сопротивление заземления молниезщиты — нормативы, периодичность замеров

Сопротивление заземления молниезщиты — нормативы, периодичность замеров

Принцип действия громоотвода — перехват молнии и перенаправление разряда в землю для нейтрализации. Но эффективность всей системы зависит от величины сопротивления заземления молниезащиты, то есть от способности грунта поглощать электрический ток. Параметр измеряется в Ом, должен стремиться к нулю, однако, структура почв не позволяет достичь идеального значения.

Нормы для сопротивления заземления молниезащиты

В Инструкции по устройству молниезащиты РД 34.21.122-87 регламентированы максимальные значения противодействия растеканию тока для различных категорий зданий и сооружений, с учетом удельного сопротивления грунта:

  • I и II категория — 10 Ом;
  • III категория — 20 Ом;
  • Если электропроводность превышает 500 Ом*м — 40 Ом;
  • Наружные установки — 50 Ом.

Сопротивление падает в 2-5 раз при увеличении силы тока молнии.

Качество заземления молниезащиты

Ключевой параметр — сопротивление заземления — зависит от конфигурации заземлителя и удельного сопротивления почвы. Для вычисления значения существует специальная формула. Но для готовых заземлителей задача значительно упрощается: производитель предоставляет заранее подсчитанный коэффициент, который достаточно умножить на удельное сопротивление грунта, чтобы получить искомое значение.

Удельное сопротивление для различных грунтов

Значение прежде всего зависит от влажности и состава почвы, плотности прилегания пластов, наличия кислот, солей и щелочей. Вычисляется путем проведения геологических изысканий. Это комплекс сложных мероприятий, поэтому при расчетах принято использовать справочные величины:

  • Песчаный грунт, увлажненный поземными водами — 10-60 Ом*м;
  • Песок сухой — 1500-4200 Ом*м;
  • Бетон — 40-1000 Ом*м;
  • Чернозем — 60 Ом*м;
  • Глина — 20-60 Ом*м;
  • Илистая почва — 30 Ом*м;
  • Садовая земля — 40 Ом*м;
  • Супесь — 150 Ом*м;
  • Суглинок полутвердый — 100 Ом*м;
  • Солончак — 20 Ом*м.

На практике сопротивление молниезащиты всегда будет ниже расчетного значения: при погружении электрода в землю значительно снижается удельное сопротивление из-за уплотнения и увлажнения почвы грунтовыми водами.

Требования к заземлителю

Согласно РД 34.21.122-87 для заземления необходимо не менее трех электродов вертикального типа. Расстояние между ними — как минимум в два раза больше, чем глубина погружения. Кроме того, СО 153-34.21.122-2003 требует, чтобы расстояние от стен здания до электродов было не менее 1 метра.

Уменьшение сопротивления заземления

Поскольку удельное сопротивление почвы — величина относительно постоянная, для увеличения электропроводности необходимо изменять конфигурацию заземлителя: увеличивать площадь соприкосновения электродов с грунтом. Можно удлинить проводник или создать контур заземления: несколько отдельно стоящих электродов соединяются в единую сеть. В расчет берется сумма площадей.

Современные заземлители — эффективны и просты в установке. Электроды заглубляются до 30 метров. Благодаря этому удается значительно уменьшить общую площадь, компактно разместить заземлитель молниезащиты в условиях ограниченного пространства. Для монтажа не нужны специальные инструменты, штыри стыкуются между собой муфтой с резьбовым соединением. Медное покрытие электродов обеспечивает защиту от коррозии, увеличивая срок службы до 100 лет!

Измерение сопротивления заземления и периодичность проверок

Производятся с помощью специальных приборов (измерительных комплексов) по заданной схеме измерений в нескольким точках смонтированного контура молниезащиты. Данные показаний заносятся в специальную форму — протокол проверки сопротивлений заземлителей и  заземляющих устройств.

Замеры производят всегда по окончании монтажа системы молниезащиты и заземления, а также после выполнения ремонтных работ как на устройствах молниезащиты, так и на самих защищаемых объектах и вблизи них. Полученные данные заносят в акты (протоколы проверок), паспорта заземляющих устройств и журналы учета.

Примеры протоколов и паспортов можно посмотреть по этой ссылке.

Кроме внеочередных мероприятий существует регламент проведения измерения значений сопротивления, которые осуществляют для разных категорий зданий и сооружений с следующей периодичностью: для категории I II — 1 раз в год перед сезоном гроз, для III категории — не реже 1 раза в 3 года, для взрывоопасных объектов и производств — не реже 1 раза в год.

Важно использовать при этом приборы, поверенные должным образом, а также правильно выбрать точки измерений. Вот почему необходимо обращаться при этом в специализированные организации, которые имеют в своем распоряжении квалифицированный персонал и необходимые приборы, а также могут гарантировать вам качество работ на определенное время.

Компания «МЗК-Электро» предлагает квалифицированный монтаж заземления. Опытные специалисты проведут необходимые расчеты, подберут оптимальное по стоимости и эффективности решение для конкретного объекта. В работе используем сертифицированное оборудование от ведущих производителей. Доверьте проектирование громоотвода профессионалам — вы гарантированно получите надежную молниезащиту!

www.mzke.ru

Требования к сопротивлению заземлителя молниезащиты

Тема заземления молниезащиты не такая простая, как может показаться на первый взгляд. В нормативных документах встречаются лишь требования по сопротивлению заземлителя, но при этом нет требований по конфигурации заземлителей. Рассмотрим различные ТНПА по данной теме.

Не будем углубляться в проблемы заземления, пусть этим занимаются соответствующие специалисты.

Изначально я хотел посвятить тему только заземлению отдельно стоящего молниеприемника, но потом решил вспомнить все требования, предъявляемые к заземлителям молниезащиты. Ну… или почти все

ТНПА РБ:

ТКП 336-2011 (Молниезащита зданий и сооружений и инженерных коммуникаций).

7.2.3 При рассмотрении рассеивания высокочастотного тока молнии в земле и с целью минимизирования любых опасных перенапряжений, конфигурация и размеры системы заземления являются важными критериями. Как правило, рекомендуется низкое сопротивление заземления (не более 10 Ом, измеренное на низкой частоте).

ТКП 339-2011 (Вместо ПУЭ).

6.2.8.5 Защиту от прямых ударов молнии ОРУ следует, по возможности, выполнять отдельно стоящими молниеотводами, установленными по периметру подстанции. Молниеотводы необходимо предусматривать на максимальном удалении от зданий ОПУ, ГЩУ, РЩ. Отдельно стоящие молниеотводы должны иметь обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

ТКП 181-2009 (02230) (Правила технической эксплуатации электроустановок потребителей).

5.9.1 Электроустановки Потребителей должны иметь защиту от грозовых и внутренних перенапряжений, выполненную в соответствии с требованиями правил устройства электроустановок. Величина сопротивления заземлений молниеотводов, если вблизи них во время грозы могут находиться люди, не должна превышать 10 Ом.

Таблица Б.29.1 Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

ТНПА РФ:

ПУЭ 7 (Правила устройства электроустановок).

4.2.137. Защиту от прямых ударов молнии ОРУ, на конструкциях которых установка молниеотводов не допускается или нецелесообразна по конструктивным соображениям, следует выполнять отдельно стоящими молниеотводами, имеющими обособленные заземлители с сопротивлением не более 80 Ом при импульсном токе 60 кА.

РД 34.21.122-87  (Инструкция по устройству молниезащиты зданий и сооружений).

8 … До недавнего времени для заземлителей молниезащиты нормировалось импульсное сопротивление растеканию токов молнии: его максимально допустимое значение было принято равным 10 Ом для зданий и сооружений I и II категорий и 20 Ом для зданий и сооружений III категории. При этом допускалось увеличение импульсного сопротивления до 40 Ом в грунтах с удельным сопротивлением более 500 Ом×м при одновременном удалении молниеотводов от объектов I категории на расстояние, гарантирующее от пробоя по воздуху и в земле. Для наружных установок максимально допустимое импульсное сопротивление заземлителей было принято равным 50 Ом.

РД 34.45-51.300-97 (Объем и нормы испытаний электрооборудования).

Таблица 28.1 — Наибольшие допустимые сопротивления заземляющих устройств:

Отдельно стоящий молниеотвод — 80 Ом.

Вывод: в очередной раз можно убедиться, что нормативные документы в части проектирования электроустановок в РБ и РФ мало чем отличаются.

Советую почитать:

220blog.ru

Как нормировать сопротивление заземления в молниезащите

Из цикла статей «Заземление в молниезащите — ответы на частые вопросы при проектировании».

Затрудняюсь дать обоснованный ответ на этот вопрос и не знаю специалиста, способного на такое. В начале статьи уже отмечалось, что изменение сопротивления заземления молниеотвода в сколько-нибудь разумных пределах даже на 2 порядка величины практически не сказывается на эффективности притяжения молний. Значит, ориентироваться надо на какой-то иной критерий, связанный, например. с электробезопасностью или с допустимым уровнем перенапряжений в электрических цепях объекта. Попытка формировать нормативные требования на такой основе не лишена смысла, но неизбежно будет связана с массой нерешенных проблем. Главная из них – предельно допустимый уровень напряжения прикосновения и шага для людей и животных в импульсном режиме. Существующее нормирование заканчивается здесь временем воздействия напряжения в 0,01 с, что примерно на 2 порядка больше, чем в грозовых условиях. Специалист по молниезащите плохо знаком с физиологией и не может предложить обоснованной методики пересчета опасного для человека уровня воздействующего напряжения в другой столь различный временной диапазон. Попытка сделать это по условию равного энерговклада (тогда вместо допустимых 600 В получилось бы 6 кВ), к сожалению, научно не обоснована.

Еще проблематичнее исходить из допустимого уровня грозовых перенапряжений. Во-первых, они далеко не всегда находятся в прямой зависимости от сопротивления заземления, а во-вторых, электрические цепи различного номинального напряжения по-разному реагируют на перенапряжения. К тому же эти цепи могут иметь защитные средства и нет однозначного решения вопроса о том, куда вкладывать материальные ресурсы, — в снижение сопротивления заземления или в средства ограничения возникающих перенапряжений.

Все выше перечисленное оставляет проектировщика один на один с проблемой. В отечественном нормативе по молниезащите СО-153-34.21.122-2003 о сопротивлении заземления молниеотводов нет ни единого слова. В инструкции по молниезащите РД 34.21.122-87 дело ограничивается только типовыми конструкциями заземляющих устройств молниеотводов, а их сопротивлениями заземления оставлены без внимания. Полезно разобраться хотя бы в этом, чтобы осознать методические подходы составителей норматива и оценить целесообразность рекомендованного.

Для отдельно стоящего молниеотвода в Инструкции РД 34.21.122-87 указываются 3 конструкции заземлителей, поддающихся конкретному расчету:

  • стойка опоры длиной не менее 5 м и диаметром не менее 0,25 м,
  • два вертикальных стержня длиной не менее 3 м, соединенных полосой длиной 5 м на глубине не менее 0,5 м (диаметр 10 – 20 мм),
  • три вертикальных стержня тех же размеров и с тем же шагом.

Компьютерный расчет в грунтах с различным удельным сопротивлением дает для этих конструкций соответственно следующие расчетные соотношения

Когда же молниеотводы монтируются на крыше здания, фундамент которого непригоден для использования в качестве заземлителя, контур заземления 16х16 м по внешнему периметру в РД 34.21.122-87 считается достаточным для грунта удельным сопротивлением ρ ≤ 500 Ом*м, а контур 30х30 м — вплоть до 1000 Ом*м. Сопротивление заземления этих контуров равны соответственно RЗ = 0,035ρ и RЗ = 0,02ρ Ом.

Представленное трудно назвать нормированием, поскольку в разных регионах России удельное сопротивление грунта вполне может меняться в пределах 2-х порядков величины (от 50 до 5000 Ом м, иногда еще выше), а сопротивление заземления отдельно стоящего молниеотвода с типовым заземлителем — от 5 Ом приблизительно до 700 Ом. И то, и другое норма? Хотелось бы знать, с каких позиций! Для здания с молниеотводами на крыше ситуация не многим лучше. Ну а об удельном сопротивлении свыше 1000 Ом м в РД 34.21.122-87 вообще не упоминается, хотя такие грунты в России не редкость.

Не знаю, что можно придумать для отдельно стоящих молниеотводов. Обычное же исполнение молниезащиты с молниеотводами или сеткой на крыше выручает предписание ПУЭ об объединении всех заземляющих устройств в единый технологический контур. Его сопротивление заземления наверняка окажется не выше 10 Ом. Для надежной работы молниеотводов такого безусловно достаточно. Иное дело защита от напряжений шага и прикосновения. Здесь ситуация представляется тяжелой даже при расположении объекта на участке с грунтом весьма высокой проводимости. Для демонстрации проблемы рассмотрим жилое здание типовых размеров 60х12 м, фундамент которого использован как заземляющее устройство (рис. 32). Опоры фундамента заглублены в грунт с удельным сопротивлением ρ = 150 Ом м на 5 м. Компьютерный расчет дает для такого фундамента сопротивление заземления RЗ = 1,9 Ом, что вполне удовлетворяет требованиям не только к сопротивлению заземления молниеотводов, но и к технологическому заземлению сети 380/220 В.

Рисунок 32

Картина распределения напряжений шага представлена на рис. 32 в отношении продольной и поперечной стен здания. Ближайшая к стенам здания точка определяет напряжение прикосновения. При токе молнии 100 кА (расчетный ток для III уровня молниезащиты по СО-153-34.21.122-2003) в разобранном примере оно близко к 25 кВ у поперечной стены здания и к 20 кВ у продольной. Обе цифры несопоставимо превышают значение 600 В, нормированное по соображениям электробезопасности. Значение 6 кВ, полученное для грозовых воздействий формальным пересчетом в этой статье, они также превосходят в 3 – 4 раза. Даже на расстоянии 10 м от стен напряжения шага все еще нельзя считать безопасными для человека и животных. К сожалению, тому находятся вполне убедительные и печальные подтверждения на практике.

В случае, когда ставится задача обеспечить действительно безопасное растекание тока молнии в местах скопления людей, проект заземляющего устройства должен разрабатываться специально. В этом отношении заслуживают внимания два различных по исполнению подхода. Первый из них сводится к нанесению на землю слоя влагостойкого диэлектрика, способного выдержать воздействующее напряжение шага и прикосновения. В РД 34.21.122-87 в качестве такового упоминается, например, асфальт. Второй путь связывается с поиском оптимальной конструкции заземлителя. В первую очередь речь может идти о глубинном заземлителе специальной конструкции. Стержневой электрод, предназначенный для этой цели, должен иметь изоляционное покрытие, способное выдержать практически полное напряжение на заземлителе. Изолированная часть стержня в растекании тока естественно не участвует. Она требуется для того, чтобы опустить голую часть металлического стержня на нужную глубину, начиная с которой ток будет попадать в землю. По сути изоляция определяет глубину, на которой размещен верхний активно работающий конец заземляющего электрода.

Рисунок 33

Конструкция оказывается достаточно эффективной. Расчетные данные на рис. 33 показывают, что, заглубив стержневой электрод на 10 м, можно снизить напряжения шага примерно в 25 раз. В итоге при удельном сопротивлении грунта 100 Ом*м максимальное напряжение шага не превысит 3 кВ даже при токе молнии 100 кА. Естественно, что использование глубинного заземлителя можно совместить с применением изоляционного покрытия на поверхности грунта в местах особо большого скопления людей.

Э. М. Базелян, д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

Читайте далее «Что нужно знать о нелинейных свойствах грунта».


Полезные материалы:
•Серия статей о молниезащите для новичков
•Серия вебинаров о заземлении и молниезащите с профессором Э.М. Базеляном
•Элементы внешней молниезащиты
•Консультации по выбору, проектированию и монтажу систем заземления и молниезащиты

zandz.com

Сопротивление заземления | для молниезащиты

Сопротивление заземления измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их полное поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом

Для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
(ПУЭ 1.7.103; для всех повторных заземлений)

для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
не более 2 или 4 Ом

для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

www.sk-skyline.ru

Заземление молниеотводов

Из цикла статей «Молниезащита нефтегазовых объектов».

2.1. Нормативные требования

Здесь снова приходится опустить Инструкцию СО-153-34.21.122-2003, не содержащую никаких конкретных требований к заземлению молниеотводов. В Инструкции РД 34.21.122-87 формально требования сформулированы, но они касаются не величины сопротивления заземления, а конструкции заземляющих устройств. Для отдельно стоящих молниеотводов речь идет о фундаментах опор молниеотводов или о специальном заземлителе, минимальные размеры которого показаны на рис. 7.

Минимальные размеры заземлителя из горизонтальной полосы и трех вертикальных стержневых электродов по РД 34.21.122-87

В нормативе нет никаких указаний об изменении размеров электродов в зависимости от удельного сопротивления грунта. Это значит, что по мнению составителей типовая конструкция признается пригодной для любых грунтов. Насколько при этом будет меняться ее сопротивление заземления Rgr, можно судить по расчетным данным рис. 8.

Расчетное значение сопротивления заземления типового заземлителя из Инструкции РД 34.21.122-87

Изменение значения Rgr в пределах почти 2-х порядков величины вряд ли можно расценивать как нормирование. Фактически никаких конкретных требований к величине сопротивления заземления норматив не содержит и этот вопрос безусловно заслуживает специального рассмотрения.

Стандарт ОАО «Транснефть» удивил таблицей нормированных значений сопротивления заземления молниеотводов (рис. 9), которую составители полностью скопировали из последнего издания ПУЭ, где она относится к заземлителям опор ВЛ 110 кВ и выше. Жесткие требования ПУЭ вполне понятны, поскольку сопротивление заземления опоры ВЛ в значительной мере определяет величину грозового перенапряжения на линейной изоляции. Мотивы переноса этих требований на заземления молниеотводов выяснить невозможно, тем более, что в высокоомных грунтах их вообще не удается реализовать при помощи сколько-нибудь разумных конструкций. Чтобы продемонстрировать это, на рис. 10 показаны результаты расчета заземлителя молниеотвода совершенно фантастического исполнения. Он представляет собой полностью металлическую конструкцию квадратного сечения, длина стороны которого указана на оси абсцисс. Рассчитаны два варианта – с глубиной заложения в грунт 3 и 10 м. Легко убедиться, что в грунте с удельным сопротивлением ρ = 5000 Ом м нормированное значение 30 Ом (RЗ/ρ = 0,006 м-1) потребует заполнить металлом окрестность фундамента молниеотвода более, чем 50х50 м. Не лучше ситуация и с протяженном заземлителем. В тех же условиях для обеспечения требуемого сопротивления заземления нужна горизонтальная шина длиной более 450 м.

Эквивалентное удельное
сопротивление грунта ρ, Ом*м

Наибольшее допустимое сопротивление
заземления опоры по ПУЭ, Ом

До 100

10

Более 100 до 500

15

Более 500 до 1000

20

Более 1000 до 5000

30

Более 500

6*10-3

К оценке возможностей выполнения требований стандарта ОАО «Транснефть» при помощи сосредоточенного заземляющего устройства

Требования стандарта ОАО «Газпром» предельно конкретны. Сопротивление заземления отдельно стоящего молниеотвода для I и II уровней защиты должно быть равно 10 Ом в грунтах с ρ ≤ 500 Ом м. В более высокоомных грунтах допускается использовать заземлители, сопротивление которых определяется как

формула 2

Отдавая себе отчет в сложности изготовления такого относительно низкого сопротивления заземления, стандарт рекомендует химическую обработку или частичную замену грунта. Заслуживает внимания оценка объема рекомендованных работ в конкретных условиях. Ее легко выполнить для простейшей ситуации, ориентируясь на полусферический заземляющий электрод, потенциал которого в двухслойном грунте (независимо от того, что было сделано – химия или механическая замена грунта) согласно рис. 11 равен

формула 3

К оценке сопротивления заземления в двухслойном грунте

Откуда точное значение сопротивления заземления определяется как

формула 4

В предельном случае, когда химическая обработка или замена грунта оказались столь эффективны, что его удельное сопротивление упали почти до нуля,

формула 5

Выражение позволяет оценить снизу радиус обработки r1. В рассматриваемом примере он оказывается равным приблизительно 40 м, что соответствует объему грунта около 134000 м3. Полученное значение заставляет очень серьезно задуматься о реальности намечаемой операции.

Сопротивление заземления двухлучевого горизонтального заземлителя в зависимости от толщины верхнего обработанного слоя грунтате

К похожему результату приводит оценка и для любой другой практически значимой конфигурации заземляющих электродов, например, для двухлучевого заземлителя из горизонтальных шин длиной по 20 м. Расчетная зависимость на рис. 12 позволяет оценить, как меняется сопротивление заземления такой конструкции при вариации толщины верхнего низкоомного слоя замененного грунта. Требуемое сопротивление заземления в 20 Ом получается здесь при толщине обработанного (или замененного) слоя в 2,5 м. Важно понять, на каком расстоянии от заземлителя можно прекратить обработку. Показателем является потенциал на поверхности земли U(r). Изменение удельного сопротивления перестанет влиять на результат там, где потенциал U(r) станет намного меньше потенциала заземляющего электрода UЗ = U(r0).

2.2. С какой целью заземляется молниеотвод

Прошу не считать банальным заголовок раздела. Молниеотводы заземляли всегда, с момента их изобретения, иначе как они могли бы отвести в землю ток молнии. Современные руководства говорят о том, что сопротивление заземления должны обеспечить безопасный отвод тока молнии. О какой опасности и безопасности речь? Здесь не удастся отговориться банальностями. Наверное, стоит еще раз вспомнить о воздушных линиях электропередачи. Там сопротивление заземления определяет резистивную составляющую грозовых перенапряжений которые действуют на гирлянду изоляторов.

Формула 6

Ничего подобного нет у молниеотводов. Их молниеприемник ”без проблем” принимает потенциал заземляющих электродов. Присутствие конечного сопротивления заземления никак не влияет и на способность молниеотвода притягивать к себе молнию. В лаборатории не раз пытались проследить за влиянием сопротивления заземления на этот процесс и каждый раз безрезультатно. Объяснение здесь достаточно простое и очевидное. Молния никогда не ударяет в молниеотвод. Ее встречает и притягивает к себе плазменный канал встречного разряда, который стартует от вершины молниеотвода в электрическом поле грозового облака и заряда уже формирующейся молнии. Этот канал (его называют встречным лидером) развивается при токе не более десятков ампер. Падение напряжения от такого слабого тока на сопротивлении заземления молниеотвода мало значимо по сравнению с потенциалом порядка 107 -108 В, который несет молния от грозового облака. Действительно, при сопротивлении заземления 10, 20, 100 или 200 Ом напряжение на заземлителе от тока ~ 10 А все равно не превысит даже 104 В – величину ничтожно малую по сравнению с тем, чем располагает молния.

Отдельно стоящий молниеотвод, как известно, используют с единственной целью – устранить распространение тока молнии по металлоконструкциям защищаемого объекта. Именно для этого выбираются вполне конкретные расстояния от молниеотвода до объекта по воздуху и по земле. Допустим, что они выбраны верно и действительно исключают искровые перекрытия. Тем не менее, ток в заземлитель объекта попадает и попадает достаточно весомой долей, особенно когда функцию его заземления исполняет достаточно большой по площади фундамент защищаемого сооружения. Расчетные данные на рис. 14 показывают эту долю в зависимости от расстояния между заземлителями. У молниеотвода он выполнен согласно предписанию Инструкции РД 34.21.122-87 в виде горизонтальной полосы длиной 10 м с 3-мя вертикальными стержнями по 3 м каждый; фундамент объекта имеет размеры 50х50 м и заглублен на 3 м. Компьютерные расчеты выполнены для однородного грунта и для случая, когда поверхностный слой основного грунта на глубину до 2,5 м заменен высоко проводящим с удельным сопротивлением, меньшим в 50 раз. Легко убедиться, что изоляционное расстояние в 5 м, предписанное по стандарту ОАО «Транснефть», мало препятствует проникновению тока молнии к объекту через грунта, особенно, если его верхний слой заменен или химически обработан. Даже при расстоянии в 15 м, нормированном стандартом ОАО «Газпром», ток в заземлителе объекта превышает 50%.

Доля тока молнии, проникшая в заземлитель объекта через проводящую связь с заземлителем молниеотвода в зависимости от расстояния между ними

Здесь нужно еще раз подчеркнуть, что любая обработка верхнего слоя грунта, снижающая сопротивление заземления, не только не уменьшает кондуктивную связь между молниеотводом и объектом, но заметно осиливает ее, повышая тем самым долю тока молнии, ответвившуюся в объект.

Самое время еще раз поставить вопрос о цели снижения сопротивления заземления. Остается два незатронутых аспекта проблемы – формирование искровых каналов и напряжение шага. Первый вопрос будет рассмотрен ниже в специальном разделе. Что же касается напряжения шага, то оно безусловно зависит от конструкции заземлителя молниеотвода и от его сопротивления заземления. Расчетные кривые на рис. 15 демонстрируют динамику снижения напряжения шага по мере удаления от типового заземлителя молниеотвода, предписанного Инструкцией РД 34.21.122-87 (см. пояснения к рис. 14).

2.3. Как проектировать

В разделе снова ставится задача об удовлетворении требований нормативных документов без неоправданных материальных затрат. Это тем более важно, что на качество внешней молниезащиты величина сопротивления заземления молниеотвода мало влияет. Во всяком случае, с ней не связаны непосредственно те опасные воздействия молнии, которые могут привести к катастрофической ситуации на резервуарном парке или каком-либо другом объекте переработки углеводородного топлива. Главное, очень хотелось бы избежать дорогостоящей химической обработки или замены больших объемов грунта и без них выполнить требования отраслевых нормативов по молниезащите.

Создавать заземлитель для каждого молниеотвода в отдельности целесообразно только в грунтах с низким удельным сопротивлением, где даже типовая конструкция из РД 34.21.122-87 оказывается вполне дееспособной. Например, при рекомендованной там длине горизонтальной шины в 12 м и 3-х вертикальных стержнях по 5 м сопротивление заземления в грунте удельным сопротивлением ρ равно

формула 6_

Это значит, что при ρ ≤ 300 Ом м расчетное значение не превысит 20 Ом. При более высоком удельном сопротивлении грунта неплохой результат обеспечивают 4 взаимно перпендикулярных луча. При длине по 20 м каждый сопротивление заземления оказывается равным

формула 7

а установка 5-метровых вертикальных стержней на концах каждого из лучей снижает эту величину до

Формула 8

Проблема становится серьезной, когда удельное сопротивление грунта заметно превышает 1000 Ом*м. Здесь привлекает внимание организация единого контура заземления для всех отдельно стоящих молниеотводов. Стоит еще раз обратиться к рис. 4, где демонстрируется защита резервуарного парка 3-мя тросами длиной по 100 м, при расстоянии между параллельными тросами 50 м. Объединение их опор горизонтальными шинами образует контур заземления с двумя ячейками 100х50 м. Его сопротивление заземления при укладке шин на глубину 0,7 м обеспечивает

Формула 9

что позволяет решить проблему в грунте удельным сопротивлением до 3000 Ом*м, даже руководствуясь предписанием стандарта ОАО «Газпром». Уместно отметить, что дополнительное устройство локального заземлителя у каждого из молниеотводов почти не влияет на сопротивление заземления образованного контура в целом. Так, использование в качестве локального заземлителя каждого молниеотвода стойки его фундамента с металлической арматурой длиной 5 м и эквивалентным радиусом 0,2 м (Rgr ≈ 0.1ρ [Ом]) в системе из 6 стоек снизило суммарное сопротивление контура заземления всего на 6%. Причина столь слабого влияния заключена в эффективной экранировке стержней протяженными горизонтальными шинами. Удлиняя горизонтальные шины, связывающие опоры молниеотводов, можно добиться сопротивления заземления порядка 20 Ом и в грунте с удельным сопротивлением 5000 Ом.

Читатель вправе прервать описание столь радужных перспектив, напомнив, что длинная шина медленно вступает в процесс растекания импульсного тока из-за своей индуктивности. Возразить против этого нечего. Но по крайней мере два обстоятельства все-таки действуют в пользу предложенного решения. Во-первых, ни один из упоминавшихся нормативов не требует каких-либо конкретных значений импульсного сопротивления заземления, а во вторых, в высокоомных грунтах скорость проникновения импульсного тока в заземляющую шину достаточно высока и потому текущее значение сопротивления заземления Rgr(t) = Ugr(t)/iM(t) быстро принимает установившееся значение, контролируемое нормативными требованиями. Как пример на рис. 16 показана расчетная динамика изменения сопротивления заземления шины длиной 200 м между опорами молниеотводов. Принято, что удельное сопротивление грунта равно 5000 Ом*м, а его относительная диэлектрическая проницаемость равна 5 (учет этого параметра важен, когда емкостная утечка в грунт сопоставима с кондуктивной).

Э. М. Базелян, д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

Читайте далее «3. Скользящие искровые каналы вдоль поверхности грунта».


Полезные материалы:

zandz.com

Сопротивление заземления у молниезащиты – как измерить

Заземлять молниеотвод необходимо не только для отведения разряда атмосферного электричества в землю, но и для обеспечения безопасного процесса растекания электрического заряда по грунту. Заземление выполняется и с целью защитить людей от поражения током при возможном повреждении изоляции, и с целью предотвратить искровой пробой по воздуху на металлические элементы и конструкции объекта (что возможно при очень высоком напряжении). Сопротивление заземления молниеотвода регламентируется для снижения высоких напряжений, возникающих при растекании в грунте электрического заряда, который несет удар молнии.

Нормы сопротивления заземления для молниезащиты

Сопротивление заземления у молниезащиты не имеет строгих параметров, в нормативных документах, регламентирующих устройство защитных систем зданий, предельно допустимые значения этого показателя не определены, указывается только тип конструкции заземлителя в зависимости от вида объекта и категории молниезащиты.

Рекомендуемая величина сопротивления заземления системы молниезащиты для отдельно стоящих молниеотводов составляет не более 10 Ом в случае, если рядом с такой конструкцией в период грозы могут находиться люди, и не более 40 Ом в случае, если пребывание людей рядом с молниеотводами во время грозы невозможно и они удалены от жилых строений не менее, чем на 10 м. Отдельно регламентируется данный параметр для опор воздушных линий электропередач, он должен составлять не более 10-30 Ом в зависимости от показателей удельного сопротивления грунта под опорой.

Как измерить сопротивление заземления?

Измерение сопротивления заземления проводится для постоянного тока и переменного тока промышленных частот с помощью специальных приборов, действующих по принципу амперметров-вольтметров. Отдельно оцениваются геометрические параметры заземлителей и удельное сопротивление почвы. Неоднородность грунта является причиной того, что на разной его глубине значения данного показателя заметно отличаются. Поэтому его измерение обязательно проводится для корректного монтажа заземляющих устройств.

Проводить измерительные и расчетные работы должны специалисты, которые обладают достаточным объемом знаний и опытом в подобном вопросе. Они выполнят наиболее точные замеры и на их основе создадут проект наиболее безопасной и эффективной защитной системы. Именно так работают специалисты компании «Алеф-ЭМ», одного из лидеров на отечественном рынке грозозащитных систем. Высокое качество, большой опыт работы и применение на практике всех появляющихся технологических инноваций, использование наиболее современного оборудования и материалов, а также доступные цены – вот основные плюсы сотрудничества с «Алеф-ЭМ».

groze.net

Сопротивление заземления

Сопротивление заземления (сопротивление растеканиЮ электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в нее через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице «Заземление газового котла / газопровода».


  • для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более 10 Ом (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице «Молниезащита и заземление».


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину 0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

zandz.com

0 comments on “Сопротивление заземлителя молниезащиты – Сопротивление заземления молниезщиты — нормативы, периодичность замеров

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *