Сток исток: Понятие сопротивления сток-исток MOSFET транзистора в открытом состоянии

Что такое полевой транзистор и как его проверить

Добрый день, друзья!

Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.

Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?

Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.

Почему транзистор – полевой?

Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

Где используются полевые транзисторы?

Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!

И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.

Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.

ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.

Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.

Как работает полевой транзистор?

ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).  

Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.

Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).

«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.

Если напряжение не приложено («давления в системе нет»), тока в канале не будет.

Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.

Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.

В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.

Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.

Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.

Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.

Теперь переходим к практике и поговорим о том,

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем.

Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.


Полевой транзистор МОП (MOSFET) | Принцип работы и параметры

Что такое полевой транзистор MOS, MOSFET, МОП транзистор?

Как часто вы слышали название полевой транзистор МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Это все слова синонимы и относятся к одному и тому же радиоэлементу: полевому МОП-транзистору.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе М

еталл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор. Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором.

Откуда пошло название “МОП”

Если “разрезать” МОП-транзистор, то можно увидеть вот такую картину.

С точки зрения еды на вашем столе, МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий слой колбасы, слой металла – тонкая пластинку сыра. В результате у нас получается вот такой бутерброд.

А как  будет строение транзистора сверху-вниз? Сыр – металлическая пластинка, колбаса – диэлектрик, хлеб – полупроводник. Следовательно, получаем

Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором. А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места).

Далее по тексту МОП-транзистор условимся называть просто полевой транзистор. Так будет проще.

Строение полевого транзистора

Давайте еще раз рассмотрим структуру полевого транзистора.

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому, их концентрация намного больше, чем электронов. Но электроны также есть и в P-полупроводнике. Как вы помните, электроны в P-полупроводнике – это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. От подложки выходит вывод с таким же названием: подложка.

[quads id=1]

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод. Называется этот вывод Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Мы видим, что полевой транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор и Подложка), а реальный транзистор имеет только 3 вывода.

В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

Поэтому, следует соблюдать цоколевку при подключении МОП-транзистора в схему.

Виды полевых транзисторов

В семействе МОП полевых транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом

Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.

В современном мире полевой транзистор со встроенным каналом используется все реже и реже, поэтому, в наших статьям мы их не будем рассматривать. Будем изучать только N и P – канальные полевые транзисторы с индуцированным каналом.

Принцип работы полевого транзистора

Принцип работы почти такой же, как и в полевом транзисторе с управляющим PN-переходом (JFET-транзисторе). Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движение электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения PN-переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-Исток

П-Подложка

С-Сток

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакого движения электрического тока пока что не намечается.

Индуцирование канала в МОП-транзисторе

Если подать некоторое напряжение на Затвор, то в Подложке начнутся волшебные превращения. В ней будет индуцироваться канал. Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через магнитное или электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить, и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле.

Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов, так как в данный момент подложка P-типа. А раз и на Затворе положительный потенциал, а дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  – притягиваются.

Картина будет выглядеть следующим образом.

Дырки обращаются в бегство подальше от Затвора, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому, электронам ничего другого не остается, как просто создать “вавилонское столпотворение” около слоя диэлектрика, что мы и видим на рисунке ниже.

Но смотрите, что произошло !? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А такой транзистор уже будет называться N-канальным МОП-транзистором. Вы наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно, этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.

Значит, если сейчас подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину.

Как вы видите, цепь стает замкнутой, и в цепи может спокойно течь электрический ток.

Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал, следовательно, тем меньше сопротивление канала!  А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор! Подавая бОльшее напряжение на Затвор с помощью источника питания Bat2, мы увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе. Ну гениальнее некуда!

Работа P-канального полевого транзистора


Выше мы разобрали N-канальный транзистор с индуцированным каналом. Также есть еще и P-канальный транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора. Честно говоря, P-канальные полевые транзисторы используются реже, чем N-канальные.

Принцип работы показан на рисунке ниже.

Режимы работы полевого транзистора

Работа полевого транзистора в режиме отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный полевой транзистор с индуцированным каналом. Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Как мы уже с вами разобрали, Затвор служит для управлением ширины канала между Стоком и Истоком. Для того, чтобы показать принцип работы, мы с вами соберем простейшую схему, которая будет управлять интенсивностью свечения лампы накаливания. Так как в данный момент нет никакого напряжения на Затворе полевого транзистора, следовательно, он будет находится в закрытом состоянии. То есть электрический ток через лампу накаливания течь не будет.

По идее, для того, чтобы управлять свечением лампы, нам достаточно менять напряжение на Затворе относительно Истока. Так как наш полевой транзистор является N-канальным, следовательно, на Затвор мы будем подавать положительное напряжение. Окончательная схема примет вот такой вид.

Вопрос в другом. Какое напряжение надо подать на Затвор, чтобы в цепи Сток-Исток побежал минимальный электрический ток?

Мой блок питания Bat2 выглядит следующим образом.

С помощью этого блока питания мы будем регулировать напряжение. Так как он стрелочный, более правильным будет измерение напряжения с помощью мультиметра.

Собираем все как по схеме и подаем на Затвор напряжение номиналом в 1 Вольт.

Лампочка не горит. На другом блоке питания (Bat1) есть встроенный амперметр, который показывает, что в цепи лампы накаливания электрический ток не течет, следовательно, транзистор не открылся. Ну ладно, будем добавлять напряжение.

 

И только уже при 3,5 Вольт амперметр на Bat1 показал, что в цепи лампы накаливания появился ток, хотя сама лампа при этом не горела.

Такого слабого тока ей просто недостаточно, чтобы накалить вольфрамовую нить. Режим, при котором в цепи Сток-Исток не протекает электрический ток, называется режимом отсечки.

Активный режим работы полевого транзистора

В нашем случае при напряжении около 3,5 Вольт наш транзистор начинает немного приоткрываться. Это значение у различных видов полевых транзисторов разное и колеблется в диапазоне от 0,5 и до 5 Вольт. В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.  –  пороговое напряжение Затвора. Указывается как VGS(th), а в некоторых даташитах как VGS(to) .

Как вы видите в таблице, на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions). В условиях прописано, что открытие транзистора считается при токе в 250 мкА и при условии, что напряжение на Стоке-Истоке будет такое же как и напряжение на Затворе-Стоке.

С этого момента мы можем плавно регулировать ширину канала нашего полевого транзистора, увеличивая напряжение на Затворе. Если чуть-чуть добавить напряжение, то мы можем увидеть, что нить лампы накаливания начинает накаляться. Меняя напряжение туда-сюда, мы можем добиваться нужного нам свечения лампочки накаливания. Такой режим работы полевого транзистора называется активным режимом.

В этом режиме полевой транзистор может менять сопротивление индуцируемого канала в зависимости от напряжения на Затворе. Для того, чтобы понять, как усиливает полевой транзистор, вам надо прочитать статью про принцип работы биполярного транзистора, где все это описано, иначе ничего не поймете. Читать по этой ссылке.

Активный режим работы транзистора чреват тем, что в этом режиме транзистор может очень сильно греться. Поэтому, всегда следует позаботиться об охлаждающем радиаторе, который бы рассеивал тепло от транзистора в окружающее пространство. Почему же греется транзистор? В чем дело? Да все оказывается до боли просто. Сопротивление Сток-Исток зависит от того, какое напряжение будет на Затворе. То есть схематически это можно показать вот так.

Если напряжения на Затворе нет или оно меньше, чем напряжение открытия транзистора, то сопротивление в этом случае будет бесконечно большое. Лампочка – это нагрузка, которая обладает каким-либо сопротивлением. Не спорю, что сопротивление нити горящей лампочки будет совсем другое, чем холодной, но пока пусть будет так, что лампочка – это какое-то постоянное сопротивление. Перерисуем нашу схему вот так.

Получился типичный делитель напряжения. Как я уже говорил, если нет напряжения на Затворе, то сопротивление Сток-Истока будет бесконечно большим.  Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке помноженной на силу тока через Сток-Истока: P=Ic Uси . Если выразить эту формулу через сопротивление, то получаем

P= I2R 

где R – это сопротивление канала Сток-Исток, Ом

I– сила тока, проходящая через канал (ток Стока) , А

А что такое мощность, рассеиваемая на каком-либо радиоэлементе? Это и есть тепло.

Теперь представьте, что мы приоткрыли транзистор наполовину. Пусть в нашей цепи ток через лампу будет 1 Ампер, а сопротивление перехода Сток-Исток будет равно 10 Ом. Согласно формуле P= I2R  получим, что рассеиваемая мощность на транзисторе в этот момент будет 10 Ватт! Да это маленький, черт его возьми, нагреватель!

Режим насыщения полевого транзистора

Для того, чтобы полностью открыть полевой транзистор, нам достаточно подавать напряжение до тех пор, пока лампа не будет гореть во весь накал. В моем случае это напряжение более чем 4,2 Вольта.

 

В режиме насыщение сопротивление канала Сток-Исток минимально и почти не оказывает сопротивление электрическому току. Лампа ест свои честные 20,4 Ватта (12х1,7=20,4).

 

На самой лампе мы видим ее мощность 21 Ватт. Спишем небольшую погрешность на наши приборы.

Самое интересное то, что транзистор в этом случае остается холодным и ни капли не греется, хотя через него проходит 1,7 Ампер! Для того, чтобы понять этот феномен, нам опять надо рассмотреть формулу P= I2R . Если сопротивление Стока-Истока составляет какие-то сотые доли Ома в режиме насыщения, то с чего будет греться транзистор?

Поэтому, самые щадящие режимы для полевого МОП-транзистора – это когда канал полностью открыт или когда канал полностью закрыт. При закрытом транзисторе сопротивление канала будет бесконечно большое, а ток через это сопротивление будет бесконечно мал, так как в этой цепи будет работать закон Ома. Подставляя эти значение в формулу P= I2R, мы увидим, что мощность рассеивания на таком транзисторе будет равна практически нулю. В режиме насыщения у нас сопротивление будет достигать сотые доли Ома, а сила тока будет зависеть от нагрузку в цепи. Следовательно, в этом режиме транзистор также будет рассеивать какие-то сотые доли Ватта.

Ключевой режим работы полевого транзистора

В этом режиме полевой транзистор работает только в режиме отсечки и насыщения.

Давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1.

Для наглядности вместо переключателя я использовал проводок от макетной платы. В данном случае лампочка не горит. А с чего ей гореть-то? На Затворе то у нас полный ноль, поэтому, канал закрыт.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь.

Даже не надо ни о чем заморачиваться! Просто подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Для нашего транзистора это +-20 Вольт. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет ну очень маленькая (микроамперы).

Как вы видите, лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал такой же, как и на Истоке, то есть ноль, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой  рабочий стол.

Но наблюдается также и интересный феномен, в отличие от ключа на биполярном транзисторе. Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!

Почему так происходит? Здесь надо вспомнить внутреннее строение самого полевого транзистора. Вот эта часть вам ничего не напоминает?

Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться-то ему некуда, поэтому он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал с Затвора и “заткнуть” канал, нам опять же надо уравнять его с нулем. Сделать это достаточно просто, замкнув Затвор на Исток. Лампочка сразу же потухнет.

Как вы видели в опыте выше, если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал так и останется открытым. Поэтому обязательное условие в схемах – Затвор должен всегда чем-то управляться и с чем-то соединяться. Ему нельзя висеть в воздухе.

А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:

При включении выключателя S цепь стает замкнутой и лампочка загорается

Как только я убираю красный проводок от Затвора (разомкну выключатель),  лампочка сразу тухнет:

Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если я снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило делителя напряжения. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше). Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные транзисторные ключи, в отличие от ключа на биполярном транзисторе.

Характеристики полевого МОП транзистора

Для того, чтобы узнать характеристики транзистора, нам надо открыть на него даташит и рассмотреть небольшую табличку на первой странице даташита. Будем рассматривать транзистор, который мы использовали в своих опытах: IRFZ44N.

Напряжение VGS   – это напряжение между Затвором и Истоком. Смотрим на даташит и видим, что максимальное напряжение, которое можно подать на Затвор это +-20 Вольт. Более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, и транзистор придет в негодное состояние.

Максимальная сила тока ID , которая может течь через канал Сток-Исток.

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуре кристалла 100 градусов, что чаще всего и происходит на практике.

 

RDS(on) – сопротивление полностью открытого канала Стока-Истока. В режиме насыщения, сопротивление канала транзистора достигает ну очень малого значения. Как вы видите, у нашего подопечного сопротивление канала достигает 17,5 мОм (при условии, что напряжение на Затворе = 10 Вольт, а ток Стока  = 25 Ампер).

 

Максимальная рассеиваемая мощность PD  – это мощность, которую транзистор может рассеять на себе, превращая эту мощность в тепло. В нашем случае это 94 Ватта. Но здесь также должны быть соблюдены различные условия – это температура окружающей среды, а также есть ли у транзистора радиатор.

 

Также различные зависимости одних параметров от других можно увидеть в даташите на последних страницах.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Также есть интересная зависимость сопротивления канала  полностью открытого транзистора от температуры кристалла:

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Как проверить полевой транзистор

Для того, чтобы проверить полевой транзистор, мы должны определить, где какие у него выводы. У нас подопытным кроликом будет тот же самый транзистор: IRFZ44N.

Для этого вбиваем в любой поисковик название нашего транзистора и рядом прописываем слово “даташит”. Чаще всего на первой странице даташита мы можем увидеть цоколевку транзистора.

Хотя, интернет переполнен уже готовыми распиновками и иногда все-таки бывает проще набрать”распиновка (цоколевка) *название транзистора* “. Итак, я вбил ” IRFZ44N цоколевка”  в Яндекс и нажал на вкладку “картинки”.  Яндекс мне выдал  уйму картинок с распиновкой этого транзистора:

Ну а дальше дело за малым.
Устройство и принцип работы в видео:

Проверка полевого транзистора с помощью мультиметра

Теперь, зная цоколевку и принцип работы транзистора, мы можем проверить его на работоспособность. Первым делом мы без проблем можем проверить эквивалентный диод VD2 между Стоком и Истоком. В схемотехническом обозначении его тоже часто указывают.

Как проверить диод мультиметром, я писал еще в этой статье.

Но не спешите брать мультиметр в руки и прозванивать диод! Ведь первым делом надо снять с себя статическое напряжение. Это можно сделать, если задеть метализированный слой водонагревательных труб, либо коснуться заземляющего провода. При работе с радиоэлементами, чувствительными к статическому напряжению, желательно использовать антистатический браслет, один конец которого закрепляется к заземляющему проводнику, например, к батарее отопления, а другой конец в виде ремешка надевается на запястье.

Далее замыкаем все выводы транзистора  каким-нибудь металлическим предметом. В моем случае это металлический пинцет. Для чего мы это делаем? А вдруг кто-то зарядил Затвор до нас или он уже где-то успел “хапнуть” потенциал на Затворе? Поэтому, чтобы все было честно, мы уравняем потенциал на Затворе до нуля с помощью этой нехитрой манипуляции.

Ну а теперь со спокойной совестью можно проверить диод, который образуется в полевом транзисторе между Стоком и Истоком. Так как у нас транзистор N-канальный, следовательно, его схемотехническое обозначение будет выглядеть вот так:

Беремся положительным (красным) щупом мультиметра за Исток, так-как там находится анод диода, а отрицательным (черным)  – за Сток
(там у нас катод диода). На мультиметре должно высветиться падение напряжения на диоде 0,5-0,7 Вольт. В моем случае, как видите, 0,56 Вольт.

 

 

Далее меняем щупы местами. Мультиметр покажет единичку, что нам говорит о том, что диод в полевом транзисторе жив и здоров.

Проверяем сопротивление канала. Мы с вами уже знаем, что в N-канальном транзисторе ток у нас будет бежать от Стока к Истоку, следовательно, встаем красным положительным щупом на Сток, а отрицательным –  на Исток, и меряем сопротивление. Оно должно быть ну о-о-о-очень большое. В моем случае даже на Мегаомах показывает единичку, что говорит о том, что сопротивление даже больше, чем 200 Мегаом. Это очень хорошо.

 

Так как у нас транзистор N-канальный, следовательно, чтобы его приоткрыть, нам достаточно будет подать напряжение на Затвор, относительно Истока. Чаще всего в режиме прозвонки диодов на щупах мультиметра бывает напряжение в 3-4 Вольта. Все зависит от марки мультиметра. Этого напряжения будет вполне достаточно, чтобы подать его на Затвор и приоткрыть транзистор.

Так и сделаем. Ставим черный щуп на Исток, а красный на Затвор на доли секунды. На показания мультиметра не обращаем внимания, так как мы сейчас используем его в качестве источника питания, чтобы подать потенциал на Затвор. Этим простым действием мы приоткрыли наш транзистор.

Раз мы приоткрыли транзистор, значит, сопротивление Сток-Исток должно уменьшится. Проверяем, так ли это? Ставим мультиметр в режим измерения сопротивления и смотрим, уменьшилось ли сопротивление между Стоком-Истоком? Как видите, мультиметр показал значение в 2,45 КОм.

Это говорит о том, что наш полевой транзистор полностью работоспособен.

Конечно, бывает и такое, что малого напряжения на мультиметре не хватает, чтобы приоткрыть транзистор. Здесь можно прибегнуть к источникам питания, которые выдают более-менее нормальное напряжение, например, блок питания или батарейка Крона в 9 Вольт. Так как рядом не оказалось Кроны, то мы просто выставим напряжение в 10 Вольт. Напряжение на Затвор именно этого транзистора не должно превышать 20 Вольт, иначе произойдет пробой диэлектрика, и транзистор выйдет из строя.

Итак, выставляем 10 Вольт.

 

Подаем это напряжение на Затвор транзистора на доли секунды.

 

Теперь по идее сопротивление между Стоком и Истоком должно равняться нулю. Для чистоты эксперимента замеряем сопротивление щупов самого мультиметра. Эх, дешевые китайские щупы. 2,1 Ом).

 

А теперь и замеряем сопротивление самого перехода. Практически 0 Ом!

Хотя, если верить даташиту, должно быть 17,5 миллиОм. Теперь можно утверждать со 146% вероятностью, что наш транзистор полностью жив и здоров.

Как проверить полевой транзистор с помощью транзисторметра

На рабочем столе каждого электронщика должен быть этот замечательный китайский прибор, благо он стоит недорого. Про него я писал обзор здесь.

 

Здесь все просто, как дважды два. Вставляем транзистор в кроватку и нажимаем большую зеленую кнопку. В результате прибор сразу же определил, что это полевой МОП транзистор с каналом N-типа, определил расположение выводов транзистора, а также емкость затвора и пороговое напряжение открытия, о котором мы говорили выше в статье. Ну не прибор, а чудо!

Меры безопасности при работе с полевыми транзисторами

Все полевые транзисторы, будь это полевой транзистор с управляющим PN-переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим PN переходом – 250 Вольт. Поэтому, самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.

Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде бы спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.

Похожие статьи по теме “полевой транзистор”

Транзистор биполярный

Полевой транзистор с управляющим PN-переходом (JFET-транзистор)

Транзисторметр Mega328

Читаем электрические схемы с транзистором

Мультивибратор на транзисторах

Сторожевое устройство на одном транзисторе

Полевые транзисторы | Электротехника

Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей.

Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).

Транзистор с управляющим p—n-переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, а, б (p— и n-типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм.

Рис. 1.22 Устройство транзистора

Рис. 1.23 Графическое изображение: а – канал р-типа; б – канал n-типа

Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р (канала), поэтому область р-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.

Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим
р-n-переходом и каналом n-типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: изи > 0, то оно сместит pn-переход в обратном направлении.

При увеличении обратного напряжения на переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение изи достаточно велико, то канал полностью перекрывается областью pn-перехода (напряжение отсечки).

В рабочем режиме рn-переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (iз ? 0), а ток стока практически равен току истока.

На ширину рn-перехода и толщину канала прямое влияние также оказывает напряжение между истоком и стоком. Пусть uзи = 0 и подано положительное напряжение uис(рис. 1.24). Это напряжение окажется поданным и на промежуток затвор – сток, т.е. окажется, что uзс = uис и рn-переход находится под обратным напряжением.

Обратное напряжение в различных областях рn-перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение примерно равно величине uис. Поэтому pn-переход будет шире в тех областях, которые ближе к стоку. Можно считать, что напряжение в канале от истока к стоку увеличивается линейно.

При uис = Uзиотс канал полностью перекроется вблизи стока (рис. 1.25). При дальнейшем увеличении напряжения uис эта область канала, в которой он перекрыт, будет расширяться.

Рис. 1.24 Принцип действия транзистора

Рис. 1.25 Режим отсечки

Схемы включения транзистора. Для полевого транзистора, как и для биполярного, существуют три схемы включения: схемы с общим затвором (03), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком (рис. 1.26).

Так как в рабочем режиме ic ? 0, то входные характеристики обычно не рассматриваются.

Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида

где f – некоторая функция.

Выходные характеристики для транзистора с рn-переходом и каналом n-типа приведены на рис. 1.27.

Обратимся к характеристике, соответствующей условию uзи = 0. В линейной области (uис < 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.

При uис > 4 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока, так как с увеличением напряжения область, в которой канал перекрыт, расширяется. При этом сопротивление промежутка исток-сток увеличивается, а ток ic практически не изменяется. Это область насыщения. Ток стока в области насыщения uзи = 0 и при заданном напряжении исиназывают начальным током стока и обозначают через ic нач. Для рассматриваемых характеристик ic нач = 5 мА при иси = 10 В.

Рис. 1.26 Схема с общей базой

Рис. 1.27 Выходные характеристики

Параметрами, характеризующими свойства транзистора усиливать напряжение, являются:

1) Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):

2) Внутреннее дифференциальное сопротивление Rис диф

3) Коэффициент усиления

Можно заметить, что

Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.

Рис. 1.28 Устройство МДП-транзистора со встроенным каналом n-типа

На рис. 1.28 показан принцип устройства транзистора со встроенным каналом.

Основанием (подложкой) служит кремниевая пластинка с электропроводностью p-типа. В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностый канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод.

Если к затвору приложено нулевое напряжение, то при подаче между стоком и истоком напряжения через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из pn-переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения. Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения. Если кристалл n-типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную.

Другим типом является транзистор с индуцированным (инверсным) каналом (рис. 1.29). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности.

При отсутствии напряжения на затворе канала нет, между истоком и стоком
n+-типа расположен только кристалл p-типа и на одном из p-n+-переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p-области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (еденицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т.е. образуется тонкий канал n-типа, и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n-типа, то получится индуцированный канал p-типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения. Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные.

По электропроводности канала различают p-канальные и n-канальные МДП-транзисторы. Условное обозначение этих приборов на электрических схемах показано на рис. 1.30. Существует классификация МДП-транзисторов по конструктивно-технологическим признакам (чаще по виду материала затвора).

Рис. 1.30 Условные графические обозначения полевых транзисторов
с изолированным затвором: а – со встроенным р-каналом; б – со встроенным
n-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом

Интегральные микросхемы, содержащие одновременно pканальные и n-канальные МДП-транзисторы, называют комплементарными (сокращенно КМДП-ИМС). КМДП-ИМС отличаются высокой помехоустойчивостью, малой потребляемой мощностью, высоким быстродействием.

Частотные свойства полевых транзисторов определяются постоянной времени RC-цепи затвора. Поскольку входная емкость Сзи у транзисторов с рn-переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, не превышающих сотен килогерц – единиц мегагерц.

При работе в переключающих схемах скорость переключения полностью определяется постоянной времени RC-цепи затвора. У полевых транзисторов с изолированным затвором входная емкость значительно меньше, поэтому их частотные свойства намного лучше, чем у полевых транзисторов с р-n-переходом.

Полевой транзистор, как его проверить

Полевой (униполярный) транзистор — полупроводниковый прибор, принцип действия которого основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.

Для проверки исправности полевого транзистора можно воспользоваться любым цифровым мультиметром с функцией «прозвонки» диодов. Данная функция работает таким образом, что позволяет измерить прямое падение напряжения на p-n-переходе, которое и будет отображено на дисплее мультиметра в ходе тестирования.

В процессе данной проверки мультиметр способен пропустить через проверяемую цепь ток в пределах нескольких миллиампер, и если падение напряжения окажется при этом слишком малым, то в случае наличия у прибора функции звукового оповещения, он запищит. А поскольку в любом полевом транзисторе присутствуют p-n-переходы, то можно рассчитывать на вполне адекватный результат.

Прежде чем проверять полевой транзистор на исправность, замкните на секунду фольгой все его выводы чтобы снять статический заряд, чтобы разрядить все его переходные емкости, включая емкость затвор-исток.

Проверка встроенного обратного диода

Практически в любом современном полевом транзисторе, за исключением специальных их типов, параллельно цепи сток-исток включен внутренний «защитный» диод.

Наличие этого диода внутри полевика обусловлено особенностями технологии производства мощных транзисторов. Иногда он мешает, считается паразитным, однако в большинстве полевых транзисторов без него, как части цельной структуры электронного компонента, не обойтись. Следовательно, в исправном полевом транзисторе данный диод тоже должен быть исправным. В n-канальном полевом транзисторе данный диод включен катодом к стоку, анодом — к истоку, а в p-канальном — анодом к стоку, катодом — к истоку.

Включите мультиметр в режим «прозвонки» диодов. Если полевой транзистор является n-канальным, то красный щуп мультиметра приложите к его истоку (source), а черный — к стоку (drain).

Обычно сток находится посередине и соединен с проводящей подложкой транзистора, а истоком является правый вывод (уточните это в datasheet). В случае если внутренний диод исправен, на дисплее мультиметра отобразится прямое падение напряжения на нем — в районе 0,4-0,7 вольт. Если теперь положение щупов изменить на противоположное, то прибор покажет бесконечность. Если все так, значит внутренний диод исправен.

Проверка цепи сток-исток

Полевой транзистор управляется электрическим полем затвора. И если емкость затвор-исток зарядить, то проводимость в направлении сток-исток увеличится.

Итак, если транзистор является n-канальным, приложите черный щуп к затвору (gate), а красный — к истоку, и через секунду измените расположение щупов на противоположное — красный к затвору, а черный — к истоку. Так мы сначала наверняка разрядили затвор, а после — зарядили его. Затвор обычно слева, а исток — справа (см. datasheet).

Теперь красный щуп переместите с затвора — на сток, а черный пусть останется на истоке. Если транзистор исправен, то как только вы переместите красный щуп с затвора на сток, мультиметр покажет что на стоке есть падение напряжения (не бесконечное, но может увеличиваться) — это значит, что транзистор перешел в проводящее состояние.

Теперь красный щуп на исток, а черный — на затвор (разряжаем затвор противоположной полярностью), после чего снова красный щуп на сток, а черный — на исток. Прибор должен показать бесконечность — транзистор закрылся. Для p-канального полевого транзистора щупы просто меняются местами.

Если прибор запищит

Если на этапе проверки сток-исток прибор запищит, это может быть вполне нормальным, ведь у современных полевых транзисторов сопротивление сток-исток в открытом состоянии бывает очень маленьким. Главное — чтобы не было звона затвор-исток и сток-исток, особенно в тот момент когда затвор заряжен противоположной полярностью. Как вариант, можно соединить затвор с истоком и в таком положении прозвонить сток-исток (для n-канального красный на сток, черный — на исток), прибор должен показать бесконечность.

Ранее ЭлектроВести писали, что транзисторы уменьшаются последние 50 лет согласно эмпирическому закону Мура. Но именно сейчас традиционное производство достигло предела. В Американском институте физики уверены: производительность микросхем по-прежнему можно повышать, но другим способом.

По материалам: electrik. info.

Как работают транзисторы MOSFET | hardware

Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к «идеальному переключателю». Основные недостатки, которые не дают MOSFET стать «идеальным», это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).

Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.

База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.

Давайте рассмотрим простейшую схему включения транзистора NPN:

Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора — маленькая мощность на входе позволяет управлять большой мощностью на выходе.

А так будет в этой схеме работать транзистор MOSFET:

На первый взгляд все то же самое — когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:

• Биполярный транзистор управляется током, а полевой транзистор напряжением.

Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.

Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора — 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 — 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.

У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор — исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.

По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.

• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.

Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.

В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.

[Структура мощного транзистора MOSFET]

На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.

Рис. 1. Срез рабочей структуры транзистора MOSFET.

RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.

Рис. 2. Зависимость RDS(on) от тока через канал.

Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.

Рис. 3. Зависимость RDS(on) от температуры.

Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения — это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.

Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.

Рис. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.

Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].

[Внутренние и паразитные элементы]

JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.

Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через  body diode.

Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.

Побочный эффект от обработки FREDFET — повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.

Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:

1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.

2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.

Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2.5 mV/°C.

Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.

База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.

Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.

[На что влияет температура]

Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.

Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор «мертвого времени» в мостовых схемах.

Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.

Рис. 5. Пример переходной характеристики MOSFET.

Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].

Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.

Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна — MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.

[Обзор параметров даташита. Максимальные предельные значения]

Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.

VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе «Статические электрические характеристики».

VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра — предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.

ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:

Это выражение просто говорит о том, какая максимальная мощность может рассеиваться

при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:

Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.

Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.

Рис. 6. Максимальный ток стока в зависимости от температуры.

IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:

Рис. 7. Выходная характеристика MOSFET.

На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона «колена» рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже «колена» для типичных применений транзистора в ключевом режиме.

Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.

Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители. В случае перегрузки по току выгорят именно они вместо транзистора.

Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе «Температурные и механические характеристики», чтобы узнать способ оценки температуры перехода во время импульса тока.

PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.

Линейный коэффициент снижения мощности это просто инверсия RӨJC.

TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.

EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.

Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS). EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:

Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.

Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.

EAR, повторная лавинная энергия. Этот параметр стал «промышленным стандартом», но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы — чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.

IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы «точный отпечаток» спецификаций лавинной энергии, показывающий реальные возможности устройства.

[Статические электрические характеристики]

V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора. 

Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C. 

Рис. 8. Нормализованная зависимость напряжения пробоя от температуры. 

VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе «На что влияет температура», VGS(th) имеет отрицательный температурный коэффициент. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток. 

RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое. 

IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны. 

IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток.  

[Динамические характеристики

Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры). 

Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла. 

Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше.  

На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах. 

Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме. 

Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю. 

Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток): 

Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения. 

Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):

Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы.  

Crss, Reverse transfer capacitance, обратная переходная емкость. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток. 

Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения. 

На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток. 

Рис. 11. Зависимость емкости от напряжения. 

Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.

Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].

На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора. 

Рис. 12. VGS как функция заряда затвора. 

Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), «плато», показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение  также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато. 

[Резистивные параметры времени переключения (данные resistive switching)]

Эти параметры имеются в даташите по чисто историческим причинам. 

td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.

td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.

tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).

tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается). 

[Энергии переключения в индуктивностях

Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор. 

На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата. 

Рис. 13. Схема тестирования потерь на индуктивности.

В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching. 

Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330. 

Рис. 14. Формы сигналов включения и соответствующие определения. 

Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором. 

Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13. 

Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14. 

Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1. 

Рис. 15. Формы сигналов выключения и соответствующие определения. 

[Температурные и механические характеристики]

RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента. 

Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением. 

ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности. 

В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для «одиночного импульса». Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы «заземлены», как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления. 

Рис. 16. RC-модель переходного термосопротивления. 

Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы. 

Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.

Рис. 17. Семейство кривых термосопротивления.

[Пример анализа даташита]

Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает «безопасную цепь». Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать? 

Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока — хорошая стартовая точка, учитывая высокую частоту и жесткое переключение. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять: 

При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят: 

Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт 

Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной. 

Рис. 18. Индуктивные потери переключения. 

По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:

Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии. 

Рис. 19. Зависимость энергии переключения от сопротивления затвора. 

Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис. 18, и получим Eon = 1.2*364μJ = 437μJ. 

Потери на переключение составят: 

Pswitch = fswitch — ( Eon + Eoff) = 200kHz — (437μJ +121μJ) = 112 Вт

Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.

[UPD160207. Figure-of-merit]

Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.

Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз. ) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.

Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.

[Ссылки]

1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; «Parallel Operation of Power MOSFETs», technical article TA 84-5, Siliconix Inc. 
3. J. Dodge; «Latest Technology PT IGBTs vs. Power MOSFETs», application note, Advanced Power Technology.
4. R. Frey, D. Grafham — APT, T. Mackewicz — TDIDynaload; «New 500V Linear MOSFETs for a 120 kW Active Load», application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; «Power Electronics » Converters Applications, and Design», text book published by Wiley.
9. K. Dierberger, «Gate Drive Design for Large Die MOSFETs», application note APT9302, Advanced Power Technology.
10. R. McArthur, «Making Use of Gate Charge Information in MOSFET and IGBT Datasheets», application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.

Когда и почему выходят из строя MOSFET?

Высокие температуры и другие параметры эксплуатационной среды, превышающие пределы безопасной работы, могут привести к выходу из строя полевых транзисторов, используемых в коммутационных цепях.

Современные полевые транзисторы MOSFET (полевой транзистор структуры металл-оксид-полупроводник) являются основными компонентами в преобразователях мощности, коммутаторах электрических цепей, в электроприводах и импульсных источниках питания (рис. 1). MOSFET отличаются высоким входным сопротивлением затвора, а ток, протекающий через канал между истоком и стоком, управляется напряжением на затворе. Однако при отсутствии надлежащей защиты высокие значения входного импеданса и коэффициента усиления могут привести к повреждению транзистора.

Рассмотрим несколько базовых принципов, позволяющих избежать повреждения MOSFET. Очевидно, напряжения между затвором и истоком, стоком и истоком не должны превышать предельные значения. То же касается и протекающего тока, ID. Существует также ограничение по мощности с учетом максимальной температуры перехода. Базовые значения для верхнего предела по этим параметрам приведены на графике в спецификации транзистора как области безопасной работы (ОБР — англ. SOA).  Применяются и другие тепловые ограничения. Например, график ОБР предполагает температуру окружающей среды 25°C при определенной температуре перехода (как правило, ниже 150°С). Но есть различные условия, которые могут вызвать высокие перепады температур, способные привести к физическому разрушению кристалла MOSFET.

Рис.1. Новое поколение MOSFET ON Semiconductor

Новое поколение MOSFET обладает пониженным сопротивлением канала «сток-исток» RDS (в открытом состоянии) для минимизации проводимости и оптимизации рабочего режима. Например, ON Semiconductor выпускает транзисторы NTMFS5C404NLT, NTMFS5C410NLT и NTMFS5C442NLT, имеющие максимальное значение RDS (во включенном состоянии) 0,74, 0,9 и 2,8 мОм, соответственно. Они дополняются комплементарными приборами NTMFS5C604NL, NTMFS5C612N и NTMFS5C646NL с номинальными напряжениями пробоя 60 В. Для облегчения температурного режима конструкции транзисторы с предельным напряжением в 40 В и 60 В рассчитаны на работу при температуре перехода до 175°C.

В связи с этим следует обратить внимание, что тепловое сопротивление транзистора — среднее значение, применимое тогда, когда весь кристалл имеет одинаковую температуру. Но MOSFET, предназначенные для импульсных блоков питания, могут иметь широкий разброс по температуре в разных зонах кристалла. Транзисторы, оптимизированные для работы в режиме включения/ выключения,  не так хорошо работают в линейной области рабочей характеристики.

Типичный режим «отказа» MOSFET связан с коротким замыканием между истоком и стоком. В этом случае только сопротивление источника питания ограничивает пиковый ток. Короткое замыкание является причиной оплавления кристалла и металла. Например, достаточно высокое напряжение между затвором и истоком (VGS) может разрушить оксидный слой затвора MOSFET. Рассчитанные на 12 В затворы скорее всего разрушатся примерно при 15 В.  Затворы, имеющие запас до 20 В, могут выйти из строя при напряжении около 25 В.

В конечном итоге превышение номинального напряжения транзистора в течение нескольких наносекунд может привести к разрушению MOSFET. Производители рекомендуют выбирать транзистор с запасом по ожидаемым уровням напряжения и при условии подавления любых скачков и импульсов напряжения.

Минимальная мощность управления затвором

MOSFET спроектированы с расчетом на то, что в открытом состоянии выделяется минимальная рассеиваемая мощность: для уменьшения рассеиваемой мощности транзистор должен быть полностью открыт. В противном случае повышенное сопротивление MOSFET приведет к выделению значительной мощности в виде тепла.

В сущности, MOSFET перегревается из-за действия высокого тока; плохой теплоотвод может быть причиной разрушения MOSFET от чрезмерной температуры. Одним из способов ограничения чрезмерного тока является параллельное соединение нескольких транзисторов, когда ток нагрузки разделяется между ними.

Рис.2. График зависимости рассеиваемой мощности MOSFET от температуры

Графики зависимости рассеиваемой мощности транзистора от температуры позволяют судить о требуемом теплоотводе и креплении –  как в примере с представленным выше графиком ON Semiconductor для CPh4348 (рис. 2).

Многие p- и n-канальные MOSFET используются в схемах с топологией Н и L мостов, включенных между шинами напряжения питания. В этом случае, если управляющие сигналы на затворах транзисторов частично перекрываются, оба транзистора будут кратковременно находиться в открытом состоянии, фактически накоротко замыкая источник питания. Когда это происходит, все конденсаторы цепей развязки по питанию быстро разряжаются через сквозной канал из двух транзисторов (во время их переходных состояний при переключении), вызывая короткие, но большие импульсы тока.

Чтобы предотвратить одновременное открытое состояние транзисторов, необходимо обеспечить короткую паузу между их переключениями из открытого состояния в закрытое и наоборот.

Рис.3. График типичной ОБР для MOSFET

На рис. 3 представлен типичный график ОБР для MOSFET CPh4348 компании ON Semiconductor. График ОБР предполагает температуру окружающей среды 25 °С при температуре перехода ниже 150 °С.

Превышение тока даже на короткое время может привести к прогрессирующему повреждению MOSFET, часто с малозаметным повышением температуры перед отказом транзистора. Многие транзисторы, имеющие высокие значения допустимого пикового тока, как правило, рассчитаны на пиковые токи длительностью примерно до 300 мкс. Это особенно важно в случае перегрузки MOSFET по пиковому току при переключении индуктивных нагрузок.

При коммутации индуктивных нагрузок должна быть предусмотрена цепь погашения обратной ЭДС во время выключения транзистора. При резком отключении напряжения питания на индуктивной нагрузке возникает всплеск обратного напряжения. На этот случай в некоторых MOSFET имеется защитный диод.

Катушки индуктивности и емкости в высокочастотных резонансных контурах способны накапливать значительное количество энергии. При определенных условиях эта высокопотенциальная энергия от всплесков обратного напряжения вызывает появление тока через встроенные диоды транзисторов MOSFET, когда один транзистор выключается, а другой включается. (Внутренний встроенный диод, подключенный между стоком и истоком, формируется в р-n переходе «корпус-сток». В n-канальных MOSFET анод встроенного диода подключается к стоку. Полярность включения становится обратной в p-канальных транзисторах.) Проблема может возникнуть из-за медленного выключения (обратного восстановления) встроенного диода, когда противоположный MOSFET пытается открыться.

Встроенные диоды MOSFET имеют длительное время восстановления запирающего слоя по сравнению с рабочими циклами самих транзисторов. Если во время работы комплементарного транзистора встроенный диод на одном MOSFET окажется в проводящем состоянии, то возникает сквозное замыкание источника питания. Эту проблему можно решить посредством диода Шоттки и диода с быстро восстанавливаемым обратным сопротивлением. Диод Шоттки подключается последовательно с истоком MOSFET и предотвращает протекание тока прямого смещения через встроенный диод MOSFET при всплесках напряжения на индуктивной нагрузке. Высокоскоростной (быстрое восстановление) диод подключается параллельно с парой MOSFET/диод Шоттки, что позволяет пропустить ток, возникающий при всплесках напряжения на индуктивной нагрузке, в обход MOSFET и диода Шоттки. Это гарантирует, что встроенный в MOSFET диод никогда не будет находиться в проводящем состоянии.

Рис. 4. Зависимость теплового сопротивления от длительности открытого состояния транзистора

На тепловое сопротивление MOSFET может существенно влиять длительность периода включенного состояния. На рис. 4 приведен конкретный пример графика для транзистора ON Semiconductor CPh4348.

Переходные состояния

Транзисторы MOSFET рассеивают незначительную энергию, когда находятся во включенном или выключенном состоянии, но во время переходного процесса между этими состояниями выделяемая энергия значительно возрастает. Таким образом, чтобы свести к минимуму рассеиваемую мощность, желательно переключаться как можно быстрее. Так как затвор MOSFET является емкостью, он требует значительных импульсов тока заряда и разряда в течение нескольких десятков наносекунд. Пиковые токи затвора могут достигать нескольких ампер.

Высокий входной импеданс MOSFET может быть причиной нестабильности. При определенных условиях высоковольтные транзисторы могут стать генераторами высоких частот из-за паразитных индуктивностей и емкостей в окружающих цепях (частоты обычно в нижней части мегагерцового диапазона). Производители рекомендуют использовать низкоомные цепи управления затворами MOSFET, чтобы предотвратить появление в них паразитных сигналов.

ГОСТ 20398.13-80 Транзисторы полевые. Метод измерения сопротивления сток-исток

Текст ГОСТ 20398.13-80 Транзисторы полевые. Метод измерения сопротивления сток-исток

УДК 621.382.323.019:006.354

Группа Э29

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРАНЗИСТОРЫ ПОЛЕВЫЕ

Метод измерения сопротивления сток—исток

Field effect transistors Drain source resistance measurement technique

ГОСТ

20398.13-80*

(СТ СЭВ 3413—81)

ОКП 62 2100

Постановлением Государственного комитета СССР по стандартам от 12 декабря 1980 г. № 5805 срок действия установлен

с 01.01 82 до 01.01 87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на полевые транзисторы и устанавливает метод измерения сопротивления сток — исток в открытом состоянии транзистора /?СИ()Гк •

Общие условия при измерении должны соответствовать ГОСТ 20398 0—74 и требованиям, изложенным в соответствующих разделах настоящего стандарта.

Стандарт полностью соответствует Публикации МЭК 147—2G.

Стандарт соответствует СТ СЭВ 3413—81 в части метода измерения сопротивления сгок-исток (см. справочное приложение).

(Измененная редакция, Изм. № 1).

1. принцип и УСЛОВИЯ ИЗМЕРЕНИЯ

1.1 Измерение заключается в определении сопротивления между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток—исток, меньшем напряжения насыщения, и заданном напряжении на затворе.

1.2. Электрический режим транзистора (напряжение на стоке, напряжение на затворе) и условия измерения указывают в стандартах или технических условиях на транзисторы конкретных типов.

Издание официальное Перепечатка воспрещена

* Переиздание март 1984 г. с Изменением № 1, утвержденным в июле 1983 г. (ИУС 11—83).

2. АППАРАТУРА

2.1. Сопротивление сток—исток в открытом состоянии транзистора следует измерять на установке, электрическая структурная схема которой приведена на черт. 1 или 2.

УГ—измеряемый транзистор R—резистор PV1, PV2—вольтметры постоянного тока, Gl, G2—ис точники постоянного напряжения затвора и сто ка соответственно РА—амперметр постоянного

тока

Черт. 1

— +

Glt О2—источники постоянного напряжения затвора и стока соответственно R1—магазин сопротивлений, R2, R3—резисторы, VT—измеряемый транзистор, Р—нуль-

индикатор постоянного тока, S—переключатель, РУК Р V2— вольтметры постоянного тока

Черт 2

2.2. Сопротивление резистора R (черт. 1) должно не менее чем в 100 раз превосходить сопротивление сток—исток измеряемого транзистора.

2.3. Допускаемое отклонение сопротивления резисторов магазина сопротивлений R1 (черт. 2) должно находиться в пределах ±1 %.

2 4. Допускаемое отклонение сопротивления резисторов R2 и R3 (черт. 2) должно находиться в пределах ±1 %.

2.5. Напряжение источника стока G2 при отключенном транзисторе не должно превышать максимально допустимое, указанное в стандартах или технических условиях на транзисторы конкретных типов.

Напряжение на стоке включенного транзистора не должно превышать 1 В.

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

3.1. Измерение сопротивления Rcи отк в схеме черт. 1 производят в следующем порядке.

3.1.1. Измеряемый транзистор включают в схему черт. 1 и задают режим по постоянному току.

3.1.2. Значение напряжения U определяют по прибору PV2, значение тока 1а по прибору РА.

3.2. Измерение сопротивления Rc и,отк в схеме черт. 2 производят в следующем порядке.

3.2.1. Измеряемый транзистор включают в схему и в положении 1 переключателя 5 задают режим по постоянному току.

3.2.2. Переключатель ставят в положение 2 и подбором резисторов R1 устанавливают нуль на приборе Р.ед j% для

сопротивлений Рси.отк>Ю Ом и +

8+1,7

Рпред

%

для соп

ротивлений Рси.отк <10 Ом,

где Rx—измеряемое сопротивление;

/?пред—конечное значение установленного предела измерения.

ПРИЛОЖЕНИЕ

Справочное

Информационные данные о соответствии ГОСТ 20398.13—80 СТ СЭВ 3413—81. ГОСТ 20398.13—80 полностью соответствует разд. 9 СТ СЭВ 3413—81. (Введено дополнительно, Изм. № 1).

S9

СОДЕРЖАНИЕ

ГОСТ 20398 0—83 Транзисторы полевые Общие требования при

(СТ СЭВ 1622—79) измерении электрических параметров 3

ГОСТ 20398 1—74 Транзисторы полевые Метод измерения модуля

полной проводимости прямой передачи 6

ГОСТ 20398 2—74 Транзисторы полевые Метод измерения коэффи-

(СТ СЭВ 3413—81) циента шума 9

ГОСТ 20398 3—74 Транзисторы полевые Метод определения кру-

(СТ СЭВ 3413—81) тизны характеристики 14

ГОСТ 20398 4—74 Транзисторы полевые Метод измерения актив-

(СТ СЭВ 3413—81) ной составляющей выходной проводимости 21

ГОСТ 20398 5—74 Транзисторы полевые Метод измерения вход-

(СТ СЭВ 3413—81) ной, проходной и выходной емкостей 27

ГОСТ 20398 6—74 Транзисторы полевые Метод измерения тока уте-

(СТ СЭВ 3413—81) чки затвора 35

ГОСТ 20398 7—74 Транзисторы полевые Метод измерения порогового напряжения и напряжения отсечки 37

ГОСТ 20335 8—74 Транзисторы полевые Метод измерения начального тока стока 39

ГОСТ 20398 9—80 Транзисторы полевые Метод измерения крутизны характеристики в импульсном режиме 41

ГОСТ 20398 10—80 Транзисторы полевые Метод измерения тока

стока в импульсном режиме 46

ГОСТ 20398 11—80 Транзисторы полевые Метод измерения эдс

шума 49

ГОСТ 20398 12—80 Транзисторы полевые Методы измерения оста-

(СТ СЭВ 3413—81) точного тока стока 54

ГОСТ 20398 13—80 Транзисторы полевые Метод измерения сопро-

(СТ СЭВ 3413—81) тивления сток—исток 56

Редактор В С Бабкина Технический редактор Л Я Митрофанова Кор река ор О Я Чернецова

Сдано в наб 11 05 84 Подп в печ 15 1185 3,75 п д. 3 88 уел кр отт 2,91 уч-нзд. л*

Тираж 8000 Цена 15 коп

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП,

Новопресненский пер., 3

Калужская ткяография стандартов, ул Московская, 256 3? 446

Источник

и полярность стока для полевых МОП-транзисторов Источник

и полярность стока для полевых МОП-транзисторов
Сеть обмена стеков

Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 36k раз

\ $ \ begingroup \ $

При использовании MOSTEFS в качестве переключателя я всегда вижу, что сток подключен к более высокому потенциалу, а нагрузка и источник всегда подключены к земле.Можете ли вы переключить их так, чтобы вывод источника подключался к более высокому потенциалу, а сток был подключен к земле?

Создан 07 июн.

PICyourMозг

3,4559 золотых знаков3636 серебряных знаков5555 бронзовых знаков

\ $ \ endgroup \ $ 5 \ $ \ begingroup \ $

Чтобы немного прояснить то, что уже сказали другие, MOSFET имеет внутренний диод, который указывает от истока к стоку в устройствах с N-каналом и от стока к истоку в устройствах с P-каналом.Это не что-то намеренно добавленное производителем, а побочный продукт способа изготовления полевых МОП-транзисторов. В большинстве случаев этот диод не позволяет использовать полевой МОП-транзистор при перевороте. Есть несколько приложений, которые вы можете считать «продвинутыми», где этот диод фактически используется намеренно. Одним из примеров является изготовление синхронного выпрямителя. По сути, это диод с транзистором через него. Транзистор включается, когда известно, что диод должен быть проводящим. Это снижает падение напряжения на диоде и иногда используется в импульсных источниках питания для повышения эффективности.МОП-транзистор с внутренним диодом можно рассматривать как диод и транзистор, прекрасно интегрированные в один корпус.

Ваши наблюдения, что исток является отрицательным, а сток — положительным, верно для N-канальных полевых транзисторов. Так же, как есть биполярные транзисторы NPN и PNP, существуют полевые транзисторы с каналом N и P, которые являются зеркальным отображением полярности друг друга. Полевой транзистор с каналом P будет подключен к положительному истоку и отрицательному стоку. В выключенном состоянии затвор удерживается под напряжением источника.Чтобы включить его, затвор опускается на 12-15 В относительно источника для большинства обычных полевых МОП-транзисторов.

0 comments on “Сток исток: Понятие сопротивления сток-исток MOSFET транзистора в открытом состоянии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *