Светодиодная лампа википедия – Светодиодная лампа — Википедия

Светодиодная лампа — Википедия

Материал из Википедии — свободной энциклопедии

Светодиодная лампа со стандартным цоколем E27, мощностью 10 Вт, цветовой температурой 4500 К, пластмассовым матовым светорассеивателем и алюминиевым радиатором-теплоотводом

Светодиодные лампы, или светодиодные светильники, — источники света, основанные на светодиодах. Применяются для бытового, промышленного и уличного освещения.

Различают законченные устройства — светильники и элементы для светильников — сменные лампы. Для освещения, в лампах чаще применяют белые светодиоды разного типа. Для декоративных целей применяют лампы либо с цветными светодиодами (в том числе и RGB), либо с белыми светодиодами и цветными колбами.

Декоративные светодиодные лампы мощностью 1 Вт с цветными матовыми разноцветными пластиковыми колбами Светодиодный светильник

Светодиодный светильник — самостоятельное устройство. Корпус светильника чаще всего уникален, специально спроектирован под светодиодный источник освещения. Конструктивно такой светильник состоит из цоколя, металлического корпуса, служащего одновременно радиатором, платы со светодиодами, электронного драйвера (преобразователя питания) и полупрозрачной пластмассовой полусферы. Иногда светодиодным светильником называют традиционный светильник с установленной сменной светодиодной лампой. Однако, специально спроектированный светильник обладает бóльшей энергоэффективностью и надёжностью. Светодиодные источники света в основном используются для направленного или местного освещения по причине особенностей полупроводникового излучателя светить преимущественно в одном направлении

[1].

Типы светильников[править | править код]

Влагозащищённый светодиодный светильник

Все типы светильников можно разделить на три группы:

  • Светодиодные светильники для улиц, парков, дорог, для архитектурного освещения[2]. Выполняются в защищенном от влаги и пыли корпусе, кроме того, корпус обычно выполняет роль теплоотвода и изготавливается из хорошо проводящих тепло материалов
    [3]
    .
  • Светильники для производственных целей, ЖКХ и офисов. К изделиям предъявляются повышенные требования по качеству освещения, в том числе к стабильности и цветопередаче, условиям эксплуатации[4]. Такие светильники чаще производятся в антивандальном исполнении, укомплектованы специальной отвёрткой и специальными саморезами, защищающими корпус от несанкционированного вскрытия. Рассеиватель у современных антивандальных светильников для ЖКХ выполнен из поликарбоната, который в десятки раз крепче традиционного стекла.
  • Светильники для бытовых нужд обычно выпускаются невысокой мощности, но должны удовлетворять многочисленным требованиям к качеству освещения, электробезопасности, пожароопасности и, в немалой степени, — к внешнему виду. Зачастую бытовые светильники имеют сменные лампы.

Кроме указанных применений, светодиодные светильники хорошо подходят для освещения музеев и раритетов, поскольку спектр лампы не содержит ультрафиолетовой составляющей

[5][6].

Светильники для уличного освещения[править | править код]
Влагозащищённый светодиодный прожектор для уличного освещения, мощностью 10 Вт.

Светильники для улиц, парков и дорог должны удовлетворять многим критериям. Основные особенности, которые необходимо учитывать[2]:

  • Экономия электроэнергии. Светильники для улицы освещают большие территории и особенно важно, чтобы бóльшая часть излучаемого света направлялась на освещаемую поверхность. Светодиодные приборы наиболее удовлетворяют таким требованиям в исполнениях прямого света и преимущественно прямого света (по ГОСТ 17677-82) и позволяют получить экономию электроэнергии даже по сравнению с аналогичными газоразрядными лампами высокого давления и натриевыми лампами.
  • Прочность конструкции и защищенность от воздействия окружающей среды. Корпус устройства дожен быть сконструирован так, чтобы мусор, испражнения птиц и вода не скапливались на поверхности светильника и не ухудшали его охлаждающую способность, прозрачность защитного стекла, тем самым сохраняя характеристики в течение всего срока службы.
  • Цветопередача. Светодиодные источники освещения в большинстве обладают лучшими характеристиками цветопередачи. Кроме того, цветовой оттенок и индекс цветопередачи могут быть подобраны при выборе светильника для конкретного приложения.
  • Срок службы светодиодных ламп значительно превышает срок службы традиционных уличных источников освещения. Однако, светодиодные источники света чувствительны к повышенной температуре и при плохом теплоотводе срок службы может быть значительно снижен.
  • Равномерность освещения зависит от конструкции светильника и в большинстве обеспечивает необходимую диаграмму направленности для светильников прямого света.
  • Цена светодиодного светильника зачастую значительно выше аналогичных традиционных устройств освещения. Но, поскольку замена ламп в традиционных устройствах наружного освещения связана со значительными затратами, требует специального оборудования, использование светодиодных устройств в некоторых случаях даёт ощутимую экономию в ближайшей перспективе применения.
Светильники для производственных целей, офисов и ЖКХ[править | править код]
Светодиодный светильник на АЗС

Светильники предназначены для автоматического управления освещением в жилых домах и общественных местах, а также в производственных, офисных, складских и иных помещениях: лестничные клетки и марши подъездов, коридоры и переходы, козырьки и тамбуры, подвалы и чердаки, лифты и лифтовые площадки, комнаты и подсобные помещения, предподъездные территории, подземные автостоянки, а также другие второстепенные помещения, требующие ухода и освещения.

Сменная светодиодная лампа — осветительный прибор, устанавливаемый в существующий светильник, изначально предназначенный как для установки сменных светодиодных ламп, так и для установки ламп другого типа — люминесцентных, накаливания, галогенных, возможно, с некоторой доработкой. В настоящее время выпускаются светодиодные лампы практически под все существующие типы цоколей. Лампы выпускаются мощностью до 40 Вт и предназначены для установки в бытовые осветительные устройства — настольные светильники, потолочные светильники, бра — как быстрая замена менее экономичных традиционных ламп без изменения дизайна и конструкции. Производители, кроме напряжения питания, потребляемой мощности и типа цоколя, указывают оттенок белого света (цветовую температуру, как правило, 2700-3000 K, 4000 K, 6000 K), класс энергоэффективности, срок службы лампы и мощность лампы накаливания сравнимой яркости.

Распространённые виды сменных светодиодных ламп:

  • Лампы с плоской платой и рассеивателем. Как правило, имеют форму «груши», «свечи» или софита. Могут быть оснащены качественным радиатором и драйвером — для него в такой лампе достаточно много места. Бывают также лампы, сделанные по технологии Chip-On-Board (COB). Недостаток такой схемы — сложно получить лампу, диаграмма направленности которой не имеет значительного провала в сторону цоколя, для этого приходится делать достаточно крупногабаритный рассеиватель.
  • Лампа-«кукуруза». Собирается из нескольких плат в форме многогранной призмы, на каждую плату устанавливается несколько маломощных светодиодов, сверху может накрываться колпаком из оргстекла с отверстиями для охлаждения. По форме такая лампа напоминает кукурузный початок. Лампы-«кукурузы» дают более всенаправленную диаграмму распределения света, и потому не требуют крупногабаритных рассевателей. Как правило в лампах-кукурузах светодиоды плохо охлаждаются, отчего быстро теряют яркость или выходят из строя.
  • Филаментные лампы — внешне похожи на ранние лампы накаливания, благодаря чему могут использоваться в декоративных светильниках, рассчитанных на прозрачные лампы накаливания. В таких лампах светодиоды выращиваются на стеклянной подложке, соединяются последовательно в группы, как правило по 28 светодиодов, что позволяет упростить драйвер, так как одна такая «нить» питается напряжением около 100 вольт — благодаря этому не требуется преобразование напряжения, достаточно лишь ограничения тока и выпрямления. С другой стороны, места для преобразователя и радиаторов охлаждения в таких лампах очень мало. В дешёвых филаментных лампах используются простейшие выпрямители даже без сглаживающих конденсаторов.
  • Линейные лампы — предназначены для замены линейных люминесцентных ламп. Для этого из светильника извлекаются балластные дроссели и стартеры (либо электронные пускорегулирующие аппараты).
  • Специальные лампы — для замены индикаторных ламп, ламп со специальным цоколем и т. д. Выполняются в форме заменяемой лампы.
  • Лампа ранних моделей с двухконтактными светодиодами каждый в пластмассовом корпусе

  • Лампа с SMD-светодиодами на плоской плате со снятым рассеивателем

  • Лампа типа «кукуруза» с белыми SMD-светодиодами

  • Лампа с цоколем R7S для установки в прожектор

  • Лампы со светодиодами на подложках в виде лепестков

  • Лампа «софитного» типа под цоколь GU10

  • Линейные лампы

  • Светодиодная линейная лампа для установки взамен ртутных трубчатых люминесцентных ламп

  • Светодиодный светильник 40 Вт, 60×60 см, взамен стандартных светильников с 4 трубчатыми люминесцентными лампами по 18-20 Вт

  • Автомобильные светодиодные лампы

  • Миниатюрные светодиодные лампы с COB- (3 слева) и SMD-светодиодами белого свечения

ru.wikipedia.org

Светодиодное освещение — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 ноября 2018; проверки требуют 27 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 ноября 2018; проверки требуют 27 правок.

Светодиодное освещение — одно из перспективных направлений технологий искусственного освещения[1], основанное на использовании светодиодов в качестве источника света.

Развитие светодиодного освещения непосредственно связано с достижениями в технологии белых светодиодов. Разработаны так называемые сверхъяркие светодиоды, специально предназначенные для искусственного освещения.

Качественная светодиодная лампа

В сравнении с обычными лампами накаливания, а также люминесцентными лампами светодиодные источники света обладают многими преимуществами.

При оптимальной схемотехнике источников питания, применении качественных компонентов и обеспечении надлежащего теплового режима, срок службы светодиодных систем освещения при сохранении приемлемых для общего освещения показателей может достигнуть 36-72 тысяч часов[2], что в среднем в 50 раз больше по сравнению с номинальным сроком службы ламп накаливания общего назначения[3] и в 4-16 раз больше, чем у большинства люминесцентных ламп.

Производители светодиодов из-за постоянного обновления и совершенствования продукции не имеют возможности проводить тестирование в реальном времени и указывают прогнозируемый срок службы, используя специальные методики, такие как TM-21 и IESNA LM-80[4]. Большой срок службы в некоторых применениях играет решающую роль. Так, экономия на обслуживании и замене ламп в уличных светильниках зачастую превышает экономию на электроэнергии[5].

Низкий cosφ и пульсации
  1. Высокие требования к качеству теплоотвода, поскольку температура оказывает решающее влияние на надежность[6]. Мощные осветительные светодиоды требуют наличия внешнего радиатора для охлаждения, потому что имеют неблагоприятное соотношение своих размеров к выделяемой тепловой мощности и не могут без специального теплоотвода рассеять столько тепла, сколько выделяют. Так, для рассеивания 5 Вт тепловой мощности, выделяемой полупроводниковым прибором с возможностью работы при температуре окружающей среды до +40 °C, потребуется радиатор площадью 100 см2[7]. Необходимость использования радиатора удорожает готовое изделие и затрудняет конструирование светодиодных ламп свыше 15 Вт, совместимых с типоразмером цоколя и габаритами ламп накаливания общего назначения.
  2. Дешёвые массовые светодиоды имеют световую отдачу 80—110 лм/Вт, что по экономичности ниже современных натриевых ламп[8]. В связи с чем, несмотря на активное внедрение светодиодных бюджетных светильников в различные производственные и коммунальные сферы бытового обслуживания, в настоящее время для освещения улиц и дворовых территорий одними из самых энергоэффективных и надёжных источников света являются светильники типа ДНаТ (Светоотдача натриевых ламп высокого давления достигает 150 люмен/ватт, низкого давления — до 200 люмен/ватт).
  3. Применяемая в светодиодном освещении синяя компонента спектра негативно сказывается на функционирование пищевых цепей фауны и привлекают беспозвоночных из сельской местности в города.[9]
  4. Светодиодное освещение улиц из-за синего спектра может негативно влиять на зрение и вызывать усталость глаз и повреждение сетчатки[10].

Несоответствие спектра светодиодных светильников естественному солнечному вызывало негативное влияние на здоровье людей, в частности при работе с компьютером в течение длительного времени[11]. Такие источники света негативно влияли на синтез мелатонина, циркадные ритмы; вызывали сонливость и ухудшали производительность труда[12]. Этот недостаток побудил изготовителей светодиодов искать новые технологии, и были разработаны более безопасные светодиодные источники освещения. К сожалению, в РФ, не уделяется достаточно внимания этой проблеме, и в результате экономичные, но небезопасные светодиодные светильники получили широкое распространение, в том числе в образовательных учреждениях — при наличии экономичной и безопасной альтернативы[13].

Светодиодный прожектор

Светодиодные технологии освещения благодаря эффективному расходу электроэнергии и простоте конструкции нашли широкое применение в светильниках, прожекторах, светодиодных лентах, декоративной светотехнике и особенно в компактных осветительных приборах — ручных фонариках. Их световая мощность доходит до 5000 лм. Светодиодные осветительные приборы подразделяются на уличные и интерьерные. Сегодня их применяют для подсветки зданий, автомобилей, улиц и рекламных конструкций, фонтанов, тоннелей и мостов. Данное освещение используют для подсветки производственных и офисных помещений, домашнего интерьера и мебели.

Светодиодное освещение применяется в светотехнике для создания дизайнерского освещения в специальных современных дизайн-проектах. Надёжность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение, внутри натяжных потолков и т. д.).

Декоративная светодиодная подсветка в основном применяется для праздничной иллюминации. Используется как новогоднее украшение — светодиодная гирлянда. В период праздников (в большей степени новогодних) их можно увидеть на улицах городов, они украшают деревья, фасады зданий и другие уличные объекты.

Уличное освещение[править | править код]

Светодиодное уличное освещение

Ещё большую выгоду можно получить от замены ртутных ламп высокого давления — до 70 %[источник не указан 357 дней]. Поэтому многие города планируют полный переход на светодиодное уличное освещение. Например в Финляндии, лидером является город Турку, где полностью заменят к концу 2015 года свыше 8000 светильников. Целью является достичь к 2016 году 9 % экономии по отношению к 2005 году, причём света станет больше. Для города такого размера экономия составит 1 386 000 квтч, что сравнимо с потреблением 600—700 двухэтажных зданий за год[14].

  • Вариант светодиодных ламп, используемых в дизайне помещений

  • Разноцветные экономичные лампы

  • Светильник, адаптированный по технологии LED

  • Влагозащищённый 10 Вт светодиодный светильник промышленного изготовления

  • Светодиодная лампа заливающего света GL-BR20

  • Светодиод SSC P7 на радиаторе (потребляемая мощность 7 Вт) и автомобильная 20 Вт лампа накаливания (включена).

  • Светодиодная лампа, используемая в дежурном освещении.

  1. ↑ Светодиоды вместо ламп // Полит.ру, 26.12.2007
  2. ↑ Cree® LED Components IES LM-80-2008 Testing Results // Cree Inc., 06.12.2012
  3. Козловская В. Б., Радкевич В. Н., Сацукевич В. Н. Электрическое освещение. Справочник. — Минск, 2007 ISBN 978-985-6591-39-9, стр. 37
  4. ↑ IESNA LM-80 and TM-21. U.S. Department of Energy
  5. ↑ US DOE Консорциум муниципального освещения. Отчеты
  6. Шуберт Ф. Е. Светодиоды. — М.: Физматлит, 2008. — С. 61, 77—79. — 496 с. — ISBN 978-5-9221-0851-5.
  7. А. А. Бокуняев, Н. М. Борисов, Р. Г. Варламов и др. Справочная книга радиолюбителя конструктора. — Радио и связь, 1990. — С. 369. — ISBN 5-256-00658-4.
  8. ↑ Сравнительная таблица светодиодов
  9. ↑ Изобретение нобелевских лауреатов оказалось разрушителем мира насекомых: Наука: Наука и техника: Lenta.ru
  10. ↑ http://darksky.org/wp-content/uploads/bsk-pdf-manager/AMA_Report_2016_60.pdf
  11. Christian Cajochen, Sylvia Frey, Doreen Anders, Jakub Späti, Matthias Bues, Achim Pross, Ralph Mager, Anna Wirz-Justice, and Oliver Stefani. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance (англ.) // American Physiological Society Journal of Applied Physiology. — 2011. — May (vol. 110 (iss. 5). — P. 1432-1438. — ISSN 8750-7587. — DOI:10.1152/japplphysiol.00165.2011.
  12. В.А. Капцов, В.Н. Дейнего. Риски влияния света светодиодных панелей на состояние здоровья оператора (рус.) // ФБУН «ФНЦ медико-профилактических технологий управления рисками здоровью населения» Роспотребнадзора Анализ риска здоровью. — Пермь, 2014. — Август (№ 4). — С. 37-42. — ISSN 2308-1155. — DOI:10.21668/health.risk/2014.4.05.
  13. В.А. Капцов, В.Н. Дейнего. Световой рацион. Охрана труда и светодиодное освещение (рус.) // Национальная Ассоциация Центров Охраны Труда (НАСОТ) Безопасность и охрана труда. — Нижний Новгород, 2015. — Сентябрь (№ 3). — С. 77-80.
  14. ↑ Турку получит светодиодное освещение улиц. На фото освещение улицы до и после модернизации

ru.wikipedia.org

Светодиод — Википедия

Светодиодная лампа

Светодио́д или светоизлучающий диод (СД, СИД; англ. light-emitting diode, LED) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт о СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

При пропускании электрического тока через p-n-переход в прямом направлении носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой[1]).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

Олег Лосев, советский физик, обнаруживший электролюминесценцию в карбиде кремния

Первое известное сообщение об излучении света твёрдотельным диодом было сделано в 1907 году британским экспериментатором Генри Раундом[en] из Маркони Лабс[en]. Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл — карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены в 1923 году О. В. Лосевым, который, экспериментируя в Нижегородской радиолаборатории с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия «полупроводниковый переход» ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Лосев показал, что электролюминесценция возникает вблизи спая материалов[2]. Теоретического объяснения явлению тогда не было. Лосев вполне оценил практическую значимость своего открытия, позволявшего создавать малогабаритные твёрдотельные (безвакуумные) источники света с очень низким напряжением питания (менее 10 В) и очень высоким быстродействием. Им были получены два авторских свидетельства на «Световое реле» (первое заявлено в феврале 1927 г.)[3]

В 1961 году Джеймс Роберт Байард (англ.)русск. и Гари Питтман из компании Texas Instruments открыли технологию инфракрасного светодиода на основе арсенида галлия (GaAs). После получения патента в 1962 году началось их промышленное производство.

Первый в мире практически применимый светодиод, работающий в световом (красном) диапазоне, разработал Ник Холоньяк в Университете Иллинойса для компании General Electric в 1962 году. Холоньяк, таким образом, считается «отцом современного светодиода». Его бывший студент, Джордж Крафорд (англ.)русск., изобрёл первый в мире жёлтый светодиод и улучшил яркость красных и красно-оранжевых светодиодов в 10 раз в 1972 году. В 1976 году Т. Пирсол создал первый в мире высокоэффективный светодиод высокой яркости для телекоммуникационных применений, специально адаптированный к передаче данных по волоконно-оптическим линиям связи.

Светодиоды оставались чрезвычайно дорогими вплоть до 1968 года (около $200 за штуку), их практическое применение было ограничено. Исследования Жака Панкова в лаборатории RCA привели к промышленному производству светодиодов; в 1971 году им был получен первый синий светодиод[4][5]. Компания «Монсанто» была первой, организовавшей массовое производство светодиодов, работающих в диапазоне видимого света и применимых в индикаторах. Компании «Хьюллет-Паккард» удалось использовать светодиоды в своих ранних массовых карманных калькуляторах.

В середине 1970-х годов в ФТИ им. А. Ф. Иоффе группой под руководством Жореса Алфёрова были получены новые материалы — полупроводниковые гетероструктуры, в настоящее время применяемые для создания лазерных и светодиодов[6][7]. После этого началось серийное промышленное производство светодиодов. Открытие было удостоено Нобелевской премий в 2000 году[8]. В 1983 году компания Citizen Electronics первой разработала и начала производство SMD-светодиодов, назвав их CITILED[9].

В начале 1990-х Исама Акасаки, работавший вместе с Хироси Амано в университете Нагоя, а также Сюдзи Накамура, работавший в то время исследователем в японской корпорации «Nichia Chemical Industries», изобрели технологию изготовления синего светодиода (LED). За открытие дешевого синего светодиода в 2014 году им троим была присуждена Нобелевская премия по физике[10][11]. В 1993 году Nichia начала их промышленный выпуск, а в 1996 начала выпуск белых светодиодов[12].

Синий светодиод, в сочетании с зелёным и красным, дает белый свет с высокой энергетической эффективностью, что позволило в дальнейшем создать, среди прочего, светодиодные лампы и экраны со светодиодной подсветкой. В 2003 году, компания Citizen Electronics первой в мире произвела светодиодный модуль по запатентованной технологии непосредственно вмонтировав кристалл от Nichia на алюминиевую подложку с помощью диэлектрического клея по технологии Chip-On-Board.

Обозначение светодиода в электрических схемах

Вольт-амперная характеристика светодиодов в прямом направлении нелинейна. Диод проводит ток, начиная с некоторого порогового напряжения. Это напряжение позволяет достаточно точно определить материал полупроводника.

Светодиод работает при пропускании через него тока в прямом направлении (то есть анод должен иметь положительный потенциал относительно катода).

Из-за круто возрастающей вольт-амперной характеристики p-n-перехода в прямом направлении светодиод должен подключаться к источнику тока. Подключение к источнику напряжения должно производиться через элемент (или электрическую цепь), ограничивающий ток, например, через резистор. Некоторые светодиоды могут иметь встроенную токоограничивающую цепь, в таком случае для них указывается диапазон допустимых напряжений источника питания.

Непосредственное подключение светодиода к источнику напряжения, превышающего заявленное изготовителем падение напряжения для конкретного светодиода, может вызвать протекание через него тока, превышающего предельно допустимый, перегрев и мгновенный выход из строя. В простейшем случае (для маломощных индикаторных светодиодов) токоограничивающая цепь представляет собой резистор, последовательно включенный со светодиодом. Для мощных светодиодов применяются схемы с ШИМ, которые поддерживают средний ток через светодиод на заданном уровне и, при необходимости, позволяют регулировать его яркость.

Недопустимо подавать на светодиоды напряжение обратной полярности от источника с малым внутренним сопротивлением. Светодиоды имеют невысокое (несколько вольт) обратное пробивное напряжение. В схемах, где возможно появление обратного напряжения, светодиод должен быть защищён параллельно включенным обычным диодом в противоположной полярности.

Обычные светодиоды изготавливаются из различных неорганических полупроводниковых материалов, в следующей таблице приведены доступные цвета с диапазоном длин волн, падение напряжения на диоде и материал:

Цветдлина волны (нм)Напряжение (В)Материал полупроводника
Инфракрасныйλ > 760ΔU < 1,9Арсенид галлия (GaAs)
Алюминия галлия арсенид (AlGaAs)
Красный610 < λ < 7601,63 < ΔU < 2,03Алюминия-галлия арсенид (AlGaAs)
Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Оранжевый590 < λ < 6102,03 < ΔU < 2,10Галлия фосфид-арсенид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Жёлтый570 < λ < 5902,10 < ΔU < 2,18Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Зелёный500 < λ < 5701,9[15] < ΔU < 4,0Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)
Галлия(III) фосфид (GaP)
Алюминия-галлия-индия фосфид (AlGaInP)
Алюминия-галлия фосфид (AlGaP)
Синий450 < λ < 5002,48 < ΔU < 3,7Селенид цинка (ZnSe)
Индия-галлия нитрид (InGaN)
Карбид кремния (SiC) в качестве субстрата
Кремний (Si) в качестве субстрата — (в разработке)
Фиолетовый400 < λ < 4502,76 < ΔU < 4,0Индия-галлия нитрид (InGaN)
ПурпурныйСмесь нескольких спектров2,48 < ΔU < 3,7Двойной: синий/красный диод,
синий с красным люминофором,
или белый с пурпурным пластиком
Ультрафиолетовыйλ < 4003,1 < ΔU < 4,4Алмаз (235 нм)[16]

Нитрид бора (215 нм)[17][18]
Нитрид алюминия (AlN) (210 нм)[19]
Нитрид алюминия-галлия (AlGaN)
Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)[20]

БелыйШирокий спектрΔU ≈ 3,5Сочетание трех светодиодов основных цветов (красный, синий, зеленый), либо люминофор, излучающий белый цвет под воздействием светодиода со спектром от синего до ультрафиолетового;

Несмотря на то, что в мире широко выпускаются белые светодиоды в конструктиве синего/фиолетового свечения кристалла с нанесенным на него желтым или оранжевым люминофором, ничто не мешает нанести и люминофоры другого цвета свечения. В результате нанесения красного люминофора получают пурпурные или розовые светодиоды, гораздо реже выпускают светодиоды салатного цвета, где на синий кристалл наносится люминофор зеленого цвета свечения.

Светодиоды также могут иметь цветной корпус.

В 2001 году Citizen Electronics первой в мире произвела цветной SMD светодиод из цветной пастели под названием PASTELITE[21].

По сравнению с другими электрическими источниками света светодиоды имеют следующие отличия:

  • Высокая световая отдача. Современные светодиоды сравнялись по этому параметру с натриевыми газоразрядными лампами[22] и металлогалогенными лампами, достигнув 146 люмен на ватт[23].
  • Высокая механическая прочность, вибростойкость (отсутствие нити накаливания и иных чувствительных составляющих).
  • Длительный срок службы — от 30 000 до 100 000 часов (при работе 8 часов в день — 34 года). Но и он не бесконечен — при длительной работе и/или плохом охлаждении происходит «деградация» кристалла и постепенное падение яркости.
  • Количество циклов включения-выключения не оказывают существенного влияния на срок службы светодиодов (в отличие от традиционных источников света — ламп накаливания, газоразрядных ламп).
  • Спектр современных белых светодиодов бывает различным — от тёплого белого = 2700 К до холодного белого = 6500 К.
  • Спектральная чистота, достигаемая не фильтрами, а принципом устройства прибора.
  • Отсутствие инерционности — включаются сразу на полную яркость, в то время как у ртутно-люминофорных (люминесцентных-экономичных) ламп время включения от 1 с до 1 мин, а яркость увеличивается от 30 % до 100 % за 3—10 минут, в зависимости от температуры окружающей среды.
  • Различный угол излучения — от 15 до 180 градусов.
  • Низкая стоимость индикаторных светодиодов.
  • Безопасность — не требуются высокие напряжения, низкая температура светодиода, обычно не выше 60 °C.
  • Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.
  • Экологичность — отсутствие ртути, фосфора и ультрафиолетового излучения в отличие от люминесцентных ламп.
  • Комнатное освещение

  • В автомобильных фарах

  • Декоративное применение

  • Подсветка линейкой светодиодов в IPod Touch 2G

На светодиодном экране показывают Tour de France 2010, Paris
  • В уличном, промышленном, бытовом освещении (в том числе светодиодная лента).
  • В качестве индикаторов — как в виде одиночных светодиодов (например, индикатор включения на панели прибора), так и в виде цифрового или буквенно-цифрового табло (например, цифры на часах).
  • Массив светодиодов используется в больших уличных экранах, в бегущих строках, информационных табло. Такие массивы часто называют светодиодными кластерами или просто кластерами.
  • В оптопарах.
  • Мощные светодиоды используются как источник света в фонарях, прожекторах, светофорах, лампах тормозного освещения в автомобилях.
  • Светодиоды используются в качестве источников модулированного оптического излучения (передача сигнала по оптоволокну, пульты ДУ, светотелефоны, интернет[24]).
  • В подсветке ЖК-экранов (мобильные телефоны, мониторы, телевизоры, планшеты и т. д.).
  • В играх, игрушках, значках, USB-устройствах и прочее.
  • В светодиодных дорожных знаках.
  • В гибких ПВХ световых шнурах Дюралайт.
  • В растениеводстве, так называемые фитолампы, оптимизированные под фотосинтез. В северных странах перспективная замена освещения в теплицах.
Основная статья: OLED

Многослойные тонкоплёночные структуры, изготовленные из органических соединений, которые эффективно излучают свет при пропускании через них электрического тока. Основное применение OLED находит при создании устройств отображения информации (дисплеев). Предполагается, что производство таких дисплеев будет гораздо дешевле, чем жидкокристаллических.

Главная проблема для OLED — время непрерывной работы, которое должно быть не меньше 15 тыс. часов. Одна из проблем, которая в настоящее время препятствует широкому распространению этой технологии, состоит в том, что «красный» OLED и «зелёный» OLED могут непрерывно работать на десятки тысяч часов дольше, чем «синий» OLED. Это визуально искажает изображение, причём время качественного показа неприемлемо для коммерчески жизнеспособного устройства. Хотя сегодня «синий» OLED все-таки добрался до отметки в 17,5 тыс. часов (2 года) непрерывной работы.

Дисплеи из органических светодиодов применяются в последних моделях сотовых телефонов, GPS-навигаторах, OLED-телевизорах, для создания приборов ночного видения.

По размеру выручки лидером является японская «Nichia Corporation»[25].

Также крупным производителем светодиодов является «Royal Philips Electronics», политика которого заключается в приобретении компаний, изготавливающих светодиоды. Так, «Hewlett-Packard» в 2005 году продал компании «Philips» своё подразделение «Lumileds Lighting», а в 2006 были приобретены «Color Kinetics» и «TIR Systems» — компании с широкой технологической сетью по производству светодиодов с белым спектром излучения.

«Nichia Chemical» — подразделение компании «Nichia Corporation», где были впервые разработаны белый и синий светодиоды. На текущий момент ей принадлежит лидерство в производстве сверхъярких светодиодов: белых, синих и зелёных. Помимо вышеперечисленных гигантов, следует также отметить следующие компании: «Cree», «Emcore Corp.», «Veeco Instruments», «Seoul Semiconductor» и «Germany’s Aixtron», занимающиеся производством чипов и отдельных светодиодов.

Яркие светодиоды на подложках из карбида кремния производит американская компания «Cree».

Крупнейшими[26] производителями светодиодов в России и Восточной Европе являются компании «Оптоган» и «Светлана-Оптоэлектроника». «Оптоган» создана при поддержке ГК «Роснано». Производственные мощности компании расположены в Санкт-Петербурге. «Оптоган» занимается производством как светодиодов, так и чипов и матриц, а также участвует во внедрении светодиодов для общего освещения.
«Светлана-Оптоэлектроника» (г. Санкт-Петербург) — объединяет предприятия, которые осуществляют полный технологический цикл разработки и производства светодиодных систем освещения: от эпитаксиального выращивания полупроводниковых гетероструктур до сложных автоматизированных систем интеллектуального управления освещением.
Также крупным предприятием по производству светодиодов и устройств на их основе можно назвать завод «Samsung Electronics» в Калужской области.

  1. ↑ Принцип работы светодиода (рус.). ledflux.ru. Дата обращения 15 марта 2018.
  2. ↑ ФИЗИК ЛОСЕВ Жизнь ученого Лосева Олега Владимировича
  3. ↑ О. В. Лосев — изобретатель кристадина и светодиода К 100-летию со дня рождения. Автор: Ю. Р. Носов
  4. ↑ Light Emitting Diode
  5. ↑ Milestones on Development of LED (неопр.) (недоступная ссылка). Дата обращения 9 октября 2014. Архивировано 14 октября 2014 года.
  6. Самсонов А. Жорес Алфёров: флагман отечественной электроники (рус.) // Экология и жизнь : журнал. — 2010. — № 5.
  7. ↑ Полупроводниковые гетероструктуры: от классических к низкоразмерным, или «конструктор» от Нобелевского лауреата (рус.). МФТИ. Дата обращения 21 марта 2019.
  8. ↑ The Nobel Prize in Physics 2000 (рус.). The Nobel Prize. Дата обращения 21 марта 2019.
  9. ↑ History | CITIZEN ELECTRONICS CO.,LTD. (неопр.). ce.citizen.co.jp. Дата обращения 1 июня 2019.
  10. ↑ Нобелевская премия по физике присуждена за LED (рус.). BBC Russian (7 октября 2014). Дата обращения 21 марта 2019.
  11. ↑ Нобелевская премия по физике присуждена за изобретение эффективных синих светодиодов (рус.). ТАСС (7 октября 2014). Дата обращения 21 марта 2019.
  12. ↑ Nichia/История (рус.). Nichia. Дата обращения 16 июня 2019.
  13. ↑ COB светодиоды и лампы на их основе // ledjournal.info.
  14. ↑ Мал CSP-светодиод, да дешев // 19.03.2016 г. А. Васильев. elec.ru.
  15. ↑ OSRAM: green LED (неопр.) (недоступная ссылка). Дата обращения 17 января 2011. Архивировано 21 июля 2011 года.
  16. Koizumi, S.; Watanabe, K; Hasegawa, M; Kanda, H. Ultraviolet Emission from a Diamond pn Junction (англ.) // Science. — 2001. — Vol. 292, no. 5523. — P. 1899. — DOI:10.1126/science.1060258. — PMID 11397942.
  17. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure (англ.) // Science : journal. — 2007. — Vol. 317, no. 5840. — P. 932. — DOI:10.1126/science.1144216. — PMID 17702939.
  18. Watanabe, Kenji; Taniguchi, Takashi; Kanda, Hisao. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal (англ.) // Nature Materials : journal. — 2004. — Vol. 3, no. 6. — P. 404. — DOI:10.1038/nmat1134. — PMID 15156198.
  19. Taniyasu, Yoshitaka; Kasu, Makoto; Makimoto, Toshiki. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres (англ.) // Nature : journal. — 2006. — Vol. 441, no. 7091. — P. 325. — DOI:10.1038/nature04760. — PMID 16710416.
  20. ↑ LEDs move into the ultraviolet, physicsworld.com (17 мая 2006). Дата обращения 13 августа 2007.
  21. ↑ Pastel Color Chip LED 

ru.wikipedia.org

Светодиодная лампа — Википедия

Светодиодная лампа со стандартным цоколем E27, мощностью 10 Вт и цветовой температурой 4500 К

Светодиодные лампы или светодиодные светильники в качестве источника света используют светодиоды (англ. Light-Emitting Diode, сокр. LED), применяются для бытового, промышленного и уличного освещения. Светодиодная лампа является одним из самых экологически чистых источников света. Принцип свечения светодиодов позволяет применять в производстве и работе самой лампы безопасные компоненты. Светодиодные лампы не используют веществ, содержащих ртуть, поэтому они не представляют опасности в случае выхода из строя или повреждения колбы. Различают законченные устройства — светильники и элементы для светильников — сменные лампы.

Светодиодный светильник

Светодиодный светильник

Светодиодный светильник — самостоятельное устройство. Корпус светильника чаще всего уникален, специально спроектирован под светодиодный источник освещения. Конструктивно такой светильник состоит из цоколя, металлического корпуса, служащего одновременно радиатором, платы со светодиодами, электронного драйвера (преобразователя питания) и полупрозрачной пластмассовой полусферы. Иногда светодиодным светильником называют традиционный светильник с установленной сменной светодиодной лампой. Однако, специально спроектированный светильник обладает бóльшей энергоэффективностью и надёжностью. Светодиодные источники света в основном используются для направленного или местного освещения по причине особенностей полупроводникового излучателя светить преимущественно в одном направлении[1].

Преимущества

Значительное снижение светового потока после 40000 часов использования

Преимущество светодиодного светильника по сравнению с лампами накаливания — низкое энергопотребление, заявленный долгий срок службы от 30’000 до 50’000 и более часов[1], простота установки, более низкая температура корпуса по сравнению с лампой накаливания, имеющей сравнимую яркость, высокая механическая прочность, зачастую — небольшие габариты.

Полная экологическая безопасность позволяет сохранять окружающую среду, не требуя специальных условий по утилизации: не содержит ртути, её производных и других ядовитых, вредных или опасных составляющих материалов и веществ. Иногда производители не соблюдают экологические нормы. Лампы таких производителей содержат токсичные пластики, электролиты, свинец-содержащие пайки и т. п., а также печатные платы драйвера пропитывают связующими компонентами (фенол и формальдегидными смолами).

Недостатки

Эффект мерцания светодиодной лампы — один из недостатков светодиодных ламп с простейшим драйвером Низкое качество сборки и компонентов

Основные недостатки — высокая цена, кроме того, многие светодиодные лампы светят только в одном направлении (что может быть и достоинством). Производители ламп в целях повышения светоотдачи, снижения тепловыделения и экономии на радиодеталях часто полностью или частично пренебрегают сглаживанием пульсаций питающего светодиоды тока, вследствие чего такие лампы имеют невидимое невооружённому глазу мерцание с удвоенной частотой питающей электросети (см. фото), а из-за экономии на теплоотводящих элементах возможен перегрев и порча светодиодов, особенно в закрытых плафонах. Кроме того, при выходе из строя любого из элементов светильник чаще всего подлежит замене на аналогичный. Эти недостатки чаще всего компенсируются экономией электроэнергии, экономией на обслуживании за счет большего срока службы[1], что особенно актуально для уличного освещения[2]. Ещё одним недостатком является продажа LED-ламп без указания технических характеристик и не позволяет произвести выбор и подбор ламп в соответствии с требованиями к освещению, требованиями к коэффициенту мощности и прочим критичным параметрам сети.

Большинство светодиодов белого света (синий кристалл — жёлтый люминофор) имеют неоднородный спектр, а именно — большой провал в спектре на длине волны 480 нм. На свет именно этой длины волны должен реагировать зрачок глаза сужением, но этого не происходит и глаз (хрусталик, сетчатка) получает большую травмирующую дозу синего света[3]. Поражение сетчатки глаза мышей синим светом при облучении их белыми светодиодами было экспериметально подтверждено М. А. Островским и П. П. Заком[4]. Однако в настоящее время ряд фирм уже разработал светодиоды, спектр света которых адаптирован для глаз человека[3].

Некоторые СМИ публикуют также статьи о вредности LED-освещения[5][6], ссылаясь на исследование испанских учёных из Университета Комплутенсе. Это исследование, действительно, говорит о бо́льшей вредности холодного излучения светодиодов в сравнении с другими светоизлучающими элементами, но речь идёт о долгом и непосредственном взгляде на источники света — экраны всевозможных устройств, что исключает[6] осветительные приборы[7].

В светодиодных лампах со временем происходит падение яркости из-за выгорания светодиодов. Падение яркости также регламентируется нормативными актами.

К недостаткам также можно отнести чувствительность светодиодов к повышенной температуре и как следствие — невозможность применения в местах возможного перегрева источника света (бани и сауны, закрытые светильники).

Недостатком светодиодных ламп является несовместимость с выключателями с подсветкой из-за появления мерцания или слабого свечения светодиодных ламп в выключенном положении выключателя.

Из-за технологической трудности производства и постоянного ускорения производства в отрасли, светодиодные лампы чаще ламп накаливания подвержены браку[8].

Типы светильников

Влагозащищённый светодиодный светильник

Все типы светильников можно разделить на три группы:

  • Светодиодные светильники для улиц, парков, дорог, для архитектурного освещения[9]. Выполняются в защищенном от влаги и пыли корпусе, кроме того, корпус обычно выполняет роль теплоотвода и изготавливается из хорошо проводящих тепло материалов[10].
  • Светильники для производственных целей, ЖКХ и офисов. К изделиям предъявляются повышенные требования по качеству освещения, в том числе к стабильности и цветопередаче, условиям эксплуатации[11]. Такие светильники чаще производятся в антивандальном исполнении, укомплектованы специальной отвёрткой и специальными саморезами, защищающими корпус от несанкционированного вскрытия. Рассеиватель у современных антивандальных светильников для ЖКХ выполнен из поликарбоната, который в десятки раз крепче традиционного стекла.
  • Светильники для бытовых нужд обычно выпускаются невысокой мощности, но должны удовлетворять многочисленным требованиям к качеству освещения, электробезопасности, пожароопасности и, в немалой степени, — к внешнему виду. Зачастую бытовые светильники имеют сменные лампы.

Кроме указанных применений, светодиодные светильники хорошо подходят для освещения музеев и раритетов, поскольку спектр лампы не содержит ультрафиолетовой составляющей[12][13].

Светильники для уличного освещения

Влагозащищённый светодиодный прожектор для уличного освещения, мощностью 10 Вт.

Светильники для улиц, парков и дорог должны удовлетворять многим критериям. Основные особенности, которые необходимо учитывать[9]:

  • Экономия электроэнергии. Светильники для улицы освещают большие территории и особенно важно, чтобы бóльшая часть излучаемого света направлялась на освещаемую поверхность. Светодиодные приборы наиболее удовлетворяют таким требованиям в исполнениях прямого света и преимущественно прямого света (по ГОСТ 17677-82) и позволяют получить экономию электроэнергии даже по сравнению с аналогичными газоразрядными лампами высокого давления и натриевыми лампами.
  • Прочность конструкции и защищенность от воздействия окружающей среды. Корпус устройства дожен быть сконструирован так, чтобы мусор, испражнения птиц и вода не скапливались на поверхности светильника и не ухудшали его охлаждающую способность, прозрачность защитного стекла, тем самым сохраняя характеристики в течение всего срока службы.
  • Цветопередача. Светодиодные источники освещения в большинстве обладают лучшими характеристиками цветопередачи. Кроме того, цветовой оттенок и индекс цветопередачи могут быть подобраны при выборе светильника для конкретного приложения.
  • Срок службы светодиодных ламп значительно превышает срок службы традиционных уличных источников освещения. Однако, светодиодные источники света чувствительны к повышенной температуре и при плохом теплоотводе срок службы может быть значительно снижен.
  • Равномерность освещения зависит от конструкции светильника и в большинстве обеспечивает необходимую диаграмму направленности для светильников прямого света.
  • Цена светодиодного светильника зачастую значительно выше аналогичных традиционных устройств освещения. Но, поскольку замена ламп в традиционных устройствах наружного освещения связана со значительными затратами, требует специального оборудования, использование светодиодных устройств в некоторых случаях даёт ощутимую экономию в ближайшей перспективе применения[14].

Светильники для производственных целей, офисов и ЖКХ

Светодиодный светильник на АЗС

Светильники предназначены для автоматического управления освещением в жилых домах и общественных местах, а также в производственных, офисных, складских и иных помещениях: лестничные клетки и марши подъездов, коридоры и переходы, козырьки и тамбуры, подвалы и чердаки, лифты и лифтовые площадки, комнаты и подсобные помещения, предподъездные территории, подземные автостоянки, а также другие второстепенные помещения, требующие ухода и освещения.

Умная светодиодная лампа

Умная светодиодная лампа — это осветительный прибор, управляющийся посредством смартфона, который позволяет контролировать параметры работы лампы, такие как цвет, яркость, время работы и другие параметры работы лампы.

Принцип работы

Как правило умная лампа имеет  оснащена алюминиевым корпусом для лучшей теплоотдачи, защитным колпаком от пыли и влаги, внутри которого расположены светодиоды, антенна с модулем Bluetooth, трансформатор и плата контроллера. В некоторых случаях в изделие включают датчики движения, микрофон или видеокамеру.

Если вкрутить лампочку в цоколь, вы получите свет обычной лампы. Чтобы воспользоваться всеми ее преимуществами необходимо установить приложение на свой Android или IOS гаджет. Соединение происходит с помощью Bluetooth-модуля или беспроводной сети Wi-Fi. Далее Вы сможете установить таймеры, необходимый режим света и менять его по надобности. Удобно создать несколько пользовательских режимов чтобы не настраивать каждый раз сначала.

Большинство умных ламп можно объединять между собой с помощью специального хаба к которому подключается до 100 изделий.

Сменная светодиодная лампа

Сменная светодиодная лампа — осветительный прибор, устанавливаемый в существующий светильник, изначально предназначенный как для установки сменных светодиодных ламп, так и для установки ламп другого типа — люминесцентных, накаливания, галогенных, возможно, с некоторой доработкой. В настоящее время выпускаются светодиодные лампы практически под все существующие типы цоколей. Лампы выпускаются мощностью до 40 Вт и предназначены для установки в бытовые осветительные устройства — настольные светильники, потолочные светильники, бра — как быстрая замена менее экономичных традиционных ламп без изменения дизайна и конструкции. Производители, кроме напряжения питания, потребляемой мощности и типа цоколя, указывают оттенок белого света (цветовую температуру, как правило, 2700-3000 K, 4000 K, 6000 K), класс энергоэффективности, срок службы лампы и мощность лампы накаливания сравнимой яркости.

Распространённые виды сменных светодиодных ламп:

  • Лампы с плоской платой и рассеивателем. Как правило, имеют форму «груши», «свечи» или софита. Могут быть оснащены качественным радиатором и драйвером — для него в такой лампе достаточно много места. Бывают также лампы, сделанные по технологии Chip-On-Board. Недостаток такой схемы — сложно получить лампу, диаграмма направленности которой не имеет значительного провала в сторону цоколя, для этого приходится делать достаточно крупногабаритный рассеиватель.
  • Лампа-«кукуруза». Собирается из нескольких плат в форме многогранной призмы, на каждую плату устанавливается несколько маломощных светодиодов, сверху может накрываться колпаком из оргстекла с отверстиями для охлаждения. По форме такая лампа напоминает кукурузный початок. Лампы-«кукурузы» дают более всенаправленную диаграмму распределения света, и потому не требуют крупногабаритных рассевателей. Как правило в лампах-кукурузах светодиоды плохо охлаждаются, отчего быстро теряют яркость или выходят из строя.
  • Филаментные лампы — внешне похожи на ранние лампы накаливания, благодаря чему могут использоваться в декоративных светильниках, рассчитанных на прозрачные лампы накаливания. В таких лампах светодиоды выращиваются на стеклянной подложке, соединяются последовательно в группы, как правило по 28 светодиодов, что позволяет упростить драйвер, так как одна такая «нить» питается напряжением около 100 вольт — благодаря этому не требуется преобразование напряжения, достаточно лишь ограничения тока и выпрямления. Однако в дешёвых филаментных лампах используются простейшие выпрямители даже без сглаживающих конденсаторов.
  • Линейные лампы — предназначены для замены линейных люминесцентных ламп. Для этого из светильника извлекаются балластные дроссели и стартеры (либо электронные пускорегулирующие аппараты).
  • Специальные лампы — для замены индикаторных ламп, ламп со специальным цоколем и т.д. Выполняются в форме заменяемой лампы.
  • Лампа на плоской плате со снятым рассеивателем

  • Лампа типа «кукуруза»

  • Лампы со светодиодами на подложках в виде лепестков

  • Лампа «софитного» типа под цоколь GU10

  • Линейные лампы

  • Лампа с цоколем R7S для установки в прожектор

Примечания

Ссылки

wikipedia.green

Светодиодная лампа — Википедия. Что такое Светодиодная лампа

Светодиодная лампа со стандартным цоколем E27, мощностью 10 Вт и цветовой температурой 4500 К

Светодиодные лампы или светодиодные светильники в качестве источника света используют светодиоды (англ. Light-Emitting Diode, сокр. LED), применяются для бытового, промышленного и уличного освещения. Светодиодная лампа является одним из самых экологически чистых источников света. Принцип свечения светодиодов позволяет применять в производстве и работе самой лампы безопасные компоненты. Светодиодные лампы не используют веществ, содержащих ртуть, поэтому они не представляют опасности в случае выхода из строя или повреждения колбы. Различают законченные устройства — светильники и элементы для светильников — сменные лампы.

Светодиодный светильник

Светодиодный светильник

Светодиодный светильник — самостоятельное устройство. Корпус светильника чаще всего уникален, специально спроектирован под светодиодный источник освещения. Конструктивно такой светильник состоит из цоколя, металлического корпуса, служащего одновременно радиатором, платы со светодиодами, электронного драйвера (преобразователя питания) и полупрозрачной пластмассовой полусферы. Иногда светодиодным светильником называют традиционный светильник с установленной сменной светодиодной лампой. Однако, специально спроектированный светильник обладает бóльшей энергоэффективностью и надёжностью. Светодиодные источники света в основном используются для направленного или местного освещения по причине особенностей полупроводникового излучателя светить преимущественно в одном направлении[1].

Преимущества

Значительное снижение светового потока после 40000 часов использования

Преимущество светодиодного светильника по сравнению с лампами накаливания — низкое энергопотребление, заявленный долгий срок службы от 30’000 до 50’000 и более часов[1], простота установки, более низкая температура корпуса по сравнению с лампой накаливания, имеющей сравнимую яркость, высокая механическая прочность, зачастую — небольшие габариты.

Полная экологическая безопасность позволяет сохранять окружающую среду, не требуя специальных условий по утилизации: не содержит ртути, её производных и других ядовитых, вредных или опасных составляющих материалов и веществ. Иногда производители не соблюдают экологические нормы. Лампы таких производителей содержат токсичные пластики, электролиты, свинец-содержащие пайки и т. п., а также печатные платы драйвера пропитывают связующими компонентами (фенол и формальдегидными смолами).

Недостатки

Эффект мерцания светодиодной лампы — один из недостатков светодиодных ламп с простейшим драйвером Низкое качество сборки и компонентов

Основные недостатки — высокая цена, кроме того, многие светодиодные лампы светят только в одном направлении (что может быть и достоинством). Производители ламп в целях повышения светоотдачи, снижения тепловыделения и экономии на радиодеталях часто полностью или частично пренебрегают сглаживанием пульсаций питающего светодиоды тока, вследствие чего такие лампы имеют невидимое невооружённому глазу мерцание с удвоенной частотой питающей электросети (см. фото), а из-за экономии на теплоотводящих элементах возможен перегрев и порча светодиодов, особенно в закрытых плафонах. Кроме того, при выходе из строя любого из элементов светильник чаще всего подлежит замене на аналогичный. Эти недостатки чаще всего компенсируются экономией электроэнергии, экономией на обслуживании за счет большего срока службы[1], что особенно актуально для уличного освещения[2]. Ещё одним недостатком является продажа LED-ламп без указания технических характеристик и не позволяет произвести выбор и подбор ламп в соответствии с требованиями к освещению, требованиями к коэффициенту мощности и прочим критичным параметрам сети.

Большинство светодиодов белого света (синий кристалл — жёлтый люминофор) имеют неоднородный спектр, а именно — большой провал в спектре на длине волны 480 нм. На свет именно этой длины волны должен реагировать зрачок глаза сужением, но этого не происходит и глаз (хрусталик, сетчатка) получает большую травмирующую дозу синего света[3]. Поражение сетчатки глаза мышей синим светом при облучении их белыми светодиодами было экспериметально подтверждено М. А. Островским и П. П. Заком[4]. Однако в настоящее время ряд фирм уже разработал светодиоды, спектр света которых адаптирован для глаз человека[3].

Некоторые СМИ публикуют также статьи о вредности LED-освещения[5][6], ссылаясь на исследование испанских учёных из Университета Комплутенсе. Это исследование, действительно, говорит о бо́льшей вредности холодного излучения светодиодов в сравнении с другими светоизлучающими элементами, но речь идёт о долгом и непосредственном взгляде на источники света — экраны всевозможных устройств, что исключает[6] осветительные приборы[7].

В светодиодных лампах со временем происходит падение яркости из-за выгорания светодиодов. Падение яркости также регламентируется нормативными актами.

К недостаткам также можно отнести чувствительность светодиодов к повышенной температуре и как следствие — невозможность применения в местах возможного перегрева источника света (бани и сауны, закрытые светильники).

Недостатком светодиодных ламп является несовместимость с выключателями с подсветкой из-за появления мерцания или слабого свечения светодиодных ламп в выключенном положении выключателя.

Из-за технологической трудности производства и постоянного ускорения производства в отрасли, светодиодные лампы чаще ламп накаливания подвержены браку[8].

Типы светильников

Влагозащищённый светодиодный светильник

Все типы светильников можно разделить на три группы:

  • Светодиодные светильники для улиц, парков, дорог, для архитектурного освещения[9]. Выполняются в защищенном от влаги и пыли корпусе, кроме того, корпус обычно выполняет роль теплоотвода и изготавливается из хорошо проводящих тепло материалов[10].
  • Светильники для производственных целей, ЖКХ и офисов. К изделиям предъявляются повышенные требования по качеству освещения, в том числе к стабильности и цветопередаче, условиям эксплуатации[11]. Такие светильники чаще производятся в антивандальном исполнении, укомплектованы специальной отвёрткой и специальными саморезами, защищающими корпус от несанкционированного вскрытия. Рассеиватель у современных антивандальных светильников для ЖКХ выполнен из поликарбоната, который в десятки раз крепче традиционного стекла.
  • Светильники для бытовых нужд обычно выпускаются невысокой мощности, но должны удовлетворять многочисленным требованиям к качеству освещения, электробезопасности, пожароопасности и, в немалой степени, — к внешнему виду. Зачастую бытовые светильники имеют сменные лампы.

Кроме указанных применений, светодиодные светильники хорошо подходят для освещения музеев и раритетов, поскольку спектр лампы не содержит ультрафиолетовой составляющей[12][13].

Светильники для уличного освещения

Влагозащищённый светодиодный прожектор для уличного освещения, мощностью 10 Вт.

Светильники для улиц, парков и дорог должны удовлетворять многим критериям. Основные особенности, которые необходимо учитывать[9]:

  • Экономия электроэнергии. Светильники для улицы освещают большие территории и особенно важно, чтобы бóльшая часть излучаемого света направлялась на освещаемую поверхность. Светодиодные приборы наиболее удовлетворяют таким требованиям в исполнениях прямого света и преимущественно прямого света (по ГОСТ 17677-82) и позволяют получить экономию электроэнергии даже по сравнению с аналогичными газоразрядными лампами высокого давления и натриевыми лампами.
  • Прочность конструкции и защищенность от воздействия окружающей среды. Корпус устройства дожен быть сконструирован так, чтобы мусор, испражнения птиц и вода не скапливались на поверхности светильника и не ухудшали его охлаждающую способность, прозрачность защитного стекла, тем самым сохраняя характеристики в течение всего срока службы.
  • Цветопередача. Светодиодные источники освещения в большинстве обладают лучшими характеристиками цветопередачи. Кроме того, цветовой оттенок и индекс цветопередачи могут быть подобраны при выборе светильника для конкретного приложения.
  • Срок службы светодиодных ламп значительно превышает срок службы традиционных уличных источников освещения. Однако, светодиодные источники света чувствительны к повышенной температуре и при плохом теплоотводе срок службы может быть значительно снижен.
  • Равномерность освещения зависит от конструкции светильника и в большинстве обеспечивает необходимую диаграмму направленности для светильников прямого света.
  • Цена светодиодного светильника зачастую значительно выше аналогичных традиционных устройств освещения. Но, поскольку замена ламп в традиционных устройствах наружного освещения связана со значительными затратами, требует специального оборудования, использование светодиодных устройств в некоторых случаях даёт ощутимую экономию в ближайшей перспективе применения[14].

Светильники для производственных целей, офисов и ЖКХ

Светодиодный светильник на АЗС

Светильники предназначены для автоматического управления освещением в жилых домах и общественных местах, а также в производственных, офисных, складских и иных помещениях: лестничные клетки и марши подъездов, коридоры и переходы, козырьки и тамбуры, подвалы и чердаки, лифты и лифтовые площадки, комнаты и подсобные помещения, предподъездные территории, подземные автостоянки, а также другие второстепенные помещения, требующие ухода и освещения.

Умная светодиодная лампа

Умная светодиодная лампа — это осветительный прибор, управляющийся посредством смартфона, который позволяет контролировать параметры работы лампы, такие как цвет, яркость, время работы и другие параметры работы лампы.

Принцип работы

Как правило умная лампа имеет  оснащена алюминиевым корпусом для лучшей теплоотдачи, защитным колпаком от пыли и влаги, внутри которого расположены светодиоды, антенна с модулем Bluetooth, трансформатор и плата контроллера. В некоторых случаях в изделие включают датчики движения, микрофон или видеокамеру.

Если вкрутить лампочку в цоколь, вы получите свет обычной лампы. Чтобы воспользоваться всеми ее преимуществами необходимо установить приложение на свой Android или IOS гаджет. Соединение происходит с помощью Bluetooth-модуля или беспроводной сети Wi-Fi. Далее Вы сможете установить таймеры, необходимый режим света и менять его по надобности. Удобно создать несколько пользовательских режимов чтобы не настраивать каждый раз сначала.

Большинство умных ламп можно объединять между собой с помощью специального хаба к которому подключается до 100 изделий.

Сменная светодиодная лампа

Сменная светодиодная лампа — осветительный прибор, устанавливаемый в существующий светильник, изначально предназначенный как для установки сменных светодиодных ламп, так и для установки ламп другого типа — люминесцентных, накаливания, галогенных, возможно, с некоторой доработкой. В настоящее время выпускаются светодиодные лампы практически под все существующие типы цоколей. Лампы выпускаются мощностью до 40 Вт и предназначены для установки в бытовые осветительные устройства — настольные светильники, потолочные светильники, бра — как быстрая замена менее экономичных традиционных ламп без изменения дизайна и конструкции. Производители, кроме напряжения питания, потребляемой мощности и типа цоколя, указывают оттенок белого света (цветовую температуру, как правило, 2700-3000 K, 4000 K, 6000 K), класс энергоэффективности, срок службы лампы и мощность лампы накаливания сравнимой яркости.

Распространённые виды сменных светодиодных ламп:

  • Лампы с плоской платой и рассеивателем. Как правило, имеют форму «груши», «свечи» или софита. Могут быть оснащены качественным радиатором и драйвером — для него в такой лампе достаточно много места. Бывают также лампы, сделанные по технологии Chip-On-Board. Недостаток такой схемы — сложно получить лампу, диаграмма направленности которой не имеет значительного провала в сторону цоколя, для этого приходится делать достаточно крупногабаритный рассеиватель.
  • Лампа-«кукуруза». Собирается из нескольких плат в форме многогранной призмы, на каждую плату устанавливается несколько маломощных светодиодов, сверху может накрываться колпаком из оргстекла с отверстиями для охлаждения. По форме такая лампа напоминает кукурузный початок. Лампы-«кукурузы» дают более всенаправленную диаграмму распределения света, и потому не требуют крупногабаритных рассевателей. Как правило в лампах-кукурузах светодиоды плохо охлаждаются, отчего быстро теряют яркость или выходят из строя.
  • Филаментные лампы — внешне похожи на ранние лампы накаливания, благодаря чему могут использоваться в декоративных светильниках, рассчитанных на прозрачные лампы накаливания. В таких лампах светодиоды выращиваются на стеклянной подложке, соединяются последовательно в группы, как правило по 28 светодиодов, что позволяет упростить драйвер, так как одна такая «нить» питается напряжением около 100 вольт — благодаря этому не требуется преобразование напряжения, достаточно лишь ограничения тока и выпрямления. Однако в дешёвых филаментных лампах используются простейшие выпрямители даже без сглаживающих конденсаторов.
  • Линейные лампы — предназначены для замены линейных люминесцентных ламп. Для этого из светильника извлекаются балластные дроссели и стартеры (либо электронные пускорегулирующие аппараты).
  • Специальные лампы — для замены индикаторных ламп, ламп со специальным цоколем и т.д. Выполняются в форме заменяемой лампы.
  • Лампа на плоской плате со снятым рассеивателем

  • Лампа типа «кукуруза»

  • Лампы со светодиодами на подложках в виде лепестков

  • Лампа «софитного» типа под цоколь GU10

  • Линейные лампы

  • Лампа с цоколем R7S для установки в прожектор

Примечания

Ссылки

wiki.sc

Светодиодная нить — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 марта 2017; проверки требуют 25 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 24 марта 2017; проверки требуют 25 правок. Светодиодная филаментная лампа с четырьмя светодиодными нитями и байонетным цоколем

Светодиодная нить (англ. LED filament) — светоизлучающий элемент светодиодной лампы, имитирующий нить накала лампы накаливания. Светодиодные нити в лампочке закрепляются прямо на токоподводящих электродах, которые в свою очередь впаяны в стеклянный изолятор, аналогично лампе накаливания. Чаще всего такие лампы со светодиодными нитями имеют стандартные цоколи и используются в светильниках, предназначенных для стандартных сменных ламп.

Впервые лампы с использованием светодиодных нитей были изготовлены в 2008 году Японской компанией Ushio Lighting [1] для имитации традиционных ламп накаливания. В дальнейшем многие производители светодиодных ламп начали производство сменных ламп со светодиодными нитями различной конфигурации, мощности и с различными типами цоколя.

Светодиодная нить Схема светодиодной нити:
     Люминофор     Основа — стекло/сапфировое стекло     Светодиоды     Проводник

Светодиодные нити изготавливаются по технологии чип-на-стекле (Chip-on-glass или COG). На прозрачной подложке из стекла или сапфирового стекла располагают несколько (обычно 28) синих светодиодов, соединённых последовательно. Сверху нить покрыта люминофором. Поскольку светодиоды в нити включены последовательно, питается такая нить высоким напряжением. Так, две нити в лампе, включенные последовательно, питаются напряжением, близким к напряжению питающей сети, что снижает требования и повышает эффективность преобразователя питания.

Чтобы цвет свечения светодиодной нити стал максимально похож на излучение лампы накаливания, производители комбинируют люминофоры и светофильтры — это позволяет получать любую цветовую температуру испускаемого света[2].

В отличие от обычной светодиодной лампы, в которой матрица с корпусными светодиодами громоздкая, закреплена на поверхности теплоотвода и излучает свет только в одном направлении, светодиодная нить излучает свет более широко за счет рассеивания света стеклянным покрытием, также использованием различного взаимного расположения нитей в лампе. Светодиодные нити обладают бо́льшим КПД, чем SMD-светодиоды, что позволяет не использовать радиаторы охлаждения. Нитевые лампы имеют хороший коэффициент цветопередачи (CRi>80), но в то же время к недостаткам можно отнести плохую переносимость вибраций[2]. К недостаткам относится и то, что нитевые светодиодные лампы редко бывают большой мощности, как правило, она составляет 4‒7 Вт, что обусловлено необходимостью обеспечения номинального теплового режима работы с учетом физических ограничений по типоразмеру цоколя и колбы лампы[3].

  • Декоративная филаментная лампа

  • Филаментная лампа с цоколем E27

  • Филаментные лампы, установленные в настенный бра

  • Светящиеся филаментные лампы в настенном бра

ru.wikipedia.org

Обсуждение:Светодиодная лампа — Википедия

Llans12, все правильно сделали, заменив светоотдачу на яркость. Я не разобрался в истории правок, решив со сна что вы заменили яркость на светоотдачу. Так что все доводы, ранее здесь изложенные, надо мне самому адресовать 🙂 Sokolshok 10:25, 22 марта 2013 (UTC)

Предлагаю дополнить статью данными о затухании светодиодных ламп по сравнению с энергосберегающими. И ссылку о том как выбрать светодиодные лампы http: //mirsvetodiodov.ru/svetodiodnye-lampi 89.178.49.162 05:00, 5 апреля 2013 (UTC)Elijah

Ссылка не удовлетворяет требованиям ВП:АИ —LA 05:37, 5 апреля 2013 (UTC)

История светодиодных ламп[править код]

На [sts-led<dot>ru/article/led-lamps/index.html этой странице] хорошо написана история о светодиодных лампах. Предлагаю добавить ссылку.

178.215.97.57 14:23, 28 ноября 2013 (UTC)

На каком основании было удалено это обсуждение?
Азаренко Владимир 20:44, 28 ноября 2013 (UTC)
Потому что — это чисто рекламная ссылка. Если Вы считаете что это — не так, попробуйте обсудить это на ВП:КОИ —LA 20:44, 29 ноября 2013 (UTC)
Тему поднял в ВП:КОИ
Азаренко Владимир 01:44, 30 ноября 2013 (UTC)

Светодиоды содержат Мышьяк и Галлий , другие элементы Artem-1975 16:43, 12 января 2014 (UTC)

  • Не обязательно. Это называется «горе от ума», где-то что-то услышал, да суть не понял. А если какие и содержат, то не больше, чем в любом полупроводниковом приборе с электронно-дырочным p-n-переходом. Акцепторами-донорами электронов в них чаще всего являются Германий и Индий, причем в таких ничтожных количествах, что практический никакого влияния не оказывают, тем более учитывая герметичность исполнения приборов, в том числе кристаллов светодиодов (кстати, в статьях в википедии структура полупроводников плохо описана). А при использовании органических светодиодов, то и вовсю отсутствуют. 37.113.160.111 13:15, 19 января 2019 (UTC)

Странно, что статья про технические устройства совершенно не содержит никаких сведений о прингципе действия, конструкции, схемных решениях. Так, например, хотелось бы знать, в каких лампах какие виды светодиодов используются (RGB или люминофорные), так как на упаковках ламп это почему-то не указывают. В данной статье вообще не упомянуто про то, что светодиоды могут быть разных видов, с принципиально разным спектром

Vladimir-sergin 05:01, 30 октября 2014 (UTC)

Вообще всё об этом можно найти в статье «Светодиод» https://ru.wikipedia.org/wiki/Светодиод

—Sergius EU 10:00, 18 февраля 2016 (UTC)

В статье нет информации о разновидностях СД-ламп. Груша и т. п., кристалл, кукуруза, COG (chip-on-glass)
В дополнение к ГОСТам, регламентирующим параметры электросети, специально издано постановление Правительства РФ от 20 июля 2011 года № 602 «Об утверждении требований к осветительным устройствам и электрическим лампам, используемым в цепях переменного тока в целях освещения».
Цитата:
«5. Установить следующие минимально допустимые значения коэффициента мощности:
а) в отношении светодиодных ламп ненаправленного света (ретрофитов), модулей светодиодных источников в составе осветительного прибора мощностью от 5 Вт до 25 Вт — не менее 0,7;
б) в отношении светодиодных ламп ненаправленного света (ретрофитов), модулей светодиодных источников в составе осветительного прибора мощностью более 25 Вт — не менее 0,85;»

    "в составе осветительного прибора" т. е. суммарно нескольких ламп.

Цитата:
6. Установить, что спад светового потока составляет:
а) в отношении светодиодных ламп ненаправленного света (ретрофитов) в составе осветительного прибора при соблюдении условий эксплуатации, указанных в сопроводительной документации, — менее 30 процентов за 25000 часов;
Цитата:
7. Установить следующие минимально допустимые значения индекса цветопередачи:
а) в отношении светодиодных ламп ненаправленного света (ретрофитов), модулей светодиодных источников света в зависимости от области применения:
для наружного освещения — 60;
для внутреннего освещения — 70;

Вывод: продажа того «мусора» что на прилавках наших магазинов запрещена, применение этих «ламп» — противозаконно и приводит к возгораниям проводки и перегрузкам в сети, уже не говоря о том, что мы платим не за освещение, а за нагрев проводов. 5.18.184.196 18:13, 29 февраля 2016 (UTC)

Светодиодные лампы на плоской прозрачной подложке[править код]

Добавьте в тему описание и фото ещё одного типа ламп — на плоской прозрачной подложке и со светопрозрачным (частично) цоколем, имеющих так же, как и филаметнтные всенаправленный свет и отдачу Лм/Вт на уровне средних филаментов. 188.247.108.240 13:48, 27 июля 2018 (UTC)

Достоинства и недостатки[править код]

Раздел о достоинствах и недостатков — сплошной ОРИСС, смесь взаимопротиворечащих утверждений без источников или с сомнительными источниками, так что я его удалил.

«Научные» статьи выглядят не лучше, потому что в первой «Учитывая эффект „меланопсинового креста“ такие фирмы-изготовители светодиодов, как … разработали новое поколение светодиодов, спектр света которых адаптирован для глаз человека, аналогичен спектрам лампы накаливания или галогенной лампы и приближен к спектру солнечного света», а вторая была добавлена вместе с ней, так что, видимо, это какая-то джинса, туда же. Викизавр (обс.) 04:17, 10 сентября 2019 (UTC)

ru.wikipedia.org

0 comments on “Светодиодная лампа википедия – Светодиодная лампа — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *