Свойства окружности и касательной – Свойства касательных к окружности, с примерами

Касательная к окружности

Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.

Вот парочка примеров:

Окружность с центром O касается прямой l в точке AИз любой точки M за пределами окружности можно провести ровно две касательныхРазличие между касательной l, секущей BC и прямой m, не имеющей общих точек с окружностью

На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.

Основные свойства касательных

Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.

1. Отрезки касательных, проведённых из одной точки, равны

Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:

Отрезки касательных к окружности, проведённых из одной точки, равны.

Отрезки AM и BM равны

2. Касательная перпендикулярна радиусу, проведённому в точку касания

Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OAи OB, после чего обнаружим, что углы OAMи OBM — прямые.

Радиус, проведённый в точку касания, перпендикулярен касательной.

Этот факт можно использовать без доказательства в любой задаче:

Радиусы, проведённые в точку касания, перпендикулярны касательным

Кстати, заметьте: если провести отрезок OM, то мы получим два равных треугольника:

OAM и OBM.

3. Соотношение между касательной и секущей

А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M. Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC).

Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной

Соотношение между секущей и касательной

4. Угол между касательной и хордой

Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.

Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.

Откуда берётся точка B? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.

Иногда всё-таки касается 🙂

Смотрите также:

  1. Пробный ЕГЭ 2012. Вариант 5 (без производных)
  2. Формула полной вероятности
  3. Сводный тест по задачам B12 (2 вариант)
  4. Иррациональные неравенства. Часть 2
  5. Нестандартные задачи B2: кредит в банке
  6. Выделение полного квадрата

www.berdov.com

Свойства касательной

Относительное положение прямой и окружности


Прямая относительно окружности может находиться в следующих трех положениях:

  1. Расстояние от центра окружности до прямой больше радиуса. В этом случае все точки прямой лежат вне круга.

  2. Расстояние от центра окружности до прямой меньше радиуса. В этом случае прямая имеет точки, лежащие внутри круга и так как прямая бесконечна в обе стороны, то она пересекается сокружностью в 2 точках.

  3. Расстояние от центра окружности до прямой равно радиусу. Прямая — касательная.

Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности.

Общая точка называется в этом случае точкой касания.

Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.

Теорема. Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.

Пусть O (рис) — центр некоторого круга и OA какой-нибудь его радиус. Через его конец A проведем MN ^ OA.

Требуется доказать, что прямая MN — касательная, т.е. что эта прямая имеет с окружностью только одну общую точку A.

Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B.

Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.

Но этого быть не может, так как, если OA -перпендикуляр, то OB должна быть наклонной к MN, а наклонная больше перпендикуляра.

Обратная теорема. Если прямая касательна к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.

Пусть MN — касательная к окружности, A — точка касания и O — центр этой окружности.

Требуется доказать, что OA^MN.

Допустим противное, т.е. предположим, что перпендикуляром, опущенным из O на MN, будет не OA , а какая-нибудь другая прямая, например, OB.

Возьмем BС = AB и проведем OС.

Тогда OA и OС будут наклонные, одинаково удаленные от перпендикуляра OB, и следовательно, OС = OA.

Из этого следует, что окружность, учитывая наше предположение, будет иметь с прямой MN две общие точки: A  и  С , т.е. MN будет не касательная, а секущая, что противоречит условию.

Следствие. Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.

Теорема. Касательная, параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.

Пусть прямая AB (рис.) касается окружности в точке M и параллельна хорде СD.

Требуется доказать, что ÈCM = ÈMD.

Проведя через точку касания диаметр ME, получаем: EM ^ AB, и следовательно, EM ^ СВ.

Поэтому СM=MD.

Задача. Через данную точку провести касательную к данной окружности.

Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.

Рассмотрим тот случай, когда точка дана вне круга.

Пусть требуется (рис.) провести к окружности с центром O касательную через точку A.

Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и OС, соединим точку A с точками D и E, в которых эти хорды пересекаются с данной окружностью.

Прямые AD и AE — касательные к окружности O.

Действительно, из построения видно, что тр-ки AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и OС, равными диаметру круга O.

Так как OD и OE — радиусы, то D — середина OB, а E — середина OС, значит AD и AE — медианы, проведенные к основаниям равнобедренных тр-ков, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE, то они — касательные.

Следствие. Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.

Так AD=AE и ÐOAD = ÐOAE (рис.), потому что прямоугольные тр-ки AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны.

Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.

Задача. Провести касательную к данной окружности O параллельно данной прямой AB (рис.).

Опускаем на AB из центра O перпендикуляр OС и через точку D, в которой этот перпендикуляр пересекается с окружностью, проводим EF || AB.

Искомая касательная будет EF.

Действительно, так как OС ^ AB и EF || AB, то EF ^ OD, а прямая, перпендикулярная к радиусу в его конце, лежащем на окружности — касательная.

Задача. К двум окружностям O и O1 провести общую касательную (рис.).

Анализ. Предположим, что задача решена.

Пусть AB будет общая касательная, A и B — точки касания.

Очевидно, что если мы найдем одну из этих точек, например, A, то затем легко найдем и другую.

Проведем радиусы OA и O1B. Эти радиусы, будучи перпендикулярны к общей касательной, параллельны между собой.

Поэтому, если из O1 проведем O1С || BA, то тр-к OСO1 будет прямоугольный при вершине С.

Вследствие этого, если опишем из O, как центра, радиусом OС окружность, то она будет касаться прямой O1С в точке С.

Радиус этой вспомогательной окружности известен: он равен OA – СA= OA — O1B, т.е. он равен разности радиусов данных окружностей.

Построение. Из центра O описываем окружность радиусом, равным разности данных радиусов.

Из O1 проводим к этой окружности касательную O1С (способом, указанным в предыдущей задаче).

Через точку касания С проводим радиус OС и продолжаем его до встречи с данной окружностью в точке A. Наконец из A проводим AB параллельно СO1.

Совершенно таким же способом мы можем построить другую общую касательную A1B1 (рис.). Прямые AB и A1B1 называют внешними общими касательными.

Можно еще провести две внутренние касательные следующим образом:

Анализ. Предположим, что задача решена (рис.). Пусть AB — искомая касательная.

Проведем радиусы OA и O1B в точки касания A и B. Так как эти радиусы оба перпендикулярны к общей касательной, то они параллельны между собой.

Поэтому, если из O1 проведем O1С || BA и продолжим OA до точки С, то OС будет перпендикуляр к O1С.

Вследствие этого окружность, описанная радиусом OС из точки O, как центра, будет касаться прямой O1С в точке С.

Радиус этой вспомогательной окружности известен: он равен OA+AС = OA+O1B, т.е. он равен сумме радиусов данных окружностей.

Построение. Из O как центра, описываем окружность радиусом, равным сумме данных радиусов.

Из O1 проводим к этой окружности касательную O1С.

Точку касания С соединяем с O.

Наконец через точку A, в которой OС пересекается с данной окружностью, проводим AB = O1С.

Подобным же способом можем построить другую внутреннюю касательную A1B1.

Общее определение касательной

Пусть к окружности с центром (рис.) проведены через точку A касательная AT и какая-нибудь секущая AM.

Станем вращать эту секущую вокруг точки A так, чтобы другая точка пересечения B все ближе и ближе придвигалась к A.

Тогда перпендикуляр OD, опущенный из центра на секущую, будет все больше и больше приближаться к радиусу OA, и угол AOD может стать меньше всякого малого угла.

Угол MAT, образованный секущей и касательной, равен углу AOD (вследствие перпендикулярности их сторон).

Поэтому при неограниченном приближении точки B к A угол MAT также может стать как угодно мал.

Это выражают иными словами так:

касательная есть предельное положение, к которому стремится секущая, проведенная через точку касания, когда вторая точка пересечения неограниченно приближается к точке касания.

Это свойство принимают за определение касательной, когда речь идет о какой угодно кривой.

Так, касательной к кривой AB (рис.) называется предельное положение MT, к которому стремится секущая MN, когда точка пересечения P неограниченно приближается к M.

Заметим,что определяемая таким образом касательная может иметь с кривой более одной общей точки (как это видно на рис).

razdupli.ru

Касательная к окружности и свойства отрезков касательных

Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.

Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.

. Угол равен , где  — центр окружности. Его сторона  касается окружности. Найдите величину меньшей дуги  окружности, заключенной внутри этого угла. Ответ дайте в градусах.

Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол  — прямой. Из треугольника получим, что угол равен  градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги  — тоже  градуса.

Ответ: .

. Найдите угол , если его сторона  касается окружности,  — центр окружности, а большая дуга  окружности, заключенная внутри этого угла, равна . Ответ дайте в градусах.

Это чуть более сложная задача. Центральный угол опирается на дугу , следовательно, он равен  градусов. Тогда угол равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол  — прямой. Тогда угол равен .

Ответ: .

. Хорда  стягивает дугу окружности в . Найдите угол между этой хордой и касательной к окружности, проведенной через точку . Ответ дайте в градусах.

Проведем радиус  в точку касания, а также радиус . Угол равен . Треугольник  — равнобедренный. Нетрудно найти, что угол равен  градуса, и тогда угол равен  градусов, то есть

половине угловой величины дуги .

Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.

. К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.

Вспомним еще одно важное свойство касательных к окружности:
Отрезки касательных, проведенных из одной точки, равны.
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника складывается из периметров отсеченных треугольников.

Ответ: .

Ты нашел то, что искал? Поделись с друзьями!

Вот более сложная задача из вариантов ЕГЭ:

. Около окружности описан многоугольник, площадь которого равна . Его периметр равен . Найдите радиус этой окружности.

Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке.
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку  — и проведите перпендикулярные сторонам радиусы в точки касания.

Соедините точку  с вершинами . Получились треугольники и .
Очевидно, что площадь многоугольника .
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?

Ответ: .

Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России)                        +7 (495) 984-09-27 (бесплатный звонок по Москве)

Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

ege-study.ru

Окружность. Основные теоремы

\[{\Large{\text{Центральные и вписанные углы}}}\]

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

 

Вписанный угол – это угол, вершина которого лежит на окружности.

 

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

 

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

 

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:


 

Треугольник \(AOB\) – равнобедренный, \(AO = OB\), \(\angle AOC\) – внешний, тогда \(\angle AOC = \angle OAB + \angle ABO = 2\angle ABC\), откуда \(\angle ABC = 0,5\cdot\angle AOC = 0,5\cdot\buildrel\smile\over{AC}\).

 

Теперь рассмотрим произвольный вписанный угол \(ABC\). Проведём диаметр окружности \(BD\) из вершины вписанного угла. Возможны два случая:

 

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\)(для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

 

2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла \(\angle ABD, \angle CBD\), у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.


 

Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

 

2. Вписанный угол, опирающийся на полуокружность, прямой.

 

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.  

\[{\Large{\text{Касательная к окружности}}}\]

Определения

Существует три типа взаимного расположения прямой и окружности:

 

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

 

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).

 

3) прямая \(c\) не имеет общих точек с окружностью (рис. 5).


 

Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

 

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

 

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

 

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\):


 

Значит, \(OA\perp KA, OB\perp KB\) как радиусы. Прямоугольные треугольники \(\triangle KAO\) и \(\triangle KBO\) равны по катету и гипотенузе, следовательно, \(KA=KB\).

 

Следствие

Центр окружности \(O\) лежит на биссектрисе угла \(AKB\), образованного двумя касательными, проведенными из одной точки \(K\).  

\[{\Large{\text{Теоремы, связанные с углами}}}\]

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

 

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:


 

Покажем, что \(\angle DMB = \dfrac{1}{2}(\buildrel\smile\over{BD} — \buildrel\smile\over{CA})\).

 

\(\angle DAB\) – внешний угол треугольника \(MAD\), тогда \(\angle DAB = \angle DMB + \angle MDA\), откуда \(\angle DMB = \angle DAB — \angle MDA\), но углы \(\angle DAB\) и \(\angle MDA\) – вписанные, тогда \(\angle DMB = \angle DAB — \angle MDA = \frac{1}{2}\buildrel\smile\over{BD} — \frac{1}{2}\buildrel\smile\over{CA} = \frac{1}{2}(\buildrel\smile\over{BD} — \buildrel\smile\over{CA})\), что и требовалось доказать.

 

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over{AB}+\buildrel\smile\over{CD}\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.


 

Из треугольника \(AMD\): \(\angle AMD = 180^\circ — \angle BDA — \angle CAD = 180^\circ — \frac12\buildrel\smile\over{AB} — \frac12\buildrel\smile\over{CD}\).

 

Но \(\angle AMD = 180^\circ — \angle CMD\), откуда заключаем, что \[\angle CMD = \frac12\cdot\buildrel\smile\over{AB} + \frac12\cdot\buildrel\smile\over{CD} = \frac12(\buildrel\smile\over{AB} + \buildrel\smile\over{CD}).\]

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

 

Доказательство

Пусть прямая \(a\) касается окружности в точке \(A\), \(AB\) – хорда этой окружности, \(O\) – её центр. Пусть прямая, содержащая \(OB\), пересекает \(a\) в точке \(M\). Докажем, что \(\angle BAM = \frac12\cdot \buildrel\smile\over{AB}\).


 

Обозначим \(\angle OAB = \alpha\). Так как \(OA\) и \(OB\) – радиусы, то \(OA = OB\) и \(\angle OBA = \angle OAB = \alpha\). Таким образом, \(\buildrel\smile\over{AB} = \angle AOB = 180^\circ — 2\alpha = 2(90^\circ — \alpha)\).

Так как \(OA\) – радиус, проведённый в точку касания, то \(OA\perp a\), то есть \(\angle OAM = 90^\circ\), следовательно, \(\angle BAM = 90^\circ — \angle OAB = 90^\circ — \alpha = \frac12\cdot\buildrel\smile\over{AB}\).

 

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

 

И наоборот: равные дуги стягиваются равными хордами.

 

Доказательство

1) Пусть \(AB=CD\). Докажем, что меньшие полуокружности дуги \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\).


 

\(\triangle AOB=\triangle COD\) по трем сторонам, следовательно, \(\angle AOB=\angle COD\). Но т.к. \(\angle AOB, \angle COD\) — центральные углы, опирающиеся на дуги \(\buildrel\smile\over{AB}, \buildrel\smile\over{CD}\) соответственно, то \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\).

 

2) Если \(\buildrel\smile\over{AB}=\buildrel\smile\over{CD}\), то \(\triangle AOB=\triangle COD\) по двум сторонам \(AO=BO=CO=DO\) и углу между ними \(\angle AOB=\angle COD\). Следовательно, и \(AB=CD\).

 

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.


 

Доказательство

1) Пусть \(AN=NB\). Докажем, что \(OQ\perp AB\).

 

Рассмотрим \(\triangle AOB\): он равнобедренный, т.к. \(OA=OB\) – радиусы окружности. Т.к. \(ON\) – медиана, проведенная к основанию, то она также является и высотой, следовательно, \(ON\perp AB\).

 

2) Пусть \(OQ\perp AB\). Докажем, что \(AN=NB\).

 

Аналогично \(\triangle AOB\) – равнобедренный, \(ON\) – высота, следовательно, \(ON\) – медиана. Следовательно, \(AN=NB\).  

\[{\Large{\text{Теоремы, связанные с длинами отрезков}}}\]

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

 

Доказательство

Пусть хорды \(AB\) и \(CD\) пересекаются в точке \(E\).

Рассмотрим треугольники \(ADE\) и \(CBE\). В этих треугольниках углы \(1\) и \(2\) равны, так как они вписанные и опираются на одну и ту же дугу \(BD\), а углы \(3\) и \(4\) равны как вертикальные. Треугольники \(ADE\) и \(CBE\) подобны (по первому признаку подобия треугольников).

 

Тогда \(\dfrac{AE}{EC} = \dfrac{DE}{BE}\), откуда \(AE\cdot BE = CE\cdot DE\).

 

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

 

Доказательство

Пусть касательная проходит через точку \(M\) и касается окружности в точке \(A\). Пусть секущая проходит через точку \(M\) и пересекает окружность в точках \(B\) и \(C\) так что \(MB < MC\). Покажем, что \(MB\cdot MC = MA^2\).


 

Рассмотрим треугольники \(MBA\) и \(MCA\): \(\angle M\) – общий, \(\angle BCA = 0,5\cdot\buildrel\smile\over{AB}\). По теореме об угле между касательной и секущей, \(\angle BAM = 0,5\cdot\buildrel\smile\over{AB} = \angle BCA\). Таким образом, треугольники \(MBA\) и \(MCA\) подобны по двум углам.

Из подобия треугольников \(MBA\) и \(MCA\) имеем: \(\dfrac{MB}{MA} = \dfrac{MA}{MC}\), что равносильно \(MB\cdot MC = MA^2\).

 

Следствие

Произведение секущей, проведённой из точки \(O\), на её внешнюю часть не зависит от выбора секущей, проведённой из точки \(O\):


 

shkolkovo.net

Окружность и касательная — урок. Геометрия, 8 класс.

В плоскости прямая и окружность могут пересекаться или не пересекаться. При пересечении могут иметь одну или две общие точки.

 

1. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности общих точек нет.

 

 

2. Если расстояние от центра окружности до прямой меньше радиуса, то у прямой и окружности две общие точки.

 

 

В этом случае прямую называют секущей окружности.

Если прямая имеет две общие точки с окружностью, то она называется секущей.

3. Если расстояние от центра окружности до прямой равно радиусу, то у прямой и окружности одна общая точка.

 

 

В этом случая прямую называют касательной к окружности.

Касательной к окружности называется прямая, имеющая с окружностью одну общую точку.

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания.

 

Предположим, что радиус \(OA\) не перпендикулярен к прямой, но является наклонной. Тогда из точки \(O\) можно провести перпендикуляр к прямой, который будет короче радиуса. А это означает, что расстояние от центра окружности до прямой меньше радиуса, и у прямой и окружности должны быть две общие точки. Но это противоречит данной информации, наше предположение неверно.

Если из точки к окружности проведены две касательные, то
а) длины отрезков касательных от этой точки до точки касания равны,

б) прямая, проходящая через центр окружности и эту точку, делит угол между касательными пополам.

 

Пусть \(AB\) и \(AC\) — касательные к окружности с центром \(O\).

Требуется доказать, что \(AB = AC\) и \(OA\) является биссектрисой угла \(A\).

 

Треугольники \(OBA\) и \(OCA\) — прямоугольные, так как касательные перпендикулярны к радиусам в точках \(B\) и \(C\). Сторона \(OA\) — общая. Катеты \(OB\) и \(OC\) равны как радиусы одной и той же окружности. Треугольники равны по гипотенузе и катету, отсюда равны и катеты \(AB\) и \(AC\), и углы \(BAO\) и \(CAO\), то есть \(OA\) делит угол пополам.

www.yaklass.ru

Свойства касательных к окружности — энциклопедический справочник и словарь для студента от А до Я

ОПРЕДЕЛЕНИЕ 1.

Касательной называется прямая, имеющая с окружностью одну общую точку.

Свойства касательной к окружности

1. Касательная перпендикулярна радиусу, проведенному в точку касания:

\(\ A C \perp O A \)

2. Отрезки касательных, проведенных из одной точки, равны: \(\ A C=B C \)

Примеры решения задач

ПРИМЕР 1

  • Задание

    Из точки \(\ C \) к окружности проведены две касательные, касающиеся ее в точках \(\ A \) и \(\ B \). Угол \(\ AOB \) \(\ 105^{\circ} \) . Найти угол \(\ A C B \).

  • Решение

    Рассмотрим образовавшийся четырехугольник \(\ \mathrm{ACBO} \), в котором \(\ \angle A=\angle B=90^{\circ} \) (т.к. \(\ O A \) и \(\ \mathrm{OB} \) – радиусы, проведенные в точку касания). Сумма углов любого четырехугольника равна \(\ 360^{\circ} \) , поэтому

    \(\ \angle C=360^{\circ}-\angle A-\angle B-\angle O=360^{\circ}-90^{\circ}-90^{\circ}-105^{\circ}=75^{\circ} \)

  • Ответ

    \(\ \angle C=75^{\circ} \)

    ПРИМЕР 2

  • Задание

    Хорда \(\ \Delta C \) стягивает дугу окружности в \(\ 80^{\circ} \) . В точке \(\ A \) проведена касательная к этой окружности. Найти величину угла между касательной и хордой.

  • Решение

    Хорда \(\ \Delta C \) стягивает дугу окружности в \(\ 80^{\circ} \) значит центральный угол, который на нее опирается \(\ \angle A O C=80^{\circ} \) . \(\ \mathrm{AOC} \) – равнобедренный (т.к. \(\ 0.4 \) и \(\ O C \) – радиусы окружности), а значит

    \(\ \angle O A C=\angle O C A=\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ} \)

    Радиус \(\ O A \) образует с касательной прямой угол (по свойству касательной), следовательно,

    \(\ \angle C A B=180^{\circ}-90^{\circ}-50^{\circ}=40^{\circ} \)

  • Ответ

    \(\ \angle C A B=40^{\circ} \)

  • sciterm.ru

    Касательная к окружности | Треугольники

    Что такое касательная к окружности? Каково взаимное расположение касательной и радиуса?

    Определение.

    a — касательная,
    A — точка касания

     

    Касательная к окружности — это прямая, которая имеет с окружностью только одну общую точку — точку касания.

     

     

     

    Теорема

    (Свойство касательной к окружности).

    Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

    Дано: окружность (O;R), R=OA,

    a — касательная к окружности,

    A — точка касания.

    Доказать:

       

    Доказательство:

    Доказательство проведем методом от противного.

    Предположим, что радиус OA и прямая a не перпендикулярны.

    Опустим из точки O на прямую a перпендикуляр OB.

    Тогда OA — наклонная, проведенная из точки O на прямую a.

    По свойству перпендикуляра и наклонной, любая наклонная больше перпендикуляра. Значит, OA>OB.

    Получается, расстояние от точки O до прямой a — длина перпендикуляра OB — меньше радиуса. Из этого следует, что прямая a и окружность имеют две общие точки.

    Противоречие получили, так как предположили, что радиус OA и касательная a не перпендикулярны. Значит, касательная перпендикулярна к радиусу, проведенному в точку касания:

       

    Что и требовалось доказать.

    www.treugolniki.ru

    0 comments on “Свойства окружности и касательной – Свойства касательных к окружности, с примерами

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *