Свойства полупроводниковых материалов: применение полупроводников
Полупроводники это вещества, которые обладают промежуточными свойствами проводников и диэлектриков в отношении удельной проводимости. Сопротивление полупроводников характеризуется следующими особенностями:
- Сильная выраженная зависимость от количества и состава примесей в веществе;
- Повышение температуры вызывает уменьшение сопротивления.
Полупроводниковые элементы
Важно! При температуре, стремящейся к абсолютному нулю, все полупроводники становятся диэлектриками.
Механизм электрической проводимости
Проводимость таких материалов, как полупроводники, имеет иной характер, чем у обычных проводников. Главное условие возникновения тока в материалах – наличие достаточного количества свободных электронов. Кристаллическая структура полупроводниковых материалов характеризуется ковалентными химическими связями, когда каждый электрон ядра связан с двумя рядом стоящими атомами.
Электроны веществ участвуют в переносе заряда при получении некоторой энергии. Работа энергии для полупроводников имеет значение порядка единиц электрон-вольт (эВ). У проводников это значение меньше, у диэлектриков, соответственно, больше.
Дырка
Важная особенность рассматриваемых материалов – они могут обладать особым типом проводимости – дырочной. В электронной оболочке атома в момент отрыва и ухода электрона образуется свободное место, которое принято именовать дыркой. Соответственно, дырка имеет положительный заряд, направление движения противоположно потоку электронов.
Обратите внимание! Подвижность электронов выше, чем у дырок.
Электронная и дырочная проводимость
Энергетические зоны
Все вещества характеризуются энергетическими зонами электронов оболочки атома. Таких зон три:
- Зона проводимости;
- Запрещенная зона;
- Зона валентности.
Название запрещенной зоны говорит о том, что электрон находиться в ней не может. Поэтому для возникновения тока электрон должен переместиться в зону проводимости из стабильной валентной зоны. Чем шире запрещенная зона, тем свойства материала приближаются к диэлектрикам.
Энергетические зоны
Подвижность
При воздействии электрического поля в материалах начинается движение носителей заряда. В рассматриваемом случае это электроны и дырки. Зависимость между скоростью движения и величиной напряженности электрического поля при отсутствии влияния нагрева называется подвижностью. Рост числа взаимных столкновений является причиной того, что при увеличении концентрации подвижность падает.
Собственная плотность
Наличие запрещенной зоны не служит препятствием к образованию собственных носителей заряда. Плотность электронов и дырок определяется сложной зависимостью, которая показывает, что собственная плотность заряженных частиц растет при увеличении температуры.
Виды полупроводников
Множество веществ, к которым можно отнести полупроводники, классифицируется по величине и характеру проводимости.
По характеру проводимости
В силу того, используется чистое вещество либо, в которое внесены примеси, проводимость может иметь различный характер.
Собственная проводимость
В силу разных причин в чистых материалах могут появляться свободные электроны и дырки. В результате образуется собственная проводимость.
Важно! Собственная проводимость характеризуется равной концентрацией дырок и электронов.
Собственная проводимость германия
Примесная проводимость
Большая часть полупроводников, образованных четырехвалентными атомами, имеет собственную проводимость. При целенаправленном внесении примесей веществ третьей или пятой валентности получаются кристаллы, обладающие примесной проводимостью, в которых количество дырок и электронов прямо зависит от типа и количества примесных атомов на единицу объема чистого вещества.
По виду проводимости
Выше было рассмотрено, что в полупроводниках в процессе переноса заряда участвуют не только «традиционные» электроны, но и условные положительные заряды – дырки. Поэтому полупроводниковые материалы имеют два типа проводимости.
Электронные полупроводники (n-типа)
Присутствие в четырехвалентном веществе пятивалентной примеси приводит к тому, что пятый электрон примеси вынужден переместиться на более высокую орбиту, в результате чего на его освобождение требуется небольшое количество энергии.
Такие примесные полупроводники называют веществами n-типа, от слова «negative» – отрицательный. Примеси в данном случае называют донорными, так как они способствуют появлению в веществе свободных электронов.
Дырочные полупроводники (р-типа)
При добавлении трехвалентной примеси возникает противоположная ситуация, когда в кристаллической решетке четырехвалентного материала примесь забирает недостающий электрон, а в основном веществе образуется дырка. Такие примеси именуют акцепторными, а примесный полупроводник, соответственно, называется p-типа, поскольку «positive» – положительный.
Использование в радиотехнике
Каждый специалист, техник, обладающий познаниями в электронике, знает, что абсолютно вся современная электроника основана на применении полупроводниковых элементов. Любой аналоговый или цифровой (дискретный) прибор имеет в своей основе схемы, построенные с применением диодов и транзисторов.
Полупроводниковый диод
Одно из первых устройств, использующих свойства полупроводимости, – это полупроводниковый диод. Конструкция заключается в соединении пары полупроводников с разными типами проводимости.
В результате физических процессов движения электронов и дырок на границе веществ возникает электрическое поле, и образуется так называемый p-n переход.
P-n переход
P-n переход обладает свойством односторонней проводимости, то есть ток через диод возникает только при подключении p-области (анода) к полюсу источника напряжения, а n-области (катода) – к минусу.
Вольт-амперная характеристика диода
В обратной полярности ток также имеется, но его величина, по сравнению с прямым, намного меньше. Стабилитрон – вид диода, основная область его работы находится на обратной ветви характеристики. Параметр p-n перехода подобран таким образом, что в узкой области обратного тока напряжение на стабилитроне практически не меняется.
Первый диод – детектор, использовался еще в то время, когда теория полупроводников находилась в зачаточном состоянии.
Разнообразные диоды
Транзистор
Транзистор, или, как раннее его называли, триод, имеет две области из материала с одинаковой проводимостью и тонкую область полупроводника с другой. Принцип работы транзистора заключается в том, что малый ток в тонкой области, называемой базой, может управлять гораздо большим током через другие области, соответственно, коллектор и эмиттер.
В зависимости от схемы включения, транзистор может иметь различное назначение: как усилительный, генераторный и преобразовательный полупроводниковый элемент.
Применение полупроводников не ограничивается вышеперечисленными областями. Существуют изделия с тремя и более p-n переходами или вообще без них. Варистор – резистор с сопротивлением, зависящим от величины протекающего тока, тоже полупроводниковый элемент.
Виды транзисторов
Типы полупроводников в периодической системе элементов
В периодической таблице химэлементов полупроводники сосредоточены в периодах со 2-го по 6-й. Их делят на такие типы:
- Одноэлементные. Собственный полупроводник обычно принадлежит IV группе, реже используются элементы из других групп;
- Сложные – двух и более элементные.
Обратите внимание! Свойства полупроводниковых материалов характеризуются тем, что при увеличении номера группы ширина запрещенной зоны уменьшается.
Физические свойства и применение
Сильная зависимость собственной проводимости от значения температуры является основным физическим свойством полупроводников. Главным образом это выражается тем, что при температуре, близкой к абсолютному нулю, наблюдается полное отсутствие свободных носителей.
Некоторые вещества обладают оптическими свойствами. К примеру, простой чистый кремний используется в производстве солнечных батарей, сложные соединения, в особенности, арсенид галлия, применяются для изготовления светодиодов. Полупроводниковый лазер имеет малые габариты и высокие технические параметры, что позволило воплотить в жизнь оптоволоконные средства коммуникации.
Полупроводниковый лазер
Легирование
Характеристика полупроводника в сильной степени зависит от его чистоты. Выращивая в особых условиях сверхчистые монокристаллы вещества, необходимые свойства придают при помощи легирования (введения в состав донорных или акцепторных примесей).
Методы получения
Для выращивания монокристаллов высокой чистоты используют два метода:
- Метод Чохральского, при котором монокристалл выращивают из расплава вещества;
- Зонная плавка, когда очистка образца производится путем расплавления небольшого участка с постепенным продвижением зоны расплава подвижной индукционной катушкой.
Также физики используют методики химического и физического осаждения, которые позволяют создавать тонкие слои вещества вплоть до слоев в одну молекулу толщиной.
Зонная плавка
Оптика полупроводников
Многие полупроводники обладают оптическими свойствами, в частности, фотопроводимостью, то есть свойством изменения электрического сопротивления под воздействием электромагнитного излучения.
В оптоэлектронике наиболее часто используются такие материалы, которые поглощают излучение в том случае, когда ширина запрещенной зоны меньше энергии кванта. Основной материал оптоэлектроники – арсенид галлия.
Список полупроводников
Полупроводники примеры которых будут рассмотрены ниже, нашли самое широкое распространение. Группы обозначаются буквами с указанием валентности. Первый материал обозначается буквой «А», второй – буквой «В». Для упрощения буквенные символы иногда опускают, оставляя только валентное число. Далее приведен краткий перечень распространенных материалов.
Группа IV
- Германий;
- Кремний;
- Карбид кремния.
Группа III-V
Арсенид, фосфид, нитрид индия и галлия. Также сюда входит трехкомпонентный полупроводник арсенид галлия-индия.
Группа II-VI
Селенид, сульфид, теллурид цинка и кадмия.
Группа I-VII
Единственное вещество – хлорид мели.
Группа IV-VI
Сульфид, теллурид свинца и олова.
Группа V-VI
Висмута теллурид.
Группа II-V
- Фосфид цинка;
- Антимонид олова.
Другие
- Сульфид олова;
- Оксид меди;
- Железный оксид.
Органические полупроводники
Некоторые органические соединения также обладают полупроводниковыми свойствами:
- Органические красители;
- Ароматические соединения;
- Полимеры;
- Пигменты.
Магнитные полупроводники
Некоторые полупроводниковые материалы обладают свойствами ферромагнетиков, что позволяет создавать устройства с новыми областями применения.
Прошло то время, когда полупроводниковая техника была дорога и нетехнологична, по сравнению с электровакуумным оборудованием. В настоящее время вся электро,- и радиотехника базируется на монолитных полупроводниковых компонентах. Такие устройства имеют высокую надежность и стабильность параметров.
Видео
amperof.ru
Полупроводниковые материалы
13
ЛЕКЦИИ 12, 13
Полупроводники занимают особое место в электро- и радиотехнических материалах, занимая промежуточное положение по электрической проводимости и ряду других свойств между проводниками и диэлектриками.
Их проводимость находится в пределах 1000 — 1000 0м×м при 180 С. B отличие от металлов удельная проводимость полупроводников, также как и диэлектриков, с увеличением температуры уменьшается.
Для полупроводников характерна сильная зависимость r от вида и количества содержащихся примесей. Например, при введении в химически чистый германий (Gе) 0,001% мышьяка его удельная проводимость увеличивается в 10 раз.
Полупроводники чувствительны к различного рода внешним воздействиям — свету, облучению ядерными частицами, электромагнитным полем, давлению и др.
Известно много веществ, обладающих полупроводниковыми свойствами. Наиболее известны германий, кремний, селен, теллур, бор, углерод, фосфор, сера, сурьма, мышьяк, серое олово, йод и другие многоэлементные соединения.
Специфичность свойств полупроводниковых материалов обусловила широкое применение их при изготовлении самых различных полупроводниковых приборов — диодов, транзисторов, тиристоров, фотодиодов, светодиодов, полупроводниковых лазеров, датчиков давлений, магнитных полей, температур, излучений и т.п. Использование полупроводников вызвало коренные преобразования в радиотехнике, кибернетике, автоматике, электротехнике, телемеханике. Полупроводниковая электроника открыла новые пути микроминиатюризации электронного оборудования.
Ток проводимости в проводниках определяется направленным движением огромного количества свободных электронов. В полупроводниках свободных электронов много. Это объясняется тем, что валентные электроны в полупроводниках связаны со своими атомами, т.е. не являются свободными. Ток в полупроводниках может возникать и изменяться в широких пределах только под влиянием внешних воздействий — нагревания, облучения или введением некоторых примесей. Это увеличивает энергию валентных электронов, позволяет им отрываться от своих атомов и под действием приложенного напряжения направленно перемещаться, т.е. становиться носителями тока. Чем выше температура полупроводника или интенсивнее внешнее облучение, тем больше в нем свободных электронов и тем больше ток. Атомы полупроводника, потерявшие электроны, превращаются в положительные ионы, которые не могут перемещаться.
Место на внешней оболочке атома, покинутое электроном, называют «дыркой». Эту дырку может занять другой электрон, покинувший свое место в соседнем атоме. В результате на внешней оболочке соседнего атома появится дырка, т.е. он превратится в положительный ион. При приложении к полупроводнику электрического напряжения электроны будут перемещаться от одних атомов к другим в одном направлении, а дырки в другом (противоположном).
Дырку принято считать положительно заряженной частицей с зарядом, равным заряду электрона. Такое представление упрощает, в большинстве случаев, анализ процессов, происходящих в кристалле полупроводника. Кажущееся перемещение дырок в направлении, противоположном движению электронов, называют дырочным током Iд.
Электропроводимости полупроводника, обусловленные движением электронов и дырок, называют соответственно электронной и дырочной.
В чистом полупроводнике концентрация электронов Nэ и дырок Nд одинаковы, и электропроводность такого полупроводника называют собственной. Общий ток I такого полупроводника равен
I=Iэ+Iд..
Но т.к. подвижность электронов больше, чем дырок, то
Iэ>Iэ.
Под подвижностью заряда М понимают отношение скорости перемещения носителя V к напряженности электрического поля Е в полупроводнике т.е.
Мэ=Vэ/Е ; Мд=Vд/Е.
Таким образом, подвижность показывает, какой путь проходит за 1с электрон или дырка при напряженности Е=1В/см.
Учитывая это, собственный ток полупроводника равен
I=N e (Mэ+Мд) Е,
Т.к. Vэ=Мэ Е; N=Nэ=Nд; е-заряд электрона.
Для создания полупроводниковых приборов требуются полупроводниковые материалы, обладающие преимущественно электронной или дырочной проводимостью. Для получения таких материалов в тщательно очищенный полупроводник (концентрация примесей <10-11%) вводят соответствующую добавку — легирующую примесь.
Легирующие примеси, валентность которых выше валентности полупроводника, снабжают его свободными электронами и называются донорами, от латинского «донаре» — дарить, отдавать.
Примеси, имеющие меньшую валентность чем полупроводник, обладают способностью захватывать и удерживать его электроны, от латинского «акцептарэ» — получать, брать.
Чтобы получить полупроводник, обладающий только электронной проводимостью, в него вводят атомы вещества, имеющего валентность на единицу больше валентности полупроводника. Например, в германий, валентность которого 4, вводят донорскую примесь – сурьму (Sb) или фосфор (Р), валентность которых равна 5 (рис.40).
Рис.40. Образование п/проводника с электронной проводимостью.
Четыре электрона каждого из атомов введенной примеси устанавливают четыре ковалентные (парные) связи с соответствующими атомами германия. Пятый остается без такой связи, следовательно, переходит в свободное состояние и под действием приложенного напряжения принимает участие в образовании электронного тока.
Если в полупроводнике электронный ток больше дырочного, такой полупроводник называют электронным, или полупроводником n-типа (от латинского «негативус» — отрицательный).
При введении в германий акцепторной примеси, например, бора, каждый из ее атомов установит три ковалентные связи с соседними атомами германия, а для связи с четвертым атомом германия атом бора электрона не имеет. Таким образом, несколько атомов германия будут иметь по одному электрону без ковалентной связи. При этом достаточно небольших внешних электрических воздействий, чтобы эти электроны покинули свои места, образовав дырки у атомов германия (рис. 41).
Рис. 41. Образование п/проводника с дырочной проводимостью.
Освободившиеся электроны 2, 4, 6 атомов германия присоединяются к атомам бора и поэтому не могут создать ток в полупроводнике. Образовавшиеся у атомов германия дырки 1, 3, 5 позволяют перейти на них электронам от соседних атомов, где, в свою очередь, образуются дырки.
Т.о. каждая возникающая дырка будет переходить от одного атома германия к другому, от него к следующему и т.д. Под действием приложенного напряжения это движение дырок упорядочивается, т.е. в полупроводнике возникает примесный дырочный ток. Такой полупроводник называется дырочным, или р-типа (от латинского «позитивус» – положительный).
Под действием приложенного напряжения электроны и дырки перемещаются в полупроводнике, встречая различного рода препятствия, теряют часть энергии и отклоняются от своего пути, т.е. происходит рассеяние носителей заряда, вызываемое, главным образом, различными загрязняющими примесями. Чем чище полупроводник, тем меньше рассеяние носителей заряда и выше подвижность электронов и дырок, следовательно, полупроводник обладает большей удельной проводимостью.
Ранее отмечалось, что полупроводники обладают рядом специфических свойств. Одним из таких свойств является нелинейность вольт — амперной характеристики, т.е. при увеличении U, приложенного к образцу полупроводника, ток через него растет быстрее (рис.42).
Рис. 42. Вольт — амперная
характеристика полупроводника
Одновременно с ростом тока резко уменьшается электрическое сопротивление образца. Это свойство используется в вентильных полупроводниковых разрядниках в линиях электропередач высокого напряжения. При номинальном напряжении разрядник имеет очень высокое сопротивление и не пропускает ток с ЛЭП на землю. При ударе молнии провода оказываются под очень большим напряжением, электрическое сопротивление разрядника резко уменьшается, и он отводит ток с линии на землю. В результате напряжение снижается до нормы, большое сопротивление разрядника восстанавливается и он не пропускает ток с линии на землю.
При изменении полярности напряжения ток в полупроводнике протекает в обратном направлении и изменяется по такому же закону. Это означает, что полупроводник имеет симметричную вольт — амперную характеристику (рис.43). Если же одна часть полупроводника имеет электронную проводимость, а другая – дырочную, то на границе между ними образуется специфическая область – электронно-дырочный переход (р-n переход), имеющий несимметричную вольт — амперную характеристику (рис. 44).
Рис.43. ВАХ полупроводника. Рис.44. ВАХ р-n перехода.
При плотном контакте электронного и дырочного полупроводников образуется система двух областей, одна из которых будет иметь электронную, а другая – дырочную проводимость. При этом электроны из n-областибудут диффундировать в р-область, где их концентрация мала. Одновременно дырки из р-области будут диффундировать в n-область, где их концентрация также мала. Взаимная диффузия дырок и электронов уменьшит концентрацию электронов в n-области и дырок в р-области (рис 45).
Рис.45. Образование р-n перехода.
Таким образом, еще до подключения к электродам источника внешнего напряжения на границе между р- и n-областями полупроводника образуется двойной электрический слой. В результате этого появится местное электрическое поле напряженностью Ео, направленное в сторону отрицательных зарядов в двойном электрическом слое.
При приложении к такой системе внешнего напряжения, если Евн совпадает с напряженностью Ео местного электрического поля, электроны в n-области и дырки в р-области будут перемещаться от границы раздела к электродам (рис.46а).
Рис.46. Процессы в р-n переходе при различной полярности внешнего напряжения.
При этом расширяются зоны, занятые электронами в полупроводнике р-типа и дырками в полупроводнике n-типа. Электрическое сопротивление перехода значительно возрастает, т.к. образуется запирающий слой и р-n переход не будет пропускать ток. Фактически через переход будет проходить очень малый ток, обусловленный перемещением не основных носителей зарядов и называемый обратным током Iобр.
В случае, когда Евн направлена навстречу Ео (рис.46б), местное электрическое поле заметно ослабляется, и электроны из n-области полупроводника и дырки из р-области начинают перемещаться к р-n переходу; вследствие этого запирающий слой сужается, его электрическое сопротивление резко уменьшается. В этом случае р-n переход пропускает ток, который называют прямым Iпр, а его направление – прямым или пропускным. Следует иметь в виду что, Iпр>Iобр, и что сопротивление р-n перехода, смещенного в прямом направлении меньше, чем смещенного в обратном. При увеличении прямого напряжения ток через переход резко возрастает по линейному закону. Когда приложено обратное напряжение, то вначале ток через переход практически отсутствует; при повышении напряжения появляется обратный ток, который вначале растет линейно, затем увеличивается практически по закону Ома, а начиная с некоторого Uобр резко возрастает, в результате чего происходит электрический пробой перехода и его разрушение вследствие теплового пробоя.
Свойство р-n перехода пропускать ток только в одном направлении используют в полупроводниковых выпрямителях.
Полупроводниковые материалы обладают и рядом других специфических свойств:
1.Под действием света удельная проводимость некоторых полупроводников (селена) может резко изменяться. Это объясняется тем, что световое излучение определенной длины волны (400-700 нм) сообщает электронам полупроводника энергию, достаточную для того, чтобы они стали свободными. Электрическое сопротивление полупроводника при этом резко уменьшается. Это свойство используют в фоторезисторах.
2.При частичном освящении полупроводника светом, когда на его поверхности имеются освещенная и неосвещенная зоны между ними, возникает фото-ЭДС. Этот эффект используется при создании солнечных батарей и других источников энергии.
3.Некоторые полупроводники (Si) резко изменяют электрическое сопротивление под действием оказываемого на них давления (тензорезистивный эффект). Это явление используют при изготовлении чувствительных измерителей давления – тензорезисторов.
4.Наличие в полупроводниках двух участков с разными температурами вызывает перемещение свободных зарядов от нагретого участка к холодному. Так, если носителями зарядов являются электроны, они, перемещаясь к холодному участку заряжают его отрицательно. Нагретый участок, потеряв электроны, заряжается положительно. В результате между нагретым и холодным участком полупроводника возникает термо-ЭДС. Этот эффект используется при создании термоэлементов и термогенераторов, способных превращать тепловую энергию в электрическую.
studfile.net
Типы полупроводников. Свойства, практическое применение.
Здравствуйте, дорогие друзья. В этой статье речь пойдет о полупроводниках. Мы рассмотрим типы полупроводников, их свойства и практическое применение.
Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu2O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.
Характеристика полупроводников
Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.
Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.
Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.
Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.
Типы полупроводников, энергетический зазор
Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней – свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.
Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01–3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.
Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом – участком запрещённых энергий электронов.
Типы полупроводников, ширина запрещенной зоны
В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.
Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.
В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно – энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.
Примесная и собственная проводимость полупроводников
Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.
Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости.
Примесные полупроводники – это проводники, обладающие примесной проводимостью. Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут – это донорные примеси кремния.
Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.
Типы полупроводников, собственная проводимость
Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь – основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.
Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий – акцепторные примеси для кремния.
Одноэлементные полупроводники
Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.
Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа – фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).
Типы полупроводников, кремний
- Алмаз обладает отличной термической проводимостью, превосходными механическими и оптическими характеристиками, высокой механической прочностью. Ширина энергетического разрыва — dE = 5,47 эВ.
- Кремний – полупроводник, используемый в солнечных батареях, а в аморфной форме – в тонкоплёночных солнечных батареях. Является наиболее используемым полупроводником в фотоэлементах, прост в производстве, обладает хорошими электрическими и механическими качествами. dE = 1,12 эВ.
- Германий – полупроводник, используемый в гамма-спектроскопии, высокоэффективных фотоэлементах. Использовался в первых диодах и транзисторах. Требует меньше очистки, чем кремний. dE = 0,67 эВ.
- Селен – полупроводник, который применяется в селеновых выпрямителях, обладающих высокой радиационной устойчивостью и способностью к самовосстановлению.
Двухэлементные соединения
Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.
Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.
Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.
Типы полупроводников, полупроводниковые материалы
- GaAs, арсенид галлия – второй по востребованности после кремния полупроводник, обычно используемый в качестве подложки для других проводников, например, GaInNAs и InGaAs, в ИК-сетодиодах, высокочастотных микросхемах и транзисторах, высокоэффективных фотоэлементах, лазерных диодах, детекторах ядерного излечения. dE = 1,43 эВ, что позволяет повысить мощность приборов по сравнению с кремнием. Хрупок, содержит больше примесей, сложен в изготовлении.
- ZnS, сульфид цинка – цинковая соль сероводородной кислоты с диапазоном запрещённой зоны 3,54 и 3,91 эВ, используется в лазерах и в качестве люминофора.
- SnS, сульфид олова – полупроводник, используемый в фоторезисторах и фотодиодах, dE= 1,3 и 10 эВ.
Типы полупроводников, оксиды
Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа – оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.
Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La2CuO4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La2CuO4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa2Cu3O8. При высоком давлении её значение составляет 134 К.
ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.
Слоистые кристаллы
Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.
Типы полупроводников, слоистые кристаллы
MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.
Органические полупроводники
Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (Ch3)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.
- Фуллерен имеет структуру в виде выпуклого замкнутого многогранника из чётного количества атомов углеорода. А легирование фуллерена С60 щелочным металлом превращает его в сверхпроводник.
- Графен образован одноатомным слоем углерода, соединённого в двумерную гексагональную решётку. Обладает рекордной теплопроводностью и подвижностью электронов, высокой жёсткостью
- Нанотрубки представляют собой свернутые в трубку пластины графита, имеющие несколько нанометров в диаметре. Эти формы углерода имеют большую перспективу в наноэлектронике. В зависимости от сцепления могут проявлять металлические или полупроводниковые качества.
Магнитные полупроводники
Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-xMnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.
Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.
Разнообразие полупроводниковых материалов
Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.
Видео, типы полупроводников
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
powercoup.by
Основные свойства полупроводниковых материалов.
Зонные диаграммы металлов, полупроводников и диэлектриков.
Диэлектрики
· электроны полностью заполняют валентную зону, а зона проводимости пуста, там электронов нет, поэтому зона проводимости ток не проводит,
· Валентная зона может ток проводить, но не проводит, потому что все состояния электронов в точности симметричны, и если есть состояние (хаотическое движение) .с импульсом р, то найдётся и состояние с импульсом —р,
· каждое из этих состояний переносит ток, но направления этих токов противоположны, и в сумме переносимый ток равен нулю.
Рис.3.8 а
Металлы
· электроны заполняют валентную зону только наполовину. При нулевой температуре (по Кельвину, т.е. –273оС) все нижние уровни заполнены электронами, а все верхние – пустые.
· расстояния между уровнями очень малы, и малейшее возмущение системы, например, приложение маленького напряжения может вызвать смещение электронов из равновесного состояния, и нарушить симметрию в распределении электронов по скоростям.
Таким образом довольно легко возникает электрический ток, т.е. имеется электропроводность.
При более высоких температурах возникает некоторое размытие электронов по состояниям ( уровням), а именно имеется функция распределения Ферми-Дирака:
F(E) – вероятность занятия уровня с энергией E электроном, EF—
константа, имеющая размерность энергии и называемая уровнем Ферми.
Эта функция выглядит следующим образом:
Рис 3.8.б
Здесь функция F располагается горизонтально, а её аргумент E вертикально. Левая сплошная линия – F(E)=0; правая пунктирная линия — F(E)=1.
При Е>E2 F(E)=0вероятность заполнения состояний электронами равна нулю – тока нет.
При E<E1 F(E)=1, все состояния заполнены и эти электроны в силу симметрии кристалла тоже не проводит ток.
А вот состояния между пунктирными линиями заполнены не все, поэтому эти электроны могут проводить ток. Именно поэтому металлы хорошо проводят электричество.
Полупроводники
В полупроводниках электронов хватает только для того, чтобы заполнить валентную зону , а остальные зоны, в том числе и зона проводимости, оказываются пустыми. Вследствие этого пустые зоны электричества не проводят. Но не проводят его и полностью заполненные, так как в силу симметрии кристалла все маленькие токи уравновешивают друг друга.
Но это справедливо только при нулевой температуре по Кельвину (-2730С). При более высоких температурах, и тем более при комнатных температурах, тепловые колебания атомов кристалла часть своей энергии передают электронам, что приводит к распределению по энергиям согласно функции Ферми-Дирака. Часть электронов (малая) приобретает энергию, достаточную для того, чтобы преодолеть запрещённую зону и попасть в следующую зону – зону проводимости. Эта ситуация иллюстрируется рисунком 3.9.
На первом рис. представлена плотность состояний в зависимости от Е.
При нулевой энергии она очень мала,. С ростом энергии плотность состояний пропорциональна квадрату энергии, отсчитанной от уровня Ec(или Ev –E для валентной зоны).
На второмрис. представлена фукция Ферми-Дирака.
На третьем рис. представлено произведение этих двух функций, которое и представляет собой зависимость концентрации электронов от энергии.
Рис. 3.9
Электронов в зоне проводимости мало, так как вероятность заполнения состояния существенно меньше 1. При этом электроны могут двигаться практически как в вакууме, почти что не взаимодействуя друг с другом.
В валентной зоне: вероятность заполнения состояния практически равна 1, т.е. почти все состояния заполнены электронами. В этом случае трудно описать их движение, так как они практически всегда мешают друг другу, ведь электроны могут куда-то переместиться, только если там свободное состояние, а почти все состояния заполнены.
Потому принять описывать состояния пустых мест – «дырок», которых мало и они, могут двигаться как бы независимо, почти не сталкиваясь, и их движение можно тоже описывать довольно просто, так же, как и движение электронов в зоне проводимости.
Основные свойства полупроводниковых материалов.
Полупроводники, или полупроводниковые соединения, бывают собственными и примесными.
Собственные полупроводники –это полупроводники, в которых нет примесей (доноров и акцепторов).
Собственная концентрация(ni) – концентрация носителей заряда в собственном полупроводнике (электронов в зоне проводимости n и дырок в валентной зоне p, причем n = p = ni).
При Т = 0 в собственном полупроводнике свободные носители отсутствуют (n = p = 0). При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости. Эти электроны и дырки могут свободно перемещаться по энергетическим зонам.
Дырка – это способ описания коллективного движения большого числа электронов (примерно 1023 см-3) в неполностью заполненной валентной зоне. Электрон – это частица, дырка – это квазичастица.
Электрон можно инжектировать из полупроводника или металла наружу (например, с помощью фотоэффекта), дырка же может существовать только внутри полупроводника.
Легирование – введение примеси в полупроводник, в этом случае полупроводник называется примесным. Если в полупроводник, состоящий из элементов 4 группы (например, кремний или германий), ввести в качестве примеси элемент 5 группы, то получим донорный полупроводник (у него будет электронный тип проводимости), или полупроводник n-типа. Если же ввести в качестве примеси элемент 3 группы, то получится акцепторный полупроводник, обладающий дырочной проводимостью (р-тип) .Для того, чтобы использовать для описания движения электронов и дырок в полупроводниках классические представления, вводятся понятия эффективных масс электрона и дырки mn* и mp* соответственно. В этом случае уравнения механики , или , будут справедливы, если вместо массы свободного электрона (электрона в вакууме) m0 в эти уравнения подставить эффективную массу электрона mn* (p = mn*·υ). Эффективная масса учитывает влияние периодического потенциала атомов в кристалле полупроводника на движение электронов и дырок и определяется уравнениями дисперсии .
Похожие статьи:
poznayka.org
ПОЛУПРОВОДНИКИ • Большая российская энциклопедия
ПОЛУПРОВОДНИКИ́, вещества, характеризующиеся электрич. проводимостью $σ$, промежуточной между проводимостью хороших проводников, напр. металлов ($σ≈10^4-10^6$ Ом–1·см–1), и хороших диэлектриков ($σ≈10^{–12}-10^{–10}$ Ом–1·см–1) (проводимость указана при комнатной темп-ре). Характерной особенностью П. является сильная зависимость их проводимости от темп-ры, причём в достаточно широком интервале температур проводимость П., в отличие от металлов, экспоненциально увеличивается с ростом темп-ры $T$: $$σ=σ_0\exp(–ℰ_a/kT).\tag{*}$$ Здесь $k$ – постоянная Больцмана, $ℰ_a$ – энергия активации электронов в П., которая может меняться от нескольких мэВ до нескольких эВ, $σ_0$ – коэф. пропорциональности, который также зависит от темп-ры, но эта зависимость более слабая, чем экспоненциальная. С повышением темп-ры тепловое движение разрывает часть химич. связей в атомах П. и электроны, число которых пропорционально $\exp(–ℰ_a/kT)$, становятся свободными и участвуют в электрич. проводимости. Энергия, необходимая для того, чтобы разорвать химич. связь и сделать валентный электрон свободным, называется энергией активации.
П. и диэлектрики относят к одному классу материалов; различие между ними является скорее количественным, чем качественным. Проводимость диэлектриков также имеет активационный характер, однако $ℰ_a$ для них составляет 10 эВ и более, поэтому собств. проводимость диэлектриков могла бы стать существенной только при очень высоких темп-рах, при которых уже наступают структурные изменения вещества. В связи с этим термин «П.» часто понимают в узком смысле как совокупность веществ, полупроводниковые свойства которых ярко выражены при комнатной темп-ре (300 К).
Химич. связи могут быть разорваны не только тепловым движением, но и разл. внешними воздействиями: электромагнитным излучением, потоком быстрых частиц, деформацией, сильным электрич. и магнитным полями и др. Поэтому для П. характерна высокая чувствительность проводимости к внешним воздействиям, а также к концентрации структурных дефектов и примесей.
Классификация полупроводников
По агрегатному состоянию П. делятся на твёрдые и жидкие (см. Жидкие полупроводники), по внутр. структуре – на кристаллич. и аморфные (см. Аморфные и стеклообразные полупроводники), по химич. составу – на неорганические и органические. Наиболее широко изучены и используются в полупроводниковой электронике кристаллич. неорганич. П. К ним относятся:
– элементарные П. – элементы IV группы короткой формы периодич. системы химич. элементов – углерод С (графит, алмаз, графен, нанотрубки), германий Ge и кремний Si (базовый элемент большинства интегральных схем в микроэлектронике), элементы VI группы – селен Se и теллур Te, а также их соединения, напр. карбид кремния SiC, образующий слоистые структуры, и непрерывный ряд твёрдых растворов SixGe1–x;
– соединения AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.
– соединения AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;
– соединения элементов I и V групп с элементами VI группы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;
– тройные и четверные твёрдые растворы на основе соединений A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, CdxMn1–xTe, GaxIn1–xAsyP1–y и др.
Примеры аморфных и стеклообразных П.: аморфный гидрированный кремний a-Si:H, аморфные Ge, Se, Te, многокомпонентные стеклообразные сплавы халькогенидов на основе S, Se, Te.
К органическим П. относятся: ряд органич. красителей, ароматич. соединения (нафталин, антрацен и др.), полимеры с сопряжёнными связями, некоторые природные пигменты. Органич. П. существуют в виде монокристаллов, поликристаллич. или аморфных порошков и плёнок. Достоинство органич. П. – относит. дешевизна их произ-ва и механич. гибкость. Они применяются как светочувствит. материалы для фотоэлементов и ПЗС-матриц; на их основе созданы светоизлучающие диоды, в т. ч. для гибких экранов и мониторов.
Большинство изученных П. находятся в кристаллич. состоянии. Свойства таких П. в значит. мере определяются их химич. составом и симметрией кристаллич. решётки. Атомы кремния, обладая четырьмя валентными электронами, образуют кубич. кристаллич. решётку типа алмаза с ковалентной связью атомов (кристаллографич. класс $m\bar 3m$, или $O_h$). Такую же кристаллич. решётку имеют германий и серое олово. В GaAs каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего получается кристаллич. решётка, подобная решётке алмаза, в которой ближайшими соседями катиона Ga являются анионы As и наоборот. За счёт частичного перераспределения электронов атомы Ga и As оказываются разноимённо заряженными и связи между атомами становятся частично ионными. Кристаллич. решётка GaAs не обладает центром инверсии, поэтому в таких П. возникают эффекты, отсутствующие в центросимметричных полупроводниковых структурах, напр. пьезоэлектричество (см. Пьезоэлектрики), генерация 2-й оптич. гармоники, фотогальванические эффекты. Структурой, подобной арсениду галлия, обладают InAs, InP, ZnTe, ZnSe и др.
Чистые и структурно совершенные П. получают в результате кристаллизации из расплава или раствора. Для создания тонких полупроводниковых плёнок применяют метод эпитаксии из жидкой или газовой фазы.
Электроны и дырки в полупроводниках
В твёрдом теле волновые функции валентных электронов соседних атомов перекрываются, их валентные электроны обобществляются и возникает устойчивая химич. (ковалентная) связь. На каждую связь между атомами приходится по два электрона, и распределение электронной плотности в пространстве оказывается жёстко фиксированным. Проводимость П. появляется, если разорвать связи между некоторыми атомами, напр., тепловым или оптич. воздействием, передав небольшой части валентных электронов дополнит. энергию и переведя их на вакантные (пустые) электронные орбитали, расположенные выше по энергии. Такие электроны могут свободно передвигаться по кристаллу, переходя с одного атома на другой, и переносить отрицат. электрич. заряд. Разорванная связь с недостатком электрона (дырка) также может перемещаться по кристаллу за счёт перехода на неё электрона из соседней связи. Поскольку разорванная связь означает наличие локального положительного электрич. заряда, дырки переносят положительный заряд. Дырки, как и электроны, могут перемещаться на значит. расстояния в периодич. потенциале кристалла без рассеяния.
В идеальных кристаллах, не содержащих дефектов и примесей, электроны и дырки всегда появляются па́рами в силу сохранения электрич. заряда, однако подвижности электронов и дырок, как правило, различны. В легированных П. концентрации свободных электронов и дырок могут различаться на неск. порядков, так что электропроводность осуществляется практически полностью носителями заряда одного типа.
Чередование разрешённых и запрещённых энергетических зон в кристаллических полупроводниках. Заполнение разрешённых зон: (а) при абсолютном нуле температуры; (б) при отличной от нуля температуре. Чёрны…
Последовательное и строгое описание состояний носителей заряда и их движения в кристаллах можно сделать в рамках зонной теории. Осн. состояние кристалла при темп-ре 0 К формируется за счёт последовательного заполнения электронами наинизших энергетич. состояний. Согласно принципу Паули, в каждом состоянии с определённым значением спина может находиться только один электрон. В зависимости от кристаллич. структуры и от числа электронов в каждом из атомов, составляющих кристалл, возможны два случая: 1) электроны полностью заполняют неск. нижних разрешённых зон, а все верхние зоны остаются пустыми; 2) одна из разрешённых зон заполнена частично. В первом случае распределение электронной плотности в кристалле фиксировано, электроны не могут участвовать в проводимости и кристалл является П. или диэлектриком. Во втором случае часть электронов в пределах частично заполненной зоны может свободно перемещаться по кристаллу3 и кристалл является металлом. В П. и диэлектриках верхняя полностью заполненная разрешённая зона энергий называется валентной зоной, нижняя пустая зона – зоной проводимости. Энергетич. интервал между дном (минимумом энергии) зоны проводимости и потолком (максимумом энергии) валентной зоны называется шириной запрещённой зоны $ℰ_g$. Различие между П. и диэлектриками чисто количественное: условно считают, что вещества с $ℰ_g<2$ эВ являются П., а с $ℰ_g>2$ эВ – диэлектриками. При отличной от нуля темп-ре тепловое движение перераспределяет электроны по энергии: часть электронов «забрасывается» из валентной зоны в зону проводимости. При этом появляются свободные носители заряда – электроны в зоне проводимости и дырки в валентной зоне (рис.). Количество свободных электронов и дырок экспоненциально зависит от темп-ры, поэтому температурная зависимость проводимости П. определяется формулой ( * ).
В широком классе П. ширина энергетич. зон значительно превышает тепловую энергию при комнатной темп-ре (0,025 эВ), поэтому носители заряда заполняют состояния только вблизи экстремумов разрешённых зон, т. е. вблизи дна зоны проводимости и потолка валентной зоны. Зависимость энергии от квазиимпульса вблизи экстремума часто оказывается квадратичной, и можно ввести представление об эффективной массе носителей заряда, которая зависит от номера разрешённой зоны и направления квазиимпульса. В некоторых П. одному значению энергии отвечает неск. экстремумов в первой зоне Бриллюэна и носители заряда распределены по эквивалентным «долинам» (окрестностям экстремумов). Такие П. называют многодолинными.
Примеси и дефекты в полупроводниках
Электрич. проводимость П. может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами и дырками примесных атомов (примесная проводимость). Процесс внедрения примесей в П. для получения необходимых физич. свойств называется легированием полупроводников. Поскольку энергия связи носителей заряда в примесных атомах составляет от нескольких мэВ до нескольких десятков мэВ, именно примесная проводимость объясняет экспоненциальный рост концентрации свободных носителей заряда в большинстве П. в интервале температур вблизи комнатной.
Примеси в П. обычно вводят в процессе роста структуры, они могут быть донорами или акцепторами, т. е. поставщиками электронов или дырок. Если, напр., в германий Ge или кремний Si (элементы IV группы) ввести примесные атомы элементов V группы (As, P), то 4 внешних электрона этих атомов образуют устойчивую связь с четырьмя соседними атомами решётки, а пятый электрон окажется несвязанным и будет удерживаться около примесного атома только за счёт кулоновского взаимодействия, ослабленного диэлектрич. поляризацией среды. Такой примесный атом является донором и легко ионизуется при комнатной темп-ре. Акцептор возникает, напр., при введении в Ge или Si элементов III группы (Ga, Al). В этом случае для образования всех четырёх связей с ближайшими атомами требуется дополнит. электрон, который берётся из внутр. оболочек атомов, так что примесный атом оказывается заряжен отрицательно. Электронейтральность восстанавливается за счёт того, что внутр. незаполненная орбиталь распределяется вблизи соседних атомов решётки, расположенных от примесного на расстояниях, превосходящих межатомное расстояние. Наличие доноров или акцепторов приводит соответственно к проводимости n- или р-типа.
П., в которых могут одновременно существовать акцепторные и донорные примеси, называются компенсированными. Компенсация примесей приводит к тому, что часть электронов от доноров переходит к акцепторам, и в результате возникает значит. концентрация ионов, которые эффективно влияют на проводимость полупроводников.
Амплитуда волновой функции электронов или дырок, локализованных на примесных атомах, составляет 1–10 нм. Это означает, что при концентрации примесных атомов ок. 1018 см–3 волновые функции электронов и дырок соседних атомов начинают перекрываться, носители заряда могут переходить от иона к иону и П. становится вырожденным (см. Вырожденные полупроводники). Такие П. называются сильнолегироваными. Из-за сильного экранирования кулоновского притяжения носители заряда в них оказываются свободными даже при таких низких темп-рах, при которых была невозможна термич. активация электрона или дырки из изолированного атома.
В отсутствие внешнего электрич. поля или освещения концентрация свободных носителей заряда называется равновесной и определяется шириной запрещённой зоны П., эффективными массами носителей заряда, концентрацией примесей и энергией связи примесных носителей заряда.
Наряду с примесями, источниками носителей заряда могут быть и разл. дефекты структуры, напр. вакансии (отсутствие одного из атомов решётки), межузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрич. состава).
Электрические свойства полупроводников
Во внешнем электрич. поле на носители заряда в твёрдом теле действует сила, которая изменяет их скорость и приводит к направленному движению. Под действием силы носители заряда должны ускоряться, однако в кристаллах вследствие взаимодействия электронов с дефектами, колебаниями решётки и т. д. возникает сила трения, которая уравновешивает силу, действующую со стороны поля. В результате носители заряда движутся с постоянной средней (дрейфовой) скоростью $v_{др}$, зависящей от напряжённости $E$ электрич. поля. Можно ввести понятие подвижности носителей заряда $μ=v_{др}/E$. Действие силы трения означает, что в электрич. поле носитель заряда испытывает свободное ускорение только в промежутке времени $Δt$ между двумя актами рассеяния, так что $v_{др}=eEτ/m$ ($m$ – эффективная масса носителя, $e$ – его заряд, $τ$ – время релаксации, за которое свободный носитель заряда в отсутствие поля теряет свой направленный квазиимпульс). Обычно $τ$ не зависит от величины внешнего поля и определяется тепловым хаотич. движением носителей заряда в твёрдом теле, так что скорость теплового движения на неск. порядков превосходит $v_{др}$. Так, напр., для типичных П. при $T=300$ К в весьма сильном электрич. поле ($E$=3·104 В/м) скорость $v_{др}$ составляет 10–100 м/с, а величина ср. тепловой скорости – 105–106 м/с.
Величины $τ$ и $μ$ зависят от типа проводимости, химич. состава П., темп-ры, концентрации дефектов и примесей. При темп-рах ниже темп-ры кипения жидкого азота (77 К) подвижность $μ$ возрастает с ростом темп-ры, а при темп-рах выше 77 К – уменьшается, проходя через максимум вблизи 100 К. Такая зависимость $μ(T)$ объясняется наличием двух осн. причин рассеяния носителей заряда – на заряженных примесях и фононах. При низких темп-рах, когда примесные атомы ионизованы, рассеяние на них превосходит рассеяние на фононах, поскольку равновесных фононов мало. С увеличением темп-ры ср. энергия носителей возрастает, эффективность рассеяния уменьшается, время между столкновениями и подвижность возрастают. При темп-рах ок. 100 К резко возрастает концентрация равновесных фононов и взаимодействие с ними ограничивает подвижность, вследствие этого с увеличением темп-ры подвижность уменьшается. При $T$=300 К характерные значения $τ$ для П. лежат в интервале 10–13–10–12 с, а $μ$ – в интервале 102–10–2 м/с. При меньших значениях подвижности длина свободного пробега (произведение ср. скорости теплового движения на время $τ$) становится меньше расстояния между атомами и говорить о свободном движении носителей заряда нельзя. Возникает прыжковая проводимость, которая обусловлена перескоками носителей заряда в пространстве от одного иона к другому (реализуется в органических полупроводниках).
Направленному движению носителей заряда во внешнем электрич. поле препятствует их тепловое хаотич. движение. Если в результате приложения электрич. поля носители собираются у границы образца и их концентрация зависит от координат, то хаотич. движение приводит к выравниванию концентрации и носители переходят из области пространства с большей концентрацией в область, где их концентрация меньше. Такой процесс называется диффузией носителей заряда и определяется коэф. диффузии $D$. В условиях равновесия полный поток носителей заряда отсутствует, так что диффузионный поток полностью компенсирует поток частиц во внешнем поле. Это означает, что коэф. диффузии связан с подвижностью. Для невырожденных носителей $D=kTμ/e$ (соотношение Эйнштейна). Для типичных П. при комнатной темп-ре величина $D$ составляет 10–3–10–2 м2/с. Для неравновесных носителей заряда, напр. в случае инжекции в электронно-дырочном переходе (см. p–n-Переход), вводится понятие диффузионной длины $L_D$, которая определяет уменьшение числа носителей в процессе диффузии за счёт их рекомбинации: $L_D=\sqrt{D\tau_0}$, где $τ_0$ – время жизни неосновных носителей.
Наложение внешнего магнитного поля изменяет условия протекания электрич. тока в П. и приводит к гальваномагнитным явлениям, которые наиболее сильно проявляются в магнитных полупроводниках и полумагнитных полупроводниках. В П. для исследований и практич. применений наиболее часто магнитное поле прикладывают перпендикулярно электрич. полю, в этом случае имеют место Холла эффект и Шубникова – де Хааза эффект, классич. магнитосопротивление, слабая локализация носителей заряда, а в двумерных структурах – квантовый эффект Холла и дробный квантовый эффект Холла. В магнитном поле на заряженные частицы действует сила Лоренца, они начинают вращаться в плоскости, перпендикулярной направлению магнитного поля, с циклотронной частотой $ω_с$ и сохраняют свою скорость вдоль магнитного поля. В зависимости от величины произведения $ω_сτ$ различают классические слабые ($ω_сτ≪1$), классические ($ω_сτ>1$) и квантующие ($ωсτ≫1$ и $\hbar ω_с≫kT$) магнитные поля, где $\hbar$ – постоянная Планка.
В магнитных полях, когда $ω_сτ∼1$, движение носителей заряда можно описывать классич. уравнениями Ньютона, в этом случае имеет место эффект Холла, состоящий в возникновении дополнит. электрич. поля, перпендикулярного внешним электрич. и магнитному полям. Это дополнит. поле компенсирует поток частиц, вызванный совместным действием приложенных электрич. и магнитного полей, и зависит от величины магнитного поля и концентрации свободных носителей заряда, а его направление определяется знаком заряда, поэтому эффект Холла используется для определения знака и концентрации носителей заряда.
В более сильных полях, когда $ω_сτ≫1$, но характерная энергия носителей заряда значительно превосходит $\hbar ω_с$, необходимо учитывать квантование носителей заряда во внешнем магнитном поле, в результате плотность состояний как функция обратного поля приобретает вид острых, периодически расположенных пиков. При увеличении магнитного поля эти пики начинают пересекать уровень химич. потенциала электронного газа, в результате в квантующем магнитном поле сопротивление осциллирует.
В двумерных полупроводниковых структурах при $ω_сτ≫1$ и $\hbar ω_с≫kT$ возникает квантовый эффект Холла, состоящий в появлении ступенек на зависимости поперечного сопротивления от магнитного поля. Высота ступенек с большой точностью равняется кванту удельного сопротивления $h/e^2$. Значение продольного сопротивления обращается в нуль в магнитных полях, отвечающих ступенькам на зависимости поперечного сопротивления от магнитного поля и пикам между ступеньками. Такое поведение объясняется особенностями движения носителей заряда в сильном магнитном поле в условиях действия случайных электрич. и деформационных полей, имеющих разл. пространственный масштаб. При ещё большем магнитном поле имеет место дробный квантовый эффект Холла, проявляющийся в дополнит. расщеплении ступенек. Однако квантовый характер носителей заряда может проявляться и в слабых магнитных полях. Оказалось, что при низких темп-рах в П. и металлах наблюдается небольшое (ок. 1–5% от общего) изменение проводимости, пропорциональное квадрату магнитного поля. Этот эффект объясняется явлением слабой локализации, состоящим в увеличении сопротивления проводящих материалов за счёт усиления рассеяния назад при диффузионном движении частиц.
Оптические свойства полупроводников
Зонная структура кристаллов проявляется в свойствах пропускания, отражения и поглощения полупроводниками электромагнитного излучения. Наиболее очевидно существование запрещённой зоны следует из того, что излучение с энергией кванта, меньшей ширины запрещённой зоны $ℰ_g$ чистого П., не поглощается. Поглощение начинается только тогда, когда энергия кванта превысит $ℰ_g$. Для П. типа GaAs при низких темп-рах длина волны, на которой интенсивность падающего излучения уменьшается в $e$ раз, приблизительно равна 0,1 мкм. При таком поглощении кванта света в П. возникают электрон и дырка и имеет место закон сохранения квазиимпульса. Обычно импульс света значительно меньше квазиимпульсов носителей заряда, и при оптич. переходе электрона из валентной зоны в зону проводимости квазиимпульс не изменяется, так что в момент рождения электрон и дырка имеют противоположные квазиимпульсы. Такие переходы называются прямыми; они происходят в т. н. прямозонных П. (GaAs, InSb, Te, SiC), в которых потолок валентной зоны и дно зоны проводимости расположены в одной точке зоны Бриллюэна.
Электронные переходы со значит. изменением квазиимпульса происходят в т. н. непрямозонных П. (Ge, Si, AlAs, GaP), у которых вершина валентной зоны и дно зоны проводимости разнесены в пространстве квазиимпульсов на величину порядка $π/d$, где $d$ – межатомное расстояние в кристаллич. решётке. В этом случае для выполнения закона сохранения квазиимпульса необходимо участие третьей частицы, в качестве которой может выступать либо примесный атом, либо фонон. Типичная длина поглощения для непрямых переходов составляет 1–10 мкм.
В спектре поглощения П. присутствуют широкие энергетич. полосы, что указывает на то, что электроны в валентных зонах связаны слабо и легко поляризуются под действием электрич. поля. Это означает, что П. характеризуются относительно большой диэлектрич. проницаемостью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Благодаря большим значениям $ε$ кулоновское взаимодействие электронов и дырок друг с другом или с заряженными примесями сильно подавлено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки. Это и позволяет во многих случаях рассматривать движение каждого носителя заряда независимо от других. Если бы кулоновское взаимодействие не ослаблялось, то примесные ионы могли бы связывать носители заряда в устойчивые, локализованные в пространстве образования с энергией ок. 10 эВ. В этом случае при темп-рах ок. 300 К тепловое движение практически не могло бы разорвать эти связи, создать свободные носители заряда и привести к заметной электропроводности. Такое связывание имеет место в П. и диэлектриках, но из-за ослабления кулоновского взаимодействия и относительно малых эффективных масс электронов и дырок (ок. 0,1–0,5 от массы свободного электрона) энергия связи таких образований (экситонов) составляет 1–50 мэВ, что много меньше энергии ионизации атомов. Экситоны легко ионизуются при темп-рах выше темп-ры жидкого азота и, т. о., не препятствуют образованию свободных носителей. Тем не менее при низких темп-рах образование экситонов приводит к поглощению в чистых П. электромагнитного излучения с энергией кванта, меньшей $ℰ_g$ на величину энергии связи экситона.
Прозрачность П. в узкой области частот вблизи края собств. поглощения изменяется под действием внешних (электрич., магнитного и др.) полей. Электрич. поле, ускоряя электрон, может в процессе оптич. перехода передать ему небольшую дополнит. энергию, в результате чего прямые оптич. переходы из валентной зоны в зону проводимости происходят под действием квантов света с энергией, меньшей $ℰ_g$ (Келдыша – Франца эффект).
В однородном магнитном поле закон сохранения квазиимпульса приводит к сохранению кругового движения электронов и дырок после поглощения излучения. В результате зависимость коэф. поглощения от частоты падающего излучения принимает вид узких пиков. Кроме собств. поглощения (за счёт прямых или непрямых переходов), в П. имеет место поглощение света свободными носителями, связанное с их переходами в пределах одной разрешённой зоны. Их вклад в общее поглощение мал, поскольку число свободных носителей заряда в П. малó по сравнению с полным числом валентных электронов, и для их реализации требуется участие третьей частицы – примеси или фонона. Кроме того, в нелегированных П. со значит. долей ионной связи наблюдается поглощение далёкого ИК-излучения за счёт возбуждения колебаний решётки – фононов.
Спектр фотолюминесценции П. сосредоточен в узкой области вблизи ширины запрещённой зоны. Вклад в фотолюминесценцию П. могут вносить разл. механизмы излучательной рекомбинации: зона – зона, зона – примесь, донор – акцептор, с участием фонона, излучение свободных, связанных или локализованных экситонов, экситон-поляритонная, биэкситонная рекомбинации. В нелегированных структурах с квантовыми ямами низкотемпературная фотолюминесценция обусловлена излучательной рекомбинацией экситонов, локализованных на шероховатостях поверхности и флуктуациях состава.
Оптич. свойства твёрдых растворов П. можно менять в широких пределах, подбирая химич. состав раствора, что обусловливает их широкое применение в приборах оптоэлектроники, в первую очередь в качестве рабочих материалов лазеров, свето- и фотодиодов, солнечных элементов, детекторов излучения.
Полупроводниковые гетеро- и наноструктуры
Совр. физика П. – это, прежде всего, физика полупроводниковых гетероструктур и наноструктур. В последних возникает ряд новых физич. явлений, которые невозможны в объёмных П., напр. квантовые целочисленный и дробный эффекты Холла. В наноструктурах движение свободных носителей заряда ограничено в одном или нескольких направлениях, что приводит к размерным эффектам, кардинально изменяющим энергетич. спектры носителей заряда, а также фононов и др. квазичастиц. Важную роль в наноструктурах играют гетерограницы, поскольку в системах малого размера отношение площади поверхности к внутр. объёму структуры является большим. Наиболее совершенные полупроводниковые наноструктуры получают методами молекулярно-пучковой эпитаксии и газофазной эпитаксии из металлоорганич. соединений.
В нач. 21 в. сложилась устойчивая терминология низкоразмерной физики П. Систематика начинается с одиночного гетероперехода между двумя композиционными материалами – полупроводниками A и B. Один или оба материала могут быть твёрдыми растворами (примеры гетеропар A/B: GaAs/Al1–xGaxAs, ZnSe/BeTe). По определению, в гетеропереходах первого типа запрещённая зона $ℰ_g$ одного из композиц. материалов лежит внутри запрещённой зоны др. материала. В этом случае потенциальные ямы для электронов или дырок расположены в одном и том же слое. В гетеропереходах второго типа дно зоны проводимости ниже в одном, а потолок валентной зоны выше в другом П. Для указанных гетеропар запрещённые зоны перекрываются. Имеются также гетеропереходы второго типа (напр., InAs/GaSb), у которых запрещённые зоны не перекрываются и дно зоны проводимости одного П. лежит ниже потолка валентной зоны другого П. К третьему типу относят гетеропереходы, в которых один из слоёв является бесщелевым П., напр. в паре HgTe/CdTe. Двойной гетеропереход B/A/B первого типа представляет собой структуру с одиночной квантовой ямой, если $ℰ^A_g<ℰ^B_g$, или структуру с одиночным барьером, если $ℰ^A_g>ℰ^B_g$.
К полупроводниковым наноструктурам относят квантовые ямы, квантовые проволоки, квантовые точки. В квантовой яме движение свободного носителя заряда (электрона или дырки) ограничено в одном из направлений. В результате возникает пространственное квантование и энергетич. спектр по одному из квантовых чисел из непрерывного становится дискретным – каждая трёхмерная энергетич. электронная зона превращается в серию двумерных подзон размерного квантования. Естеств. развитием однобарьерной структуры являются двух- и мультибарьерные структуры, на основе которых создаются резонансно-барьерные приборы. От одиночной квантовой ямы переходят к структуре с двумя или тремя квантовыми ямами и структурам с целым набором изолированных квантовых ям. По мере того как барьеры становятся тоньше, туннелирование носителей заряда из одной ямы в другую становится заметнее, и электронные состояния в подзонах размерного квантования изолированных ям трансформируются в трёхмерные минизонные состояния. В результате периодич. структура изолированных квантовых ям, или толстобарьерная сверхрешётка, превращается в тонкобарьерную сверхрешётку, или просто сверхрешётку. Полупроводниковая сверхрешётка используется для создания квантовых каскадных лазеров, излучение которых возникает при переходе электронов между слоями структуры.
Кроме структур с квантовыми ямами, существуют и др. двумерные системы, напр. графен и структура металл – диэлектрик – полупроводник (МДП-структура), которая используется в микроэлектронике в виде полевого МДП-транзистора.
В одномерных системах – квантовых проволоках – движение носителей заряда свободно только в одном направлении (напр., в углеродной нанотрубке, получаемой свёртыванием графеновой полоски и закреплением её противоположных сторон). Др. пример такой структуры – квантовая яма, выращенная на сколе, содержащем перпендикулярную ему квантовую яму. Квантовая механика допускает формирование одномерных электронных состояний на стыке двух таких ям.
В квантовых точках движение носителей заряда ограничено во всех трёх направлениях, напр. в нанокристаллах CdSe, выращенных в стеклянной матрице, и в эпитаксиальных квантовых точках GaAs/InAs, выращенных по механизму Странски – Крастанова.
Широкое применение получили полупроводниковые лазеры на квантовых ямах и массивах квантовых точек. В структуре с двойным ограничением стимулированное излучение выходит из торца, перпендикулярно направлению роста. Квантовый микрорезонатор, т. е. квантовые ямы или квантовые точки, выращенные в активной области оптич. микрорезонатора, используется для создания вертикально излучающих лазеров.
Возможность в широких пределах управлять физич. свойствами П. приводит к их многочисленным и разнообразным применениям (см. Полупроводниковые материалы).
bigenc.ru
Свойства полупроводников
Свойства полупроводниковых материалов характеризуются следующими показателями: собственная и примесная проводимости полупроводников, электропроводность полупроводников, оптические и фотооптические явления в полупроводниках, электронные процессы на поверхности полупроводников, контактные явления в полупроводниках.
Собственная проводимость полупроводников может быть рассмотрена на примере кремния, который является элементом IV группы Периодической системы химических элементов Д. И Менделеева. Эти элементы образуют алмазоподобную модификацию гранецентрированной кубической решетки, в которой каждый атом, расположенный в узле кристаллической решетки, окружен четырьмя другими атомами и связан с ними ковалентной связью. Так как при ковалентной связи каждый внешний электрон принадлежит одновременно двум атомам, то внешние оболочки атомов содержит по восемь электронов. При этом все электроны внешних оболочек участвуют в образовании ковалентных связей и свободные носители, создающие электропроводность, отсутствуют (рис. 4.2, а) Для того чтобы электрон превратился в свободный носитель заряда, необходимо сообщить ему дополнительную энергию, достаточную для разрыва ковалентной связи. Такая энергия определяется шириной запретной зоны и называется энергией активации (рис. 4. 3).
Рис. 4.2. Модель кристаллической решетки кремния
При разрыве ковалентной связи освободившийся электрон под действием тепловой энергии хаотически движется по объему полупроводника. На месте оторвавшегося электрона остается положительно заряженная незаполненная связь с зарядом, который равен заряду электрона, называемая дыркой. На зонной диаграмме (рис. 4.3) электрону соответствует зона проводимости Wc, а дырке — незанятое электроном состояние в валентной зоне Wv. При отсутствии внешнего электрического поля дырка, как и электрон, совершает хаотические движения.
При этом сама дырка, в отличие от электрона, не перемещается по кристаллу. Ее движение связано с тем, что за счет энергии тепловых колебаний решетки электрон соседней ковалентной связи может пополнить свободную ковалентную связь в атоме с дыркой. В результате этого атом, у которого заполняются все связи, становится нейтральным, а в атоме, потерявшем электрон, образуется дырка (рис. 4.2, б). Таким образом создается впечатление движения дырок.
Процесс образования свободных отрицательно заряженных электронов проводимости и положительно заряженных дырок проводимости называют генерацией электронно-дырочных пар.
Одновременно с генерацией электронно-дырочных пар в полупроводнике происходит и обратный процесс, когда электроны возвращаются из зоны проводимости в валентную зону с выделением W. Этот процесс называют рекомбинацией носителей зарядом.
Проводимость полупроводника, которая возникает в результате разрыва собственных ковалентных связей, называется собственной.
Собственная электропроводность полупроводника складывается из электронной электропроводностии дырочной электропроводности:
2) Примесная проводимость полупроводников обусловлена несовершенством кристаллической структуры полупроводника. Дефекты в кристаллической решетке вызывают образование дополнительных энергетических уровней внутри запретной зоны (рис. 4.4). Благодаря этому для перехода электрона с дополнительного уровня в зону проводимости или из валентной зоны на дополнительный уровень требуется энергия, меньше ширины запретной зоны W. В случае перехода электрона с дополнительного энергетического уровня в зону проводимости появляется дополнительный электрон проводимости. При переходе электрона с валентной зоны на дополнительный энергетический уровень образуется дополнительная дырка проводимости.
Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент V группы Периодической системы химических элементов Д. И. Менделеева, например фосфор (рис. 4.5), то четыре из пяти валентных электронов фосфора будут участвовать в формировании ковалентных связей с соседними атомами основного элемента кремния. Пятый валентный электрон фосфора связан только со своим атомом, и прочность этой связи много меньше прочности ковалентной связи. Для перехода этого электрона на дополнительный энергетический уровень Wд (см. рис. 4.4) требуется энергия, много меньше энергии ширины запретной зоны W. Оторвавшийся от атома фосфора пятый электрон превращается в электрон проводимости. На месте оторвавшегося электрона образуется дырка, которую не могут заполнить электроны других атомов фосфора, так как концентрация его в кремнии очень мала и его атомы расположены далеко друг от друга.
Следовательно, дырка остается неподвижной, дырочная проводимость в таком полупроводнике отсутствует и его проводимость носит электронный характер.
Полупроводники с преобладанием электронной электропроводности называют электронными или n-типа (и — nigative — отрицательный). Электроны в полупроводнике n-типа называют основными носителями заряда, а дырки — неосновными носителями.
Дефекты, которые вызывают появление в полупроводнике дополнительных свободных электронов, называют донорами, а электропроводность, обусловленную донорной примесью, называют электронной. Энергетические уровни Wд при электронной проводимости расположены вблизи зоны проводимости Wc (см. рис. 4.4).
Рис. 4.5. Модели кристаллической решетки донорного (а) и акцепторного (б) полупроводников
Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент III группы таблицы Д. И. Менделеева, например бора, то все три валентных электрона бора участвуют в образовании ковалентных связей с кремнием. А одна связь кремния остается незаполненной. Эту связь можно заполнить электроном соседнего атома кремния, образовав четвертую ковалентную связь с примесным атомом бора. Для этого электрон должен получить энергию Wа, значительно меньшую, чем энергия запретной зоны (см. рис. 4.4).
Приняв дополнительный электрон, атом бора ионизируется и становится отрицательным ионом. При этом одна из четырех связей соседнего атома кремния остается незавершенной, т.е. образуется дырка. В результате тепловых колебаний решетки эта незавершенная связь может быть заполнена электроном соседнего атома, образуя новую дырку. Таким образом в результате исчезновения одних дырок и образования новых происходит хаотичное движение дырок в пределах кристалла, которые являются носителями заряда. Поэтому электропроводность полупроводника носит дырочный характер.
Дефекты, которые вызывают появление в полупроводнике дополнительных дырок проводимости, называют акцепторными, а электропроводность, обусловленную акцепторной примесью, — дырочной. Энергетические уровни акцепторных дефектов Wd как правило, находятся вблизи потолка валентной зоны Wv. Соответственно полупроводники с преобладанием дырочной электропроводности называют дырочными или р-типа (р — positive — положительный). В полупроводнике р-типа основными носителями заряда являются дырки, а неосновными — электроны.
Введение примесей в полупроводник приводит к появлению примесной электропроводности, возникающей в результате ионизации атомов примесей. В отличие от собственной примесная электропроводность образуется благодаря наличию носителей заряда только одного знака (электронов в полупроводниках n-типа и дырок в полупроводниках p-типа).
Возможность управлять значением и типом электропроводности полупроводников в результате введения примесей лежит в основе создания всех полупроводниковых приборов.
Процесс контролируемого введения в полупроводник необходимых примесей называют легированием.
Если примеси внедряются между узлами кристаллической решетки, то их называют примесями внедрения. При этом тип проводимости определяется в основном относительными размерами атома.
В том случае, когда атом примеси замещает атом полупроводника и занимает его место в узле кристаллической решетки, то такие примеси называют примесями замещения.
Атомы многих примесей могут и замещать атомы полупроводника в узлах кристаллической решетки, и внедряться в междоузлие. Такие примеси называют амфотерными. Они могут быть донорами и акцепторами.
Реальные полупроводниковые материалы содержат донорные и акцепторные примеси. Если концентрация донорных примесей Nд больше концентрации акцепторных примесей Nа, то концентрация свободных электронов будет больше концентрации дырок (n>р). Электроны являются основными носителями, а дырки — неосновными, и в полупроводнике преобладает электронная электропроводность.
Когда концентрация акцепторных примесей Na больше концентрации донорных примесей Nд , то основными носителями заряда становятся дырки и в полупроводнике преобладает дырочная электропроводность.
Примеси, которые не оказывают влияния на электропроводность полупроводников, называют нейтральными.
На свойства полупроводниковых материалов оказывают влияние также и другие дефекты кристаллической структуры: дислокации, вакансии и др. Но управлять электропроводностью полупроводников, используя эти дефекты, невозможно. Поэтому в производстве стремятся получить полупроводниковые материалы с минимально возможным содержанием дефектов кристаллической структуры, а затем производят легирование.
3) Электропроводность полупроводников.
При отсутствии внешнего электрического поля носители заряда в полупроводнике (электроны и дырки) совершают хаотичные движения в пределах кристалла. В результате приложения внешнего поля электроны начинают двигаться в направлении, противоположном направлению поля, а дырки — в направлении поля.
В собственном полупроводнике носителями заряда являются свободные электроны и дырки, концентрации которых одинаковы.
Удельная электрическая проводимость собственного полупроводника определяется суммой электроннойи дырочной:
для полупроводника с собственной проводимостью n=p,
Удельная электрическая проводимость полупроводника n-типа определяется суммой примесной и собственнойудельной электрической проводимости:
где ;— концентрация свободных электронов, образовавшихся за счет ионизации донорной примеси, т.е. в результате перехода электронов с донорных уровней в зону проводимости.
При комнатной температуре у германия и кремния собственная удельная электрическая проводимость значительно меньше примесной удельной электрической проводимости, так как донорная примесь полностью ионизована, а собственная электропроводность проявляется слабо. При повышении температуры собственная удельная электропроводность увеличивается и в определенный момент становится больше примесной. Например, для германия с= 0,1 Омм собственная электропроводность начинает преобладать над примесной при температуре 90°С, а для случая с = 10-5 Омм — при 500°С
Для полупроводника р-типа удельная электрическая проводимость
где ,ра — концентрация дырок, образовавшихся за счет ионизации акцепторной примеси, т. е. в результате перехода электронов из валентной зоны на акцепторные уровни.
4) Температурная зависимость удельной проводимости
Удельная электрическая проводимость полупроводников определяется концентрацией свободных носителей заряда и их подвижностью. Подвижность носителей заряда определяется их эффективной массой, скоростью и частотой столкновений с узлами и дефектами кристаллической решетки и в целом слабо зависит от температуры. Поэтому на характер зависимости электропроводимости от температуры основное влияние оказывает концентрация носителей заряда.
При комнатной температуре концентрация примесных носителей заряда преобладает над собственной. При дальнейшем повышении температуры происходит истощение примеси, т.е. все валентные электроны примеси переходят в зону проводимости и рост проводимости прекращается (рис. 4.6, участок 2-3). Проводимость остается постоянной до тех пор, пока температура не повысится настолько, что тепловой энергии станет достаточно, чтобы собственные электроны могли перейти в зону проводимости, преодолев запретную зону. Благодаря этому переходу концентрация носителей заряда начнет резко возрастать за счет собственных электронов (участок 3-4). Концентрация собственных атомов полупроводника на несколько порядков больше концентрации атомов примесей, поэтому собственная проводимость при этой температуре значительно больше примесной. Следовательно, собственная проводимость является определяющей. При высоких температурах полупроводники по проводимости приближаются к проводникам.
При большой концентрации примесей зона дополнительных энергетических уровней сливается с зоной проводимости. В этом случае уже при комнатной температуре все валентные электроны примеси находятся в зоне проводимости, являясь носителями зарядов, и их концентрация не зависит от температуры. Такой полупроводник называют вырожденным примесным полупроводником. В таком полупроводнике концентрация примесей не влияет на собственную проводимость.
Повышение проводимости полупроводников с ростом температуры свидетельствует о том, что полупроводники обладают отрицательным температурным коэффициентом удельного электрического сопротивления ТК. Эту зависимость используют для создания полупроводниковых первичных преобразователей температуры — термисторов, ;
Собственная электрическая проводимость кремния и германия проявляется при сравнительно низких температурах, поэтому температурный диапазон большинства полупроводниковых приборов невелик (до 100… 150 °С).
5) Влияние деформации на электропроводность полупроводников
Электропроводность твердых кристаллических тел изменяется от деформации вследствие увеличения или уменьшения (растяжение, сжатие) междуатомных расстояний, приводящего к изменению концентрации и подвижности носителей.
Величиной, численно характеризующей изменение удельной проводимости (удельного сопротивления) полупроводников при определенном виде деформации, является тензочувствительность
,
которая представляет собой отношение относительного изменения удельного сопротивления полупроводника к относительной деформации в данном направлении .
6) воздействие света на электропроводность полупроводников
Световая энергия, поглощаемая полупроводником, вызывает появление в нем избыточного (по сравнению с равновесным при данной температуре) количества носителей зарядов, приводящего к возрастанию электропроводности.
Фотопроводимостью называют увеличение электрической проводимости вещества под действием электромагнитного излучения.
В фотопроводимости обнаруживается квантовая природа света. Энергия фотона
затрачивается в собственном полупроводнике на образование электронно-дырочных пар за счет переброса электронов из валентной зоны в зону проводимости. Поэтому существует граничная длина волны, определяемая энергией кванта, достаточной для перехода электрона с самого верхнего уровня валентной зоны на самый нижний уровень зоны проводимости, т. е. равная ширине запрещенной зоны полупроводника. Отсюда по длинноволновому краю фотопроводимости (ДКФ) можно определить ширину запрещенной зоны полупроводника. Так как запрещенная зона различных полупроводниковых веществ имеет ширину от десятых долей электрон-вольта до 3 эВ, то фотопроводимость может обнаруживаться в инфракрасной, видимой или ультрафиолетовой части электромагнитного спектра. Наличие «теплового хвоста» (т. е. небольшой фотопроводимости), вызываемое квантами света с энергией, несколько меньшей ширины запрещенной зоны полупроводника, можно объяснить двумя физическими явлениями:
1. Отдельные электроны могут оказаться под суммарным воздействием энергии фотонов и энергии тепловых колебаний кристаллической решетки. Тогда эти электроны перейдут в зону проводимости.
2. Ширина запрещенной зоны не является абсолютно постоянной
7) влияние сильных электрических полей на электропроводимость полупроводников
Рис. 4.8. Зависимость удельной проводимости полупроводника от напряженности электрического поля при различных температурах (Т1>Т2)
Электропроводность полупроводников зависит от напряженности электрического поля. Как видно из рис. 4.8, при низких значениях напряженности поля (до некоторого критического значения Ек) соблюдается закон Ома, и удельная проводимость не зависит от напряженности поля, а при более высоких напряженностях поля начинается интенсивный рост удельной проводимости по экспоненциальному закону, приводящий к разрушению структуры полупроводника. С ростом температуры кривая удельной проводимости перемещается вверх, а наклон возрастающей части становится меньше.
Возрастание проводимости обусловлено ростом числа носителей заряда, так как под влиянием поля они легче освобождаются тепловым возбуждением. При дальнейшем росте поля может появиться механизм ударной ионизации, иногда приводящий к разрушению структуры полупроводника.
8) Контактные явления в полупроводниках возникают вокруг границы раздела контактного электрического поля. Воздействие его на поверхностные слои полупроводника аналогично воздействию некоторого внешнего электрического поля.
Если одна область полупроводника обладает электронной проводимостью, а другая — дырочной, то границу между этими областями называют электронно-дырочным переходом или р-n-переходом. Получить р-n-переход при механическом соприкосновении полупроводников с различным типом проводимости невозможно. Для получения р-n-перехода одну часть полупроводника легируют донорной, а другую — акцепторной примесью. В результате одна часть полупроводника обладает электронной электропроводностью, а другая — дырочной. При соприкосновении электроны диффундируют в р-область, где велика концентрация дырок, и рекомбинируют с дырками. Аналогично дырки диффундируют в n-область, где велика концентрация электронов. В результате этого у границы раздела n-области остаются нескомпенсированные ионы донорной примеси, которые создают объемный положительный заряд. У границы раздела p-области нескомпенсированные ионы акцепторов создают объемный отрицательный заряд. Таким образом, в области раздела полупроводников n-типа и p-типа образуется зона, содержащая свободные носители заряда. Эта область составляет толщину р-n-перехода. При этом образовавшийся положительный объемный заряд нескомпенсированных ионов донорной примеси препятствует дальнейшей диффузии дырок из p-области в n-область.
Отрицательный объемный заряд ионов акцепторной примеси препятствует диффузии электронов в р-область. Таким образом нескомпенсированные ионы примеси создают на границе раздела потенциальный барьер для основных носителей заряда. Для преодоления этого барьера основные носители должны обладать достаточной кинетической энергией. С помощью приложения внешнего поля высоту потенциального барьера можно увеличивать или уменьшать, меняя полярность.
Рис.4.9. p-n-переход
9) Вольт-амперная характеристика диода
Рис.4.10. ВАХ выпрямительного диода
ПЕРЕХОД МЕТАЛЛ-ПОЛУПРОВОДНИК
В современных полупроводнико¬вых приборах кроме электронно-дырочных переходов применяют так¬же контакт между металлом и полу¬проводником.
Процессы в таких переходах за¬висят от работы выхода электронов, т.е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов может выйти из данного тела. В различных металлополупроводниковых переходах может возни¬кать как выпрямляющий, так и невы¬прямляющий переход.
Невыпрямляющий (омический) переход
Если в контакте металла с полупроводником n-типа (рис. 7) работа выхо¬да электронов из металла Ам меньше, чем работа выхода из полупроводника Аn, то будет преобладать выход электронов из металла в полупроводник.
В слое полупроводника около границы накапливаются основные носители (электроны), и этот слой становится обогащенным, т.е. в нем увеличивается концентрация электронов. Сопротивление этого слоя будет малым при любой полярности приложенного напряжения.
Такой переход не обладает выпрямляющим свойством. Его называют невыпрямляющим (омическим) контактом.
Рис. 7. Омический переход
Подобный же невыпрямляющий переход получается в контакте металла с полупроводником p-типа (рис. 7), если работа выхода электронов из полупро¬водника меньше, чем работа выхода из металла (Аnр<Ам). В этом случае из по¬лупроводника в металл уходит больше электронов, чем в обратном направле¬нии. В приграничном слое полупроводника также образуется область, обога¬щенная основными носителями (дырками), имеющая малое сопротивление.
Оба типа невыпрямляющих контактов широко используются в полупро¬водниковых приборах при устройстве выводов от n- и p-областей. Для этой це¬ли подбираются соответствующие металлы.
Выпрямляющий переход
Рассмотрим контакт полупроводника n-типа с металлом, когда Ам>Ап.n, (рис. 8,а). Электроны будут переходить главным образом из полупроводника в металл, и в приграничном слое полупроводника образуется область, обеднен¬ная основными носителями и имеющая большое сопротивление. Кроме того, переход электронов приводит к появлению контактной разности потенциалов.
Если к переходу подключить внешнее напряжение, причем «минус» к по¬лупроводнику, а «плюс» к металлу, то внешнее электрическое поле компенси¬рует внутреннее. Потенциальный барьер уменьшается, а ток основных носите¬лей (электронов) из n-области увеличивается — переход открыт. При смене по¬лярности («минус» к металлу, «плюс» к полупроводнику) внешнее электрическое поле суммируется с внутренним, потенциальный барьер увеличивается, и переход не пропускает ток — закрыт.
Таким образом, переход между металлом и полупроводником обладает вентильными свойствами. Его называют барьером Шоттки.
Аналогичные процессы имеют место при контакте металла с полупровод¬ником p-типа, когда Ам<Ап.р. Значительно большее количество электронов бу¬дет переходить из металла в полупроводник. Их рекомбинация с дырками в по¬лупроводнике приведет к уменьшению концентрации носителей в пригранич¬ном слое — создается обедненный слой и контактная разность потенциалов (рис. 8,б).
Рис. 8. Выпрямляющий переход
Подключение внешнего напряжения плюсом к полупроводнику, а мину¬сом к металлу снижает потенциальный барьер. Через переход течет ток, обу¬словленный переходом электронов из металла в полупроводник — переход от¬крыт.
Обратное включение увеличивает потенциальный барьер. Через переход будут течь лишь неосновные носители полупроводника р-типа — электроны. Так как их концентрация мала, то ток через переход практически не течет — пе¬реход закрыт.
Выпрямляющий переход металл-полупроводник тоже используется для создания приборов с односторонней проводимостью, как и n-p-переход.
studfile.net
Полупроводники. Структура полупроводников. Типы проводимости и возникновение тока в полупроводниках.
Здравствуйте уважаемые читатели сайта sesaga.ru. На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).
Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник. Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.
Общие понятия.
Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Свойства полупроводников.
Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается.
Если на полупроводник навести свет, то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.
Строение атомов полупроводников.
Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона.
Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом.
В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.
Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны.
Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной.
В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному, заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.
Электропроводность полупроводника.
Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.
При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов. Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным», а там где он находился до этого, образуется пустое место, которое условно называют дыркой.
Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.
А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике.
Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений, в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки, которые будут заполняться другими освободившимися электронами. То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток.
Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку. Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.
Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки, находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.
Пока в полупроводнике действует электрическое поле, этот процесс непрерывен: нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).
Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному.
Электронно-дырочная проводимость.
В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.
Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.
Электронная проводимость.
Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.
Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.
Дырочная проводимость.
Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.
Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.
Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.
Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.
На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!
Источник:
1. Борисов В.Г. — Юный радиолюбитель. 1985г.
2. Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.
sesaga.ru