Трансформатор на 12 вольт для светодиодных ламп – 12: ,

Светодиодные понижающие трансформаторы 220 — 12/24/36 вольт

Светодиодный понижающий трансформатор 12/24/36 вольт предназначен для подключения к бытовой электросети (220 вольт) светодиодных ламп и ленты, рассчитанных на пониженное напряжение (12V, 24V, 36V) постоянного или переменного тока.

Каждый из представленных светодиодных трансформаторов 220 — 12 обеспечивает стабильное выходное напряжение 12V, что гарантирует долгий срок службы подключённого светодиодного оборудования. Также имеется несколько моделей электромагнитных трансформаторов на 24 и 36 вольт.

Как определить нужную мощность понижающего трансформатора?

Выбрать трансформатор очень просто: сложите мощности всех низковольтных источников света, которые Вы собираетесь подключить к трансформатору, и к полученному числу добавьте 20%. В результате вы получите минимальную номинальную мощность необходимого светодиодного трансформатора.

Диапазон мощностей, имеющихся у нас в продаже понижающих трансформаторов 220 — 12/24/36 вольт, позволяет подобрать трансформатор для любого случая.

Понижающие трансформаторы 12 вольт. Разные виды и ракурсы.

Мы не рекомендуем производить установку трансформатора в местах с повышенной влажностью и/или температурой, например, в сауне или бассейне.

Зачем трансформатор, если проще установить лампы на 220 вольт?

Возможно, что и проще, но мы всегда рекомендуем по возможности устанавливать светодиодные лампы на 12 вольт в паре с 12-и вольтовым трансформатором постоянного тока. Первичные затраты у Вас не увеличатся, так как лампы на 12 вольт стоят дешевле своих 220-и вольтовых аналогов, и эта разница покрывает цену трансформатора. Но при этом Вы получаете существенный плюс — надёжность. Светодиодные лампы работают долго, но срок службы 12-и вольтовых светодиодных ламп, как правило, ещё больше, т.к. они дополнительно защищены (от электронных шумов и бросков напряжения в электросети) внешним мощным понижающим трансформатором.

www.tauray.ru

Нельзя подключать LED-лампы 12V к электронным трансформаторам для галогенных ламп

Для простоты восприятия сугубо технической информации, сразу сформулируем основные тезисы по данной теме.

Электронные трансформаторы, предназначенные для питания галогенных ламп, использовать для питания светодиодного оборудования нельзя. Пробуем объяснить почему.

1. Значение напряжения в 12 вольт, указанное в паспорте электронного трансформатора – это не что иное, как действующее усредненное напряжение. На самом деле в выходном напряжении данного устройства могут присутствовать короткие импульсы, амплитудой (Внимание:) до 40 вольт!  Производители драйверов для светодиодных ламп не могут обеспечить нормальную работу ламп при таких экстремальных режимах эксплуатации.

2. Напряжение на выходе электронного трансформатора является высокочастотным и невыпрямленным. Импульсный сигнал имеет при этом разную полярность, как положительную, так и отрицательную. 

3. Экспериментальным путём установлено, что выходное действующее напряжение электронных трансформаторов нестабильно. Оно очень критично и напрямую зависит от входного напряжения питающей сети, также зависит от мощности подключаемой нагрузки и от температуры окружающей среды. По этим причинам напряжение электронных трансформаторов может находиться в довольно широких диапазонах, что в свою очередь также негативно влияет на срок службы светотехники.  

4. Очень важно отметить, что электронные трансформаторы не могут работать при маленьких нагрузках. Вот почему трансоформатор может исправно запитывать галогенную лампу мощностью 75 Ватт, в то время, как светодиодную лампу AR111 10 Ватт он или не зажжёт вовсе, или будут наблюдаться мерцания (чередования периодов включения/выключения).

Подключение 12-вольтовых AR111 светодиодных ламп на свой страх и риск к электронным трансформаторам, вне зависимости от нашей воли, приведёт к поломке диодной светотехники. Часто LED лампы на 12В выходят из строя уже при первой коммутации. Такие поломки производители, имея на то полное право, не считают гарантийным случаем. 

Таким образом, если перед Вами стоит задача: установить светодиодные лампы G53 в карданных светильниках или поменять ГЛ AR111 на led-лампы AR111,  рекомендация специалистов — не скупиться и не испытывать судьбу. Тем более, что уже хорошо известно, что завершение таких испытаний всегда одинаковое, потраченное время, пустой кошелёк и испорченная нервная система! В случае, если Вы примите решение о необходимости покупки надёжных, недорогих блоков питания для светодиодных ламп AR111, мы с удовольствием Вам в этом поможем. Источники питания для led ламп AR111 на 12 Вольт.

          

aladd-in.com

Трансформаторы 12 вольт для светодиодных ламп

Трансформаторы для светодиодных ламп 12В

В нынешнее время светодиодное освещение получило большое распространение и применение в различных сегментах повседневной деятельности человека, которая может быть как рабочей, так и бытовой сферой. Благодаря своей безвредности и экономичности светодиодные лампы в ближайшем будущем вытиснут устаревшие источники света (лампы накаливания, люминесцентные источники света) из обихода. Однако для стабильной и безотказной работы светодиодных ламп необходимы некоторые устройства, которые обеспечивают их свечение. Одним из таких модулей является

трансформатор. В основном используются 12В трансформаторы, хотя есть и более мощные модули, такие как 24В и более мощные.

Трансформатор нужен для того, чтобы светодиодный источник света можно было подключить к центральной электросети, в которой напряжение равно 220В. Фактически трансформатор понижает сетевое напряжение равное 220В до необходимого лампе 12В. Благодаря трансформатору, пользователь может быть уверенным в том, что на светодиодную лампу будет подаваться стабильное напряжение в 12В, без каких-либо колебаний, которые могут присутствовать в центральной электросети.

Трансформатор производит сглаживание любых колебаний напряжения, и выдаёт стабильную величину в 12В. За счёт этого, пользователь может быть уверенным в том, что его светодиодная лампа не сгорит, или не уменьшит свой запас работы/часов, который заложен производителем на протяжении всего срока эксплуатации.

Трансформатор на 12В может быть различной формы и отличаться дополнительными характеристиками. Все без исключения устройства обладают двумя основными показателями: мощность, защита корпуса. В основном применяются трансформаторы со степенью защиты IP20, хотя есть образцы и IP44, IP65. За счёт своей различной степени защиты, у пользователя есть возможность применять трансформатор отдельно от источника света и устанавливать его как в закрытом пространстве, так и в открытом, где он может быть подвержен различным воздействиям окружающей среды. Существует множество разработок и технологий, с помощью которых производитель способен выпускать герметичные трансформаторы, прекрасно подходящие для подводных светодиодных источников света (декоративное освещение бассейнов). Относительно мощности, пользователь должен чётко понимать какое количество светодиодных ламп будет у него подключено к трансформатору, и соответственно рассчитать их общую мощность. К примеру, если человек приобретёт трансформатор, имеющий минимальную нагрузку 15W, а подключит к нему две лампы по 6W, которые в сумме дадут всего лишь 12W, тогда ни какой стабильной работы источников света не будет. Данный пример показывает, что при выборе трансформатора, пользователь должен знать какие потребители питания будут к нему подключены, дабы избежать избыточности или несовместимости устройств. При выборе

трансформаторов 12В для светодиодных ламп, так же стоит обратить внимание на фактор диммирования и защищённости устройств от перегрева, а так же короткого замыкания. В основном все ведущие фирмы по электрооборудованию, предоставляют данные опции и модификации в своих трансформаторах, которые предлагают пользователю.

shop220.ru

отличия от блока питания, назначение

Содержание статьи:

При установке светодиодных ламп на место галогенных часто возникает необходимость замены старого источника питания. Галогенные лампы подключаются к электротрансформаторам на 12В, светодиодные требуют установки специальных блоков питания, имеющих аналогичное выходное напряжение. В связи с этим важно разобраться, можно ли использовать старый трансформатор или следует его поменять.

Что представляет собой электронный трансформатор

Электронный трансформатор для галогенных лам не используется для светодиодов

Электронный трансформатор – это схема импульсного источника питания, в основу которой входит высокочастотный генератор, работающий на полупроводниковых ключах, и непосредственно сам трансформатор. Питание такой схемы обеспечивается стандартной сетью переменного тока с напряжением 220В, но на выходе действующее значение находится в области 12В. Сначала питание из электросетей подается на выпрямитель, а затем уже выпрямленное напряжение отправляется в узел генератора и силовых ключей.

Стандартный вариант реализации такой схемы – использование автогенераторного двухтактного типа, ключевой особенностью которого является отсутствие необходимости в использовании каких-либо специальных импульсных источников питания наподобие ШИМ-контроллеров. Автоматический генератор в данном случае переключает транзистор под воздействием напряжений, которые наводятся на обмотки трансформатора, а также обеспечивает положительную обратную связь.

Чтобы обеспечить нормальную работу светодиодных ламп, потребуется любой источник, обеспечивающий стабильное напряжение 12В на постоянной основе и минимизирующий пульсации. Для этого чаще всего используются именно упомянутые выше ИМС.

Обе схемы предусматривают использование интегрального ШИМ-контроллера, которым обеспечивается регулировка работы биполярных или полевых транзисторов. Помимо этого, выходной каскад схемы включает в себя выпрямитель, а также конденсаторы, которыми обеспечивается сглаживание пульсаций – они выступают в роли своеобразного фильтра.

В конечном итоге получается стабилизированный источник питания, пульсации которого соответствуют текущей нагрузке, а также емкости фильтрующих конденсаторов. При необходимости можно обеспечить его реализацию на автогенераторной схеме по аналогии с электронным трансформатором, используя дополнительно цепи обратной связи, чтобы обеспечить необходимую стабилизацию выходного напряжения.

Почему нельзя использовать ЭТ со светодиодными лампами

Есть пять причин, по которым нельзя обеспечивать питание светодиодных ламп, используя стандартные электронные трансформаторы:

  • Светодиодные лампы предусматривают необходимость постоянного напряжения, что обусловлено их нелинейной вольтамперной характеристикой и чувствительностью к любым отклонениям от номинального показателя напряжения. При малейшем превышении такие лампы в итоге могут быстро выйти из строя.
  • Электронные трансформаторы являются источниками переменного напряжения с высокой частотой, а показатели всплесков и пиков в некоторых ситуациях достигают 40В, что в итоге часто приводит к полной поломке светодиодов или же драйверов, использующихся в конструкции современных LED-ламп. Помимо этого, подобный подход чреват их нестабильной работой.
  • Электронные трансформаторы отличаются наличием в них минимальной нагрузки. Таким образом, если нагрузка подключенной лампы не будет достигать уровня, указанного на блоке питания, трансформатор может вообще не начать работать или же будет работать с повышенными пульсациями, отключаться. Это является критичным моментом, так как потребляемая мощность галогенных ламп значительно превышает аналогичные показатели у светодиодных.
  • Блоки питания, предназначенные для энергоснабжения светодиодных ламп, обеспечивают стабилизированное и постоянное напряжение.
  • Галогенные лампы отличаются непривередливостью к тому, идет через сеть постоянный или переменный ток. Роль играет только его напряжение. В связи с этим их можно подключать к любым источникам питания.

Классические электронные трансформаторы не могут использоваться в качестве источника питания любых светодиодных светильников. При замене ламп нужно будет обязательно подбирать специальный блок, обеспечивающий стабилизированное напряжение. Если проигнорировать это, можно столкнуться с преждевременным выходом из строя всех ламп.

Понижающий трансформатор

Понижающий трансформатор для LED-ламп

Стандартный срок службы светодиодных ламп в соответствии с характеристиками, заявленными производителями, составляет 4000 рабочих часов. Если не использовать в работе таких устройств специализированные понижающие трансформаторы, оставляя в качестве основы работы диод, период эксплуатации сокращается  до 1200 часов бесперебойной работы.

Если лампы устанавливаются в помещения с повышенной концентрацией влаги или постоянными перепадами температуры (сауны, бассейны), нужно использовать специальный понижающий трансформатор, оснащенный защитой от воздействия воды. Также важно убедиться в том, что общая нагрузка светодиодных ламп находится в пределах 60%.

Как выбрать

В выборе понижающего трансформатора для светодиодных ламп нет ничего сложного. При возникновении каких-нибудь трудностей всегда можно проконсультироваться с менеджерами компаний, которые продают такое оборудование. Самое главное – правильно рассчитать мощность.

Вычисляется сумма всех светодиодных светильников, установленных в помещении, к полученному результату добавляется 20%, так как в преимущественном большинстве случаев трансформатор используется только один.

К примеру, в комнате будет шесть ламп 12В, их сумма 72В. Устройства, имеющие номинал 60В, уже не могут использоваться. Нужно приобретать оборудование на 100В или сокращать количество источников света. Если поставить мощный трансформатор, можно добавить еще лампу.

Экономия зависит не от мощности используемых источников света, а от напряжения. Она обеспечивается за счет использования трансформатора, который значительно увеличивает срок службы LED-ламп.

Особенности установки

Трансформатор представляет собой выносное устройство, но такой тип установки не всех устраивает, так как не хочется портить интерьер дополнительным оборудованием. Скрыть такое устройство и при этом обеспечить себе нормальное взаимодействие с ним не составит труда, если в доме есть подвесные потолки или накладные стены.

В идеале устройства закрепляются на бетонной плите. Чтобы обеспечить к ним простой доступ, в поверхности стены или потолка делается маленький люк. Нужно учесть, что с течением времени устройство нужно будет менять, поэтому врезное отверстие должно соответствовать его габаритам.

Решение спрятать трансформатор в кладовке не всегда целесообразно, особенно если будет устанавливаться несколько устройств. До источника нагрузки должно идти не более 2 метров провода, поэтому расположить трансформатор далеко от светильника не получится. Чтобы избежать всех этих проблем, рекомендуется покупать светильники со встроенным трансформатором.

Трансформатор нагревается при работе

Если куплен новый трансформатор, который после подключения и включения начал сильно нагреваться, нужно провести несколько операций:

  1. Проверить нагрузку энергопотребления в помещении и соответствие допустимого номинала трансформатора количеству подключенных к нему ламп.
  2. Проверит разводку розеток и освещения по группам.
  3. Проверить идет ли нагрузка на устройство.
  4. Посмотреть отзывы в интернете по купленному устройству. Вполне возможно, приобретен некачественный трансформатор.

Если нагревается трансформатор, который используется уже несколько лет, это показатель износа оборудования. Следует поменять его на новый. Лучше не игнорировать эти сигналы, так как можно столкнуться с оплавлением корпуса, а это создаст риск пожароопасной ситуации.

strojdvor.ru

Почему для электропитания светодиодного оборудования нельзя использовать электронные трансформаторы для галогенных ламп?

  При подборе оборудования для светодиодной подсветки или светодиодного освещения, неизбежно возникает задача выбора блока питания для системы. Специалисты по светодиодному оборудованию всегда предлагают использовать специализированные блоки питания. У человека, столкнувшегося с этим оборудованием в первый раз, как правило, возникает вполне естественный вопрос – почему нельзя применить электронный трансформатор для галогенных ламп? Он, при одинаковой мощности, имеет меньший размер, меньшую цену, да и выходное напряжение у него тоже 12 вольт. Те, кто просто хочет получить ответ на этот вопрос, не вникая в подробности, может сразу перейти к выводам в конце статьи. 

  Для тех же, кто хочет подробнее разобраться в вопросе – немного теории.

  Для начала хочется отметить, что практически все современные источники питания – это импульсные преобразователи. Принципиальное отличие их от применявшихся ранее аналоговых (или линейных) источников питания заключается в том, что преобразование напряжения в них осуществляется не на частоте питающей электросети (50Гц), а на значительно более высокой частоте (обычно в диапазоне 30000-50000 Гц). Благодаря переходу на такие частоты удалось значительно уменьшить размеры и вес источников питания, а также значительно повысить их КПД, который в современных моделях достигает 95%.

  Чтобы понять различие между полноценным блоком питания и электронным трансформатором, разберёмся с их внутренним устройством. 

Рассмотрим структурную схему обычного электронного трансформатора для питания галогенных ламп (рис. 1). 

 

Рис.1 Структурная схема электронного трансформатора, предназначенного для питания галогенных ламп.

  Переменный ток частотой 50 Гц и напряжением 220 В (Рис.2а) подается на входной выпрямитель, представляющий из себя, как правило, диодный мост. На выходе выпрямителя (Рис.2б) мы получаем импульсы напряжения одной полярности и удвоенной частоты – 100Гц.

 

   

Рис.2 Формы напряжения на входе (а) и выходе (б) выпрямителя.

  Далее это напряжение подается на каскад, выполненный на ключевых транзисторах, которые при помощи положительной обратной связи введены в режим генерации. Таким образом, на выходе этого каскада формируются высокочастотные импульсы с частотой генерации и амплитудой сетевого напряжения. Очень важно для нашего случая обратить внимание на то, что генерация в подобной схеме возникает не всегда, а только при условии, что нагрузка электронного трансформатора находится в определённых пределах, например, от 30 до 300 Ватт. Кроме того, поскольку питание ключевого каскада осуществляется импульсами с выхода выпрямителя, то высокочастотное колебание генератора оказывается промодулированным импульсами частотой 100 Гц.

  Сформированное таким образом напряжение сложной формы подаётся на понижающий трансформатор, на выходе которого мы имеем напряжение такой же формы, но величиной, подходящей для питания галогенных ламп. Здесь стоит отметить, что для нити накаливания, которая является источником света в галогенных лампах, не имеет значение формы питающего напряжение. Для ламп накаливания важно только действующее напряжение – т.е. величина напряжения, усреднённая за период времени. Когда в характеристиках электронного трансформатора указывается выходное напряжение 12 вольт, то речь идет как раз о действующем напряжении. На рис.3 приведены реальные осциллограммы, снятые на выходе электронного трансформатора.

   

Рис.3 Осциллограммы на выходе электронного трансформатора, предназначенного для питания галогенных ламп.

  Из осциллограммы Рис.3а видно, что импульсы на выходе электронного трансформатора следуют с частотой 55000 Гц, имеют очень крутые фронты и амплитудное значение 17 вольт. По осциллограмме на Рис.3б можно заметить, что почти 20% времени напряжение на выходе электронного трансформатора вообще равно нулю (горизонтальные участки между всплесками напряжения). Что же произойдёт, если такое напряжение подать, например, на светодиодную лампу? В любую светодиодную лампу всегда встроен собственный драйвер для обеспечения оптимального режима работы светодиодов. Этот драйвер будет пытаться сгладить скачки напряжения, но гарантировать долгую надежную работу в этом случае невозможно. Что касается светодиодной ленты – то для её питания вообще требуется постоянное напряжение.

 

  Теперь рассмотрим структурную схему стабилизированного блока питания, используемого совместно со светодиодным оборудованием (рис. 4). 

Рис.4 Структурная схема блока питания постоянного тока со стабилизированным выходным напряжением, предназначенного для питания светодиодного оборудования.

 Первый блок – уже знакомый нам входной выпрямитель, который не имеет никаких отличий от выпрямителя, рассмотренного нами выше. С его выхода напряжение (см. Рис.2б) подается на сглаживающий фильтр, после которого приобретает форму, показанную сплошной линией на Рис.5.

Рис.5 Форма напряжения на выходе сглаживающего фильтра.

  Как видно из рисунка, пульсации на выходе фильтра почти отсутствуют и форма напряжения близка к прямой линии. 

  Это напряжение подаётся на силовые транзисторные ключи, к выходу которых, как и в случае с электронным трансформатором, подключен понижающий трансформатор. Отличие заключается в том, что работой ключей управляет специализированная микросхема, в состав которой входит задающий генератор, ШИМ контроллер и различные цепи управления.

  Механизм использования ШИМ (широтно-импульсной модуляции) в блоке питания заключается в том, что меняя ширину коммутирующих импульсов, подаваемых на силовые ключи, можно менять напряжение на выходе блока питания. Благодаря этому, подавая сигнал управления с выхода блока питания на вход контроллера ШИМ, появляется возможность стабилизировать выходное напряжение.

  Стабилизация выходного напряжения осуществляется следующим образом. Когда выходное напряжение, под влиянием внешних факторов, повышается, сигнал ошибки передаётся с выхода блока питания на контроллер ШИМ, ширина импульсов уменьшается, и выходное напряжение снижается, приходя в норму. При понижении выходного напряжения аналогичным образом происходит увеличение ширины коммутирующих импульсов. Благодаря такой работе, выходное напряжение всегда поддерживается в заданном диапазоне.

  Поскольку режим работы задающего генератора в данной схеме не зависит от внешних воздействий, а также благодаря цепям стабилизации, выходное напряжение остаётся постоянным во всём диапазоне допустимой мощности нагрузки, например, от 0 до 100 Вт.

  Кроме того, наличие обратной связи позволило защитить блок питания от выхода из строя. При превышении потребляемой мощности, при повышении выходного напряжения выше критического, а также при коротком замыкании в нагрузке происходит автоматическое выключение блока питания. После устранения причины, вызвавшей срабатывание защиты, блок питания запускается вновь.

  После понижающего трансформатора высокочастотные разнополярные импульсы поступают на выпрямитель, где преобразуются в импульсы одной полярности. Выходной фильтр сглаживает импульсы после выпрямления и превращает их в постоянное напряжение с низким уровнем пульсаций.

  Благодаря рассмотренным мерам стабилизации и фильтрации, нестабильность постоянного напряжение на выходе блока питания обычно не превышает 3% от номинального, а напряжение пульсаций имеет величину не более 0,1 вольта.

  Также немаловажное положительное влияние выходного фильтра — значительное снижение уровня электромагнитных помех, излучаемых блоком питания и в особенности помех, излучаемых проводами, подключенными к его выходу.

  Выводы

  Электронные трансформаторы, предназначенные для питания галогенных ламп, использовать для питания светодиодного оборудования нельзя потому, что: 

1. Значение 12 вольт, указанное в паспорте электронного трансформатора – это действующее (усредненное) напряжение. Реально в выходном напряжении могут присутствовать короткие импульсы, амплитудой до 40 вольт. 

2. Напряжение на выходе электронного трансформатора высокочастотное и невыпрямленное. Оно содержит импульсы разной полярности, как положительной, так и отрицательной. 

3. Выходное действующее напряжение электронных трансформаторов нестабильно, зависит от входного напряжения питающей сети, от мощности подключенной нагрузки, от температуры окружающей среды и может лежать в пределах 11-16 вольт. 

4. Электронный трансформатор не способен работать при маленькой нагрузке. В его характеристиках обычно указывается нижняя и верхняя граница допустимой мощности нагрузки, например 30-300 ватт. 

  Первые три пункта неминуемо приведут к преждевременному выходу светодиодного оборудования из строя. В некоторых случаях оборудование может выйти из строя уже при первом включении. Такая поломка не будет являться гарантийным случаем. 

  При замене галогеновых ламп на светодиодные в уже существующих системах, помимо первых трех пунктов, необходимо учитывать и четвёртый. Потребляемая мощность светодиодных ламп в 10 раз меньше мощности галогеновых. При недостаточной нагрузке электронный трансформатор может не включиться совсем или будет периодически включаться и выключаться. При такой замене ламп в любом случае рекомендуется заменять и источник питания.

arlight.ru

Хороший трансформатор для светодиодных ламп

Когда пришло время менять освещение в ванной, решил попробовать светодиодные лампы – больше всего понравилось то, что они греются намного меньше галогенок. Относительно экономии есть сомнения – хотя цены уже не такие нереальные, всё равно лампы стоят недёшево, а якобы увеличенный срок службы практически ещё не подтверждён.

Трансформатор для галогенок не подходит

Поскольку помещение влажное,  были приобретены лампочки на 12 вольт. Потребовался трансформатор. В крупных магазинах – и в Леруа Мерлен, и в Оби, трансформаторы на 12 В требуемой мощности были, но с надписью «FOR 12V HALOGEN LIGHTS USE» – «для галогеновых ламп 12В». Это, конечно, не понравилось, но других в продаже не было, в общем, купил такой, ценой около 150р – дешевле одной лампочки.

После включения стало понятно, что-то не так.

Во-первых, лампочки, купленные как «тёплый свет», давали синеватый свет. Было списано на малоизвестного китайского производителя, тем более что одна лампочка из шести была неисправна сразу. В Леруа Мерлен её поменяли, но осадок остался.

Во-вторых, иногда лампочки самопроизвольно выключались. Иногда через 15 минут, иногда через 3 минуты после включения. Было сделано предположение, что это происходит из-за недостатка мощности (на трансформаторе указана мощность нагрузки не менее 20 Вт) – трансформатор предполагает обрыв кабеля и отключает питание. Соответственно, если добавить ещё пару лампочек, этот эффект должен был бы пропасть.

Потом, когда докупил лампочки, на этот раз уже Philips, вот такие: Philips 871829167827400

всё стало ещё хуже: при подключении дополнительных 1-2 лампочек вся эта гирлянда начинала крайне неприятно мигать, где-то 3-5 раз в секунду!

Тут уже стало окончательно понятно, что трансформатор не подходит, и надпись «только для галогенок» написана не просто так. Судя по его поведению, по небольшим габаритам, трансформатор генерирует высокочастотное напряжение, которое подходит для разогрева спирали (т.е. для ламп накаливания, для галогенных ламп), но не подходит для светодиодных ламп. Попытка поставить выпрямитель из подручных материалов (диодный мост) ни к чему хорошему не привела – на таких частотах мост моментально перегревается.

Поиск по интернету подтвердил эти выводы: трансформатор, предназначенный для галогеновых ламп, не подходит для светодиодных лампочек.

Блок питания для светодиодного освещения

В итоге, был выбран и куплен блок питания для светодиодного освещения. Чтобы решить вопрос раз и навсегда, остановился на Mean Well, конкретно на модели LPV-100-12.

Цена составила 1600р., о какой экономии светодиодного освещения тут уже можно говорить!

Но зато после подключения все проблемы ушли! Лампочки стали давать именно тёплый свет, синеватый оттенок пропал, сам свет стал как будто даже ярче. Больше лампочки не мигают и не отключаются.

Итог: светодиодные лампы 12 В требуют специальных (более дорогих) источников питания.

nhutils.ru

Нужен ли трансформатор для светодиодных ламп

Драйвер или блок питания для светодиодов ?

Сегодня в продаже можно увидеть множество различных типов источников питания для светодиодов. Данная статья призвана облегчить выбор нужного вам источника.

   Прежде всего, рассмотрим различие стандарного блока питания и драйвера для светодиодов. Для начала нужно определиться — что такое блок питания ? В общем случае это — источник питания любого типа, представляющий собой отдельный функциональный блок. Обычно он имеет определенные входные и выходные параметры, причем неважно — для питания каких именно устройств предназначен. Драйвер для питания светодиодов обеспечивает стабильный ток на выходе.  Другими словами — это тоже блок питания.  Драйвер — это лишь маркетинговое обозначение — дабы избежать путаницы. До появления светодиодов источники тока — а им и является драйвер, не имели широкого распространения. Но вот появился сверхяркий светодиод — и разработка источников тока пошла семимильными шагами. А чтобы не путаться — их называют драйверами. Итак, давайте договоримся о некоторых терминах. Блок питания — это источник напряжения (constant voltage), Драйвер — источник тока (constant current). Нагрузка — то, что мы подключаем к блоку питания или драйверу.

Блок питания

   Большинство электроприборов и компонентов электроники требуют для своей работы источник напряжения.  Им является обычная электрическая  сеть, которая присутствует в любой квартире в виде розетки.  Всем известно словосочетание «220 вольт». Как видите — ни слова о токе. Это означает, что если прибор рассчитан на работу от сети 220 В, то вам неважно — сколько тока он потребляет. Лишь бы было 220 — а ток он возьмет сам — столько, сколько ему нужно. К примеру, обычный электрический чайник мощностью 2 кВт (2 000 Вт), включенный в сеть 220 в, потребляет следующий ток : 2 000 /  220 =  9 ампер. Довольно много, учитывая, что большинство обычных электрических удлинителей рассчитано на 10 ампер. В этом причина частого срабатывания защиты (автомата) при включении чайников в розетку через удлинитель, в который и так вставлено много приборов — компьютер, например. И хорошо, если защита сработает, в противном случае удлинитель может просто расплавиться.  И так — любой прибор, рассчитанный на включение в розетку — зная, какова его мощность, можно вычислить потребляемый ток.  
   Но большинство бытовых устройств, таких как телевизор, DVD-проигрыватель, компьютер, нуждаются в понижении сетевого напряжения с 220 В до нужного им уровня — например, 12 вольт. Блок питания — это как раз то устройство, которое занимается таким понижением.
   Понизить напряжение сети можно разными способами. Самые распостраненные блоки питания — трансформаторный и импульсный.

Блок питания на основе трансформатора

   В основе такого блока питания лежит  большая, железная, гудящая штуковина.:) Ну, нынешние трансформаторы гудят поменьше. Основное достоинство — простота и относительная безопасность таких блоков. Они содержат минимум деталей, но при этом обладают неплохими характеристиками. Основной минус — КПД и габариты. Чем больше мощность блока питания — тем он тяжелее. Часть энергии расходуется на «гудение» и нагрев 🙂 Кроме того, в самом трансформаторе теряется часть энергии. Другими словами — просто, надежно, но имеет большой вес и много потребляет — КПД на уровне 50-70%. Имеет важный неотъемлемый плюс — гальваническую развязку от сети. Это означает, что если произойдет неисправность или вы случайно залезете рукой во вторичную цепь питания — током вас не стукнет 🙂  Еще один несомненный плюс — блок питания может быть включен в сеть без нагрузки — это ему не повредит.
   Но давайте посмотрим, что будет, если перегрузить такой блок питания.
Имеется : трансформаторный блок питания с выходным напряжением 12 вольт и мощностью 10 ватт. Подключим к нему лампочку 12 вольт 5 ватт. Лампочка будет светиться на все свои 5 ватт и потреблять тока 5 / 12 = 0,42 А .

Подключим вторую лампочку последовательно к первой, вот так  :

Обе лампочки будут светиться, но очень тускло. При последовательном соединении ток в цепи останется тем же — 0,42 А, а вот напряжение распределится между двумя лампочками, то есть каждая получит по 6 вольт. Понятно, что светиться они будут еле-еле. Да и потреблять при этом будут каждая примерно по 2,5 Вт.
Теперь изменим условия — подключим лампочки параллельно :

В итоге напряжение на каждой лампе будет одинаковое — 12 вольт, а вот тока они возьмут каждая по 0,42 А. То есть ток в цепи возрастет в два раза.  Учитывая, что блок у нас мощностью 10 Вт — мало ему уже не покажется — при параллельном включении мощность нагрузки, то есть лампочек, суммируется. Если мы еще и третью подключим — то блок питания начнет дико греться и в конце концов сгорит, возможно, прихватив с собой вашу квартиру.  А все это потому, что он не умеет ограничивать ток. Поэтому очень важно правильно рассчитать нагрузку на блок питания. Конечно, блоки посложнее содержат защиту от перегрузки и автоматически отключаются. Но рассчитывать на это не стоит — защита, бывает, тоже не срабатывает.

Импульсный блок питания

   Самый простой и яркий представитель — китайский блок питания для галогеновых ламп 12 В.  Содержит небольшое количество деталей, легкий, маленький. Размеры 150 Вт блока — 100х50х50 мм, вес грамм 100. Такой же трансформаторный блок питания весил бы килограмма три, а то и больше. В блоке питания для галогенных ламп тоже есть трансформатор, но он маленький, потому что работает на повышенной частоте. Надо отметить, что КПД такого блока  тоже не на высоте — порядка 70-80%, при этом он выдает приличные помехи в электрическую сеть. Есть еще множество блоков, основанных на аналогичном принципе — для ноутбуков, принтеров и т.п. Итак, основное достоинство — небольшие габариты и малый вес. Гальваническая развязка также присутствует. Недостаток — тот же, что и у его трансформаторного собрата. Может сгореть от перегрузки 🙂  Так что если вы решили сделать у себя дома освещение на 12 В галогенных лампах — подсчитайте допустимую нагрузку на каждый трансформатор.
   Желательно создавать от 20 до 30% запаса. То есть если у вас трансформатор на 150 Вт — лучше не вешайте на него больше, чем 100 Вт нагрузки.  И внимательно следите за равшанами, если они делают у вас ремонт. Расчет мощности им доверять не стоит. Также стоит отметить, что импульсные блоки не любят включения без нагрузки. Именно поэтому не рекомендуется оставлять зарядные устройства для сотовых в розетке по окончании зарядки. Впрочем, это все делают, поэтому большинство нынешних импульсных блоков содержат защиту от включения без нагрузки.

Эти два простых представителя семейства блоков питания выполняют общую задачу — обеспечение нужного уровня напряжения для питания устройств, которые к ним подключены. Как уже было сказано выше — устройства сами решают — сколько тока им нужно.

Драйвер

   В общем случае драйвер — это источник тока для светодиодов. Для него обычно не бывает параметра «выходное напряжение». Только выходной ток и мощность. Впрочем, вы уже знаете, как можно определить допустимое выходное напряжение — делим мощность в ваттах на ток в амперах.
   На практике это означает следующее. Допустим , параметры драйвера следующие : ток — 300 миллиампер, мощность — 3 ватта. Делим 3 на 0,3 — получаем 10 вольт. Это максимальное выходное напряжение , которое может обеспечить драйвер. Предположим, что у нас есть три светодиода, каждый из них рассчитан на 300 мА, а напряжение на диоде при этом должно быть около 3 вольт. Если мы подключим один диод к нашему драйверу, то напряжение на его выходе будет  3 вольта, а ток 300 мА. Подключим второй диод последовательно  (см. пример с лампами выше) с первым — на выходе будет 6 вольт 300 мА, подключим третий — 9 вольт 300 мА. Если же мы подключим светодиоды параллельно — то эти 300 мА распределятся между ними примерно поровну, то есть примерно по 100 мА. Если мы подключим к драйверу на 300 мА трехваттные светодиоды с рабочим током 700 мА — они будут получать только 300 мА. 
   Надеюсь, принцип понятен. Исправный драйвер ни при каких условиях не выдаст больше тока, чем он рассчитан — как бы вы не подключали диоды.  Надо отметить, что есть драйвера, которые рассчитаны на любое количество светодиодов, лишь бы их общая мощность не превышала мощность драйвера, а есть те, которые рассчитаны на определенное количество — 6 диодов, например. Некоторый разброс в меньшую сторону они, впрочем, допускают — можно подключить пять диодов или даже четыре. КПД универсальных драйверов  хуже чем у их собратьев, рассчитанных на фиксированное количество диодов в силу некоторых особенностей работы импульсных схем.  Также драйвера с фиксированным количеством диодов обычно содержат защиту от нештатных ситуаций. Если драйвер рассчитан на 5 диодов, а вы подключили три — вполне возможно , что защита сработает и диоды либо не включатся либо будут мигать , сигнализируя об аварийном режиме. Надо отметить, что большинство драйверов плохо переносят подключение к питающему напряжению без нагрузки — этим они сильно отличаются от обычного источника напряжения.

   Итак , разницу между блоком питания и драйвером мы определили. Теперь рассмотрим основные типы драйверов для светодиодов, начиная с самых простых.

Резистор

   Это простейший драйвер для светодиода. Выглядит как бочонок с двумя выводами. Резистором можно ограничить ток в цепи, подобрав нужное сопротивление.  Как это сделать — подробно описано в статье «Подключение светодиодов в авто»
Недостаток — низкий КПД, отсутствие гальванической развязки. Способов надежно запитать светодиод от сети 220 В через резистор не существует, хотя во многих бытовых выключателях подобная схема используется.

Конденсаторная схема.

   Сходна со схемой на резисторе. Недостатки те же. Возможно изготовить конденсаторную схему достаточной надежности, но при этом стоимость и сложность схемы сильно возрастут.

Микросхема  LM317

   Это следующий представитель семейства  простейших драйверов для светодиодов. Подробности — в вышеупомянутой статье о светодиодах в авто. Недостаток — низкий КПД, требуется первичный источник питания.  Преимущество — надежность, простота схемы.

Драйвер на  микросхеме типа HV9910

   Данный тип драйверов получил изрядную популярность благодаря простоте схемы, дешевизне комплектующих и небольших габаритах.
Преимущество — универсальность, доступность. Недостаток — требует квалификации и осторожности при сборке. Отсутствует гальваническая развязка с сетью 220 В. Высокие импульсные помехи в сеть. Низкий коэффициент мощности.

Драйвер  с низковольтным входом

   В эту категорию входят драйверы,  рассчитанные на подключение к первичному источнику  напряжения — блоку питания или аккумулятору. Например, это драйверы для светодиодных фонарей или ламп, предназначенных для замены галогенных 12 В. Преимущество — небольшие габариты и вес, высокий КПД, надежность, безопасность при эксплуатации. Недостаток — требуется первичный источник напряжения.

Сетевой драйвер

   Полностью готовы к использованию и содержат все необходимые элементы для питания светодиодов.  Преимущество — высокий КПД, надежность, наличие гальванической развязки, безопасность при эксплуатации. Недостаток — высокая стоимость, труднодоступны для приобретения. Могут быть как в корпусе, так и без корпуса. Последние обычно применяют в составе ламп или других источников света.

Применение драйверов на практике

   Большинство людей, планирующих использовать светодиоды, совершают типичную ошибку. Сначала приобретаются сами СИД, затем под них подбирается драйвер. Ошибкой это можно  считать потому, что в настоящее время мест, где можно приобрести в достаточном ассортименте  драйвера, не так уж и много. В итоге, имея на руках вожделенные светодиоды, вы ломаете голову — как подобрать драйвер из имеющегося в наличии.  Вот купили вы 10 светодиодов — а драйвера только на 9 есть. И приходится ломать голову — как быть с этим лишним светодиодом. Может быть, проще было сразу на 9 рассчитывать. Поэтому выбор драйвера должен происходить одновременно с выбором светодиодов.  Далее, нужно учитывать особенности светодиодов, а именно падение напряжения на них. К примеру, красный 1 Вт светодиод имеет рабочий ток 300 мА и падение напряжения 1,8-2 В. Потребляемая им мощность составит 0,3 х 2 = 0,6 Вт . А вот синий или белый светодиод имеет при таком же токе падение напряжения 3-3,4 В, то есть мощность  1 Вт. Стало быть, драйвер с током 300 мА и мощностью 10 Вт «потянет» 10 белых или 15 красных светодиодов. Разница существенная.  Типовая схема  подключения 1 Вт светодиодов к драйверу с выходным током 300 мА выглядит так :

У стандартных 1 Вт светодиодов минусовой вывод больше плюсового по размеру, поэтому его легко отличить.

Как же быть, если доступны только драйвера с током 700 мА ? Тогда придется использовать четное количество светодиодов, включая их по два параллельно.

   Хочу заметить, что многие ошибочно предполагают, что рабочий ток 1 Вт светодиодов — 350 мА. Это не так, 350 мА — это МАКСИМАЛЬНЫЙ рабочий ток. Это означает, что при продолжительной работе необходимо использовать источник питания с током 300-330 мА. Это же верно и для параллельного включения — ток на один светодиод не должен превышать указанной цифры 300-330 мА. Вовсе не значит, что работа на повышенном токе вызовет отказ светодиода. Но при недостаточном теплоотводе каждый лишний миллиампер способен сократить срок службы.  К тому же чем выше ток — тем ниже КПД светодиода, а значит, сильнее его нагрев.

   Если речь пойдет о подключении светодиодной ленты или модулей, рассчитанных на 12 или 24 вольта, нужно принимать во внимание, что предлагаемые для них источники питания ограничивают напряжение, а не ток, то есть не являются драйверами в принятой терминологии. Это означает, во первых, что нужно внимательно следить за мощностью нагрузки, подключаемой к определенному блоку питания. Во-вторых, если блок недостаточно стабилен, скачок выходного напряжения может погубить вашу ленту.  Слегка облегчает жизнь то, что в лентах  и модулях (кластерах) установлены резисторы, позводяющие ограничить ток до определенной степени. Надо сказать, светодиодная лента потребляет относительно большой ток. Например, лента smd 5050 , количество светодиодов в которой составляет 60 штук на метр, потребляет около 1,2 А на метр. То есть для запитки 5 метров понадобится блок питания с током не менее 7-8 ампер. При этом 6 ампер потребит сама лента, а один-два ампера нужно оставить про запас, чтобы не перегружить блок. А 8 ампер — это почти 100 ватт. Такие блоки недешевы.
   Драйверы более оптимальны для подключения ленты, но найти такие специфические драйвера проблематично.

   Подытоживая, можно сказать, что выбору драйвера для светодиодов нужно уделять не меньше, а то и больше внимания, чем светодиодам. Небрежность при выборе чревата выходом из строя светодиодов, драйвера, чрезмерным потреблением и другими прелестями 🙂

Юрий Рубан, ООО «Рубикон», 2010 г.

stroyvolga.ru

0 comments on “Трансформатор на 12 вольт для светодиодных ламп – 12: ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *