как работают RS и D устройства, схемы и характеристики
Широкое применение в импульсной технике получил триггер на транзисторах. Чаще всего он используется в качестве счётчика и элемента памяти. Кроме того, в различных приборах логическое устройство заменило собой электромеханическое реле. На основе эпитаксиальных транзисторных триггеров создаются микросхемы, без которых невозможна работа любого современного цифрового прибора.
Устройство триггера
Триггер по своей схемотехнике очень похож на простейшее электронное устройство — мультивибратор. Но в отличие от него, он имеет два устойчивых положения. Эти состояния обеспечиваются изменениями входного сигнала при достижении им определённого значения. Переход из одного положения в другое называют перебросом. В результате на выходе логического элемента возникает скачок напряжения, форма которого зависит от скорости процессов, проходящих в радиоприборах.
Наибольшее применение получил триггер, работающий на транзисторах. Связанно это со способностью последних работать в ключевом режиме. Биполярный транзистор — это полупроводниковый прибор, имеющий три вывода.
- эмиттер;
- база;
- коллектор.
В грубом приближении транзистор представляет собой два диода, объединённых электрической связью. Состоит он из двух p-n переходов. Название биполярный элемент получил из-за того, что одновременно в нём используются два типа носителей заряда. В триггерных схемах транзистор работает в режиме ключа, суть которого заключается в управлении силой тока коллектора путём изменения значения на базе. При этом коллекторный ток по своей величине превышает базовый.
При таком включении важны лишь токи, а напряжения особой роли не играют. Поэтому при возникновении определённого тока на базе транзистор открывается и пропускает через себя сигнал. Сигнал на коллекторе полупроводникового прибора будет обратным по входному знаку, то есть инвертированным. А значит, когда на базовом выходе будет присутствовать разность потенциалов, на коллекторном она будет равна нулю, и наоборот.
Эта способность транзисторов и используется в триггерах, схема которых построена на двух ключах с перекрёстными обратными связями. Когда используются транзисторные ключи с одинаковой обвязкой, то триггер считается симметричным, в другом же случае — несимметричным.
Принцип работы
Устойчивые состояния выхода триггера обеспечиваются двумя транзисторными ключами, охваченными положительной обратной связью (ПОС). Такие положения соответствуют состоянию, когда один из транзисторов открыт и находится в режиме насыщения, а второй ключ закрыт. При этом на коллекторе закрытого элемента присутствует разность потенциалов, равная его значению на входе — логическая единица, а на выводе открытого ключа напряжение отсутствует — логический ноль.
Биполярные компоненты при таком включении относительно друг друга всегда будут находиться в противоположном состоянии из-за обратной связи. Через неё один из транзисторов (закрытый) с высоким уровнем напряжения на своём коллекторном выводе обязательно будет поддерживать другой в открытом состоянии.
Если предположить, что после подачи питания на устройство оба транзистора VT1 и VT2 окажутся открытыми, то через время из-за отличия характеристик радиоэлементов, стоящих в их плечах, возникнет перекос в коллекторных токах. А это благодаря ПОС приведёт к закрытию одного из ключей. То есть обратная связь спровоцирует лавинообразный процесс перехода одного транзистора в режим насыщения, а другого в режим отсечки.
Делители, собранные на резисторах R1, R4 и R2, R3, подбираются так, чтобы их коэффициент передачи был меньше единицы. Причём для поддержания уровня сигнала они шунтируются ёмкостью, ускоряющей скорость прохождения лавинообразных процессов и повышающей надёжность состояния.
Таким образом, принцип работы триггера заключается в прохождении следующих процессов. Если на схему подаётся напряжение Ek и Eb, то биполярный ключ VT1 начинает работать в режиме насыщения, а VT2 — отсечки. Импульс, пришедший на базу VT1, приводит к уменьшению величины тока, протекающего через коллектор и увеличению напряжения на переходе коллектор-эмиттер U1ke. Напряжение через С1 и R4 прикладывается к базе VT2. Это приводит к увеличению коллекторного тока на втором ключе и уменьшению напряжения на переходе U2ke, передаваемого через C2 и R3 на базу VT1.
Итогом этих процессов станет запирание VT1 и отпирание VT2. Такое состояние останется неизменным, пока на базу VT2 не придёт отрицательный уровень сигнала. Результатом этого будут обратные электрические процессы, и VT1 закроется, а VT2 откроется.
Характеристики приборов
Триггер условно можно назвать «автоматом», способным хранить один бит информации. Простейшего вида прибор имеет два выхода, находящихся по отношению друг к другу в инверсном состоянии. Важные параметры устройства связаны с синхронизацией (тактированием) выходов, зависящей от времени предустановки и выдержки. Первый параметр характеризуется интервалом времени, в течение которого поступает разрешающий фронт синхросигнала, а второй определяется временем нахождения устойчивого состояния в неизменном положении. Ряд других характеристик триггера связывают с сигналом, проходящим через него. К ним относится:
- нагрузочная способность — характеризуется коэффициентом разветвления (Кр) и обозначает способность прибора управлять определённым количеством параллельно подключённых элементов к выходу устройства;
- Ко — коэффициент объединения, обозначает наибольшее число входных напряжений, которые возможно завести на вход прибора;
- tи — минимальная продолжительность входного сигнала, то есть длительность импульса, при котором триггер ещё может перейти в инверсное состояние;
- tзд — коэффициент задержки, указывает на временной промежуток между подачей входного сигнала и появлением напряжения на выходе;
- tр — длительность разрешения, определяется минимальным временем прошедшим между двумя импульсами сигнала на входе и спровоцировавшего переход триггера в другое состояние.
Но наряду с этим выделяют и следующие технические параметры триггеров:
- напряжение на входе — наибольшая величина разности потенциалов, которую может выдержать устройство без повреждения своей внутренней электрической схемы;
- ток потребления — зависит от используемых элементов, обычно не превышает 2 мА;
- разность потенциалов переключения — это минимальное значение, при котором происходит инвертирование выхода;
- ток входа — обозначает минимальное значение необходимое для работы триггера;
- ток выхода — значение тока, появляющееся на выходе и определяемое отдельно для логического нуля и единицы;
- температурный диапазон — интервал, в котором технические параметры устройства не изменяются;
- напряжение гистерезиса — разность амплитуд входного сигнала, приводящая к изменению состояния выхода устройства.
Виды и классификация
Для работы устройства на вход необходимо подать внешний сигнал, называемый установочным. Форма напряжения, приводящая к появлению логической единицы на выходе триггера, обозначается латинской буквой S (установка), а появлению ноля — R (сброс). Состояние устройства определяется по прямому входу. Для элемента ИЛИ-НЕ активным уровнем считается единица, а И-НЕ — ноль. Одновременная подача R и S приведёт к неопределённому неустойчивому состоянию.
Такой принцип используется для построения элемента памяти. Поэтому все триггеры классифицируются по способу записи информации на асинхронные и синхронные. Первые разделяются по способу управления, а вторые по виду переключения и могут быть одно- или двухступенчатыми. Устройства, зависящие от уровня сигнала, называются триггерами статического управления, а от фронта — динамического.
По типу работы логики триггеры могут быть:
- RS — состоящими из двух входов;
- D — имеющих один информационный вход и схему задержки;
- T — инвертирующих сигнал каждый раз при подаче импульса напряжения на вход;
- JK — универсальными, допускающими одновременную подачу на свои выводы R и S сигналов;
- комбинированными — совмещающими несколько устройств, например, RST-триггер.
Наиболее распространёнными видами триггеров являются D и RS схемы. При этом триггерные устройства разделяются также по числу устойчивых состояний (двоичные, троичные, четверичные и т. д.) и составу логических элементов.
Триггер RS типа
Одной из простейших в цифровой электронике является схема RS-триггера на транзисторах. Внешним воздействием на вход прибора можно установить его выход в нужное устойчивое состояние. Схема устройства представляет собой каскады, выполненные на транзисторах. Вход каждого из них подключается к выходу противоположного. Два состояния определяются присутствием на выходе напряжения, а переход между ними происходит с помощью управляющих сигналов.
Работает схема следующим образом. Если в начальный момент времени VT2 будет закрыт, тогда через сопротивление R3 и коллектор будет течь ток, поддерживающий VT1 в режиме насыщения. Одновременно первый транзистор начнёт шунтировать базу VT2 и резистор R4. Режим отсечки VT2 соответствует значению логической единицы на выходе Q = 1, открытое состояние VT1 нулю, Q = 0. Амплитуда сигнала на коллекторе закрытого ключа определяется выражением: Uз = U * R3 / (R2+R3).
Для инверсии сигнала необходимо на вход R или S подать импульс. При этом если S = 1, то и Q = 1, а если R=1, то на выходе будет ноль. При значениях R1 = R2 и R3 = R4 триггер называется симметричным. Особенностью работы устройства является способность удерживать установленное состояние между импульсами R и S, что и используется для создания на нём элементов памяти.
На схемах RS-триггер обозначается в виде прямоугольника с подписанными входами S и R, а также возможными состояниями выхода. Прямой подписывается символом Q, а инверсный – Q. Информация может поступать на входы непрерывным потоком или только при появлении синхроимпульса. В первом случае устройство называют асинхронным, а во втором – синхронным (трактируемым).
Работа устройства наглядно описывается с помощью таблицы истинности.
Она наглядно показывает всевозможные комбинации, которые могут возникнуть на выходе прибора. Такая таблица составляется отдельно для триггера с прямыми входами и инверсными. В первом случае действующий сигнал равен единице, а во втором — нулю.
Схема D-trigger
Управление логическими элементами в приборе такого типа осуществляется с помощью входов, которые разделяются на информационные и вспомогательные. Первый фиксирует приходящий импульс и в зависимости от формы переводит триггер в устойчивое то или иное состояние. Вспомогательный вход предназначен для синхронной работы.
Английская буква D в названии обозначает, что устройство является триггером задержки (delay). Эта задержка выражается в том, что приходящий импульс подаётся на вход не сразу, а через один такт. Определяет её частота импульсов синхронизации.
На схемах D-триггер на транзисторах обозначается также в виде прямоугольника, но входы триггера подписываются как D и C. Состояние устройства определяется по форме импульса, в частности срезу, приходящему на вход C, и импульсом синхронизации, поступающим на D. Но если на C будут приходить синхроимпульсы, а сигнал на входе D не будет изменяться, то выход останется без изменений.
Таблица истинности для логического элемента выглядит следующим образом:
Использование RS и D триггеров достаточно распространено из-за простоты, универсальности и удобства построения на них логических схем. Эти элементы являются важными составляющими для создания цифровых микросхем, используются в качестве регистров сдвига и хранения.
rusenergetics.ru
Триггер Шмитта на транзисторах | HomeElectronics
Всем доброго времени суток. В прошлой статье я рассказывал о симметричных триггерах – RS- и T-триггерах. Сегодняшняя моя статья познакомит вас с ещё одной разновидностью триггеров – несимметричный триггер, который имеет более известное название – триггер Шмитта.
О триггерах Шмитта в интегральном исполнении я уже рассказывал в одной из предыдущих статей. Давайте вспомним чем, прежде всего, характеризуется данный тип триггера. Как мы помним из предыдущей статьи триггеры характеризуются несколькими устойчивыми состояниями. Так вот в триггере Шмитта переход из одного устойчивого состояния в другое осуществляется только при определённых значениях входного напряжения, которые называются уровнями срабатывания триггера или просто пороговыми уровнями. Таким образом, можно сказать, что несимметричный триггер имеет гистерезисный характер передаточной характеристики.
Передаточная характеристика триггера Шмитта.
Принцип работы триггера Шмитта
В идеальном случае передаточная характеристика триггера Шмитта имеет вид изображённый на рисунке выше. В случае если входное напряжение триггера не превышает напряжение срабатывания U1 (UВХ < U1), то триггер находится в одном из устойчивых состояний, а напряжение на выходе находится на уровне Е0 (UВЫХ = Е0). Когда же напряжение на входе превысит порог срабатывания (UBX > U1), то триггер моментально перейдёт в другое устойчивое состояние и напряжение на выходе станет равным рабочему напряжению триггера Е1 (UВЫХ = Е1). После этого напряжение на входе может изменяться в некоторых пределах, но на выходе останется постоянным и равным рабочему напряжению Е1.
Чтобы вернуть триггер Шмитта в исходное состояние, необходимо, чтобы напряжение на входе уменьшилось до некоторого уровня, называемого порогом отпускания триггера. Как только напряжение на входе уменьшится до некоторого уровня напряжения U2 (UВХ < U2), то триггер скачкообразно перейдёт в исходное состояние, при котором напряжение на выходе будет равным Е0 (UВЫХ = Е0).
Величины напряжений пороговых уровней срабатывания и отпускания триггера полностью определяются элементами электронной схемы данного типа триггера.
Как правило, в настоящее время триггеры Шмитта изготавливаются в интегральном исполнении, параметры которого удовлетворяют в большинстве случаев. Но в некоторых случаях имеет место изготовление данного типа триггеров и в дискретном исполнении, например, в экспериментальной или высоковольтной отраслях. Давайте рассмотрим схему триггера Шмитта в дискретном исполнении на транзисторах.
Схема триггера Шмитта на транзисторах и принцип её работы
Схема триггера Шмитта представлена на изображении ниже. Триггер Шмитта или несимметричный триггер имеет схожую структуру с симметричным триггером, отличие между ними заключается в том, что одна из коллекторно-базовой цепи симметричного триггера заменена на общую эмиттерную связь. В результате коллектор транзистора VT2 не связан с базовой цепью VT1 и нагрузка, подключённая к коллектору VT2, мало влияет на работу триггера.
Схема триггера Шмитта на биполярных транзисторах.
В общем случае несимметричный триггер или триггер Шмитта состоит из следующих элементов: транзисторы VT1 и VT2, имеющие гальваническую связь между собой и через резистор R5 присоединены к общей шине питания; резисторы R1 и R2, обеспечивающие режим работы транзистора VT1 и исходное состояние схемы в целом; резисторы R3 и R7, являющиеся коллекторными нагрузками транзисторов VT1 и VT2 соответственно; резисторы R4 и R6, которые образуют делитель напряжения, тем самым определяя необходимые пороги срабатывания триггера; конденсатор C1, служащий для ускорения переключения триггера.
Временные диаграммы входных и выходных напряжений триггера Шмитта (несимметричный триггер).
Рассмотрим принцип работы триггера Шмитта по его временным диаграммам изображенным выше. При подключении источника питания к триггеру, он переходит в исходное состояние, при котором транзистор VT1 закрыт, а транзистор VT2 открыт. В этом случае на выходе триггера присутствует некоторое напряжение Uэ, которое зависит от элементов обвязки транзистора VT2
В случае, когда входное напряжение превысит порог срабатывания, транзистор VT1 откроется, а VT2 соответственно закроется и напряжение на выходе триггера резко возрастёт до значения примерно равному напряжению источника питания.
Как я уже писал выше, триггер Шмитта имеет два уровня напряжения (пороги срабатывания), разность между которыми называется шириной петли гистерезиса. Ширина петли гистерезиса зависит от величины резистора, а порог срабатывания триггера от соотношения делителя напряжения, который образуется резисторами R4 и R6. Вследствие чего большой проблемой является отдельная регулировка, как ширины петли гистерезиса, так и порогов срабатывания триггера.
Триггер Шмитта с независимой регулировкой гистерезиса и уровней срабатывания
Для осуществления независимой регулировки параметров триггера Шмитта между транзисторами VT1 и VT2 включается буферный элемент (очень часто эмиттерный повторитель). В результате этого уменьшается влияние резистора R3 на делитель напряжения R4R6, а также повышается чувствительность схемы в целом.
Схема триггера Шмитта с буферным элементом.
Расчёт триггера Шмитта
Исходные данные: амплитуда импульсов Um = 10 В, максимальный выходной ток триггера Im = 10 мА, напряжение срабатывания триггера U1 = 5 В, напряжение отпускания триггера U2 = 3 В, частота следования импульсов fm = 5 МГц, длительность фронта и среза импульсов tf = ts ≤ 10 нс.
- Определение напряжения источника питания
- Выбор транзистора. Транзистор должен соответствовать следующим условиямДанным параметрам соответствует транзистор КТ315Д со следующими характеристиками:
- Определяем сопротивление коллекторных резисторов R3 и R7 транзистора VT1 и VT2.
- Вычисляем сопротивление резистора R5 в эмиттерных цепях транзисторов.
- Находим сопротивления резисторов R4 и R6. Для этого введём коэффициент пропорциональности λ, между резисторами.
Сопротивление резистора R4 вычислим по следующей формуле
Тогда сопротивление резистора R6 будет равно - Определяем сопротивление резисторов R2.
- Определяем сопротивление резистора R1.
- Вычисляем значение ёмкости ускоряющего конденсатора С1.
Выполненный расчёт является предварительным, так как из-за разброса параметров элементов схемы возможны некоторые отклонения от заданных условий схемы. После выбора номиналов элементов необходимо провести прямой проверочный расчёт пороговых уровней напряжения U1 и U2 по следующим формулам
Прямой проверочный расчёт важен, в случае если ширина петли гистерезиса (U2 – U1) находится в пределах нескольких долей вольта.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
www.electronicsblog.ru
Триггер на электронных транзисторных ключах.
Электронный триггер — устройство с двумя устойчивыми состояниями предназначенное для хранения одного бита информации. Триггеры могут быть построены на электронных ключах. В предыдущей статье описан электронный ключ на биполярном транзисторе кт940А если два таких ключа соединить каскадно (выход первого со входом второго) после чего выход второго ключа соединить со входом первого то получится система с двумя устойчивыми состояниями представляющая собой неинвертирующий усилитель охваченный глубокой положительной обратной связью. Рассмотрим схему на рисунке 1:Рисунок 1 — Триггер на электронных транзисторных ключах
Предположим что после подачи питания на схему открылся транзистор VT2 следовательно потенциал базы транзистора VT1, относительно земли, понизился и транзистор VT1 стал удерживаться в закрытом состоянии. Если на некоторое время замкнуть перемычкой коллектор и эмиттер транзистора VT1 то потенциал базы транзистора VT2, относительно земли, понизится, транзистор VT2 закроется следовательно повысится потенциал базы транзистора VT1 и он будет удерживаться в открытом состоянии таким образом триггер перейдет в другое состояние. Чтобы перевести триггер обратно в первое состояние можно на некоторое время замкнуть перемычкой коллектор и эмиттер транзистора VT2 или замкнуть перемычкой коллектор транзистора VT1 и плюс питания. Данный триггер можно использовать для запуска и остановки маломощного электродвигателя (например двигателя RF-310T-11400 рассчитанного на напряжение 5.9В) при этом триггер будет хранить одно из двух состояний: 1) когда двигатель запущен и работает или 2) когда двигатель остановлен и не работает. Рисунок 2 — Схема триггера для запуска, остановки электродвигателя (например RF-310T-11400) Схема на рисунке 2 обладает недостатками: когда двигатель работает часть тока проходит через открытый транзистор VT1, когда двигатель не работает ток проходит через открытый транзистор VT2. Данный триггер можно использовать для управления более мощными элементами коммутации силовых цепей.
На рисунке 3 приведен более безопасный но менее удобный вариант схемы:
Рисунок 3 — Схема триггера для запуска, остановки электродвигателя 2
electe.blogspot.com
Симметричные триггеры | HomeElectronics
Всем доброго времени суток. В прошлой статье я рассказал об ограничителях сигнала, которые предназначены в первую очередь для ограничения импульса на определённом уровне напряжения. Сегодняшний мой пост о триггерах, которые также могут использоваться для формирования прямоугольных импульсов, но основное их назначение более сложное.
В одной из предыдущих статей я рассматривал различные типы триггеров в интегральном исполнении, не вдаваясь во внутреннее устройство. Хочу напомнить, что же такое триггер. Триггер – это устройство, которое обладает двумя устойчивыми состояниями и способные под воздействием внешнего управляющего сигнала скачком переходить из одного устойчивого состояния в другое. Триггеры изготовляются в виде интегральных микросхем, но также могут быть выполнены на дискретных (отдельных) элементах. Триггеры на дискретных элементах применяются в нестандартной аппаратуре управления и контроля, и отраслях науки и техники, где используются повышенные уровни напряжения и тока.
Устройство и принцип работы симметричного триггера
Симметричный триггер представляет собой двухкаскадный усилитель постоянного тока с положительной обратной связью, которая осуществляется через RC–цепи с коллектора одного транзистора на базу другого.
Схема симметричного триггера с независимым смещением.
Данная схема триггера имеет название симметричного триггера с независимым смещением. В данной схеме параметры левой и правой части идентичны, то есть Rb1 = Rb2, Rk1 = Rk2, R1 = R2, C1 = C2, транзисторы VT1 и VT2 имеют одинаковые параметры.
Хотя триггер и называется симметричным, в реальных схемах никогда не удаётся допиться идентичности параметров транзистора, поэтому при подключении триггера к источнику питания один из его транзисторов окажется открытым (состояние насыщения), а другой транзистор будет в закрытом состоянии (состояние отсечки). В данном состоянии триггер может находиться сколько угодно долго (пока присутствует напряжение питания).
Допустим, что после подключения триггера к источнику питания транзистор VT1 оказался в открытом состоянии, а транзистор VT2 – в закрытом состоянии. В этом случае коллекторное напряжение транзистора VT1 окажется примерно равным 0, а коллекторное напряжение VT2 – напряжению источника питания + Е. Казалось бы, за счёт резистора R1 транзистор VT2 должен был бы открыться, но так как на базу VT2 поступает дополнительное напряжение смещения Eb, поэтому на базе VT2 поддерживается напряжение меньшее, чем необходимо для открытия данного транзистора. Таким образом за счёт дополнительного источника смещения Eb схема триггера находится в устойчивом состоянии, а на выходах триггера поддерживаются парафазные напряжения.
Для того чтобы на выходах симметричного триггера изменились напряжения необходимо подать на триггер внешний управляющий (запускающий) импульс напряжения или тока. В этом случае триггер переходит из одного устойчивого состояния в другое, транзисторы в схеме изменяют своё состояние: открытый транзистор – закрывается, а закрытый – открывается. В это же время на выходах триггера формируется перепад напряжения.
Схемы запуска триггера
Как говорилось выше для переключения триггера из одного устойчивого состояния в другое необходимо подать на его входы управляющий (запускающий) импульс. В зависимости от того как подавать управляющий импульс существует несколько видов схем запуска триггера:
- 1.В зависимости от способа управления:
- — раздельный способ;
- — счётный (общий) способ.
- 2.В зависимости от места поступления импульса запуска:
- — базовый;
- — коллекторный.
Для запуска триггеров используют короткие импульсы, которые формируются дифференциальными RC- или RL- цепочками. Так как при прохождении импульса через дифференциальную цепочку формируется два разно полярных импульса, то для предотвращения двойного срабатывания триггера между дифференциальной цепочкой и точкой входа запускающего импульса ставят диод, который отсекает второй импульс. В общем случае схема запуска имеет следующий вид:
Схема запуска триггера.
Рассмотрим схему раздельного запуска триггера с подачей управляющих импульсов в базовые цепи транзисторов.
Симметричный триггер с независимым смещением и раздельным запуском.
В данной схеме импульс, поданный на один из входов триггера, переключает его из одного устойчивого состояния в другое. Если импульс подать на другой вход, то состояние триггера изменится на противоположное. Схема запуска состоит из резисторов Rз1 и Rз2, конденсаторов Сз1 и Сз2, диодов VD1 и VD2. Остальные элементы являются цепями питания и смещения транзисторов VT1 и VT2.
Симметричный триггер с раздельным запуском называется RS-триггером, он имеет два входа и два выхода. Входы, на которые подают управляющие импульсы, называются установочными и обозначают R и S, выходы триггера обозначают Q и –Q.
Рассмотрим схему со счётным (общим) запуском триггера и подачей управляющих импульсов в базовые цепи транзисторов.
Симметричный триггер с независимым смещением и счётным запуском.
В данном случае импульсы подаются на общий вход триггера, и каждый импульс приводит к изменению устойчивого состояния триггера. При рассмотрении работы данного типа триггера может возникнуть ощущение, что произойдёт двойное срабатывание, однако за счёт того что у открытого транзистора потенциал базы выше, чем у открытого, то один из диодов сработает раньше другого, а у открытого транзистора диод будет заперт высоким напряжением базы.
Симметричный триггер с общим запуском называется T-триггером и частота переключения данного типа триггера вдвое меньше, чем частота поступающих импульсов запуска.
На процесс перехода триггера из одного состояния в другое существенное значение оказывает время длительности управляющего импульса, например, если импульс имеет недостаточную длительность, то один из транзисторов триггера может не открыться и триггер не сработает.
Симметричный триггер с автоматическим смещением.
Кроме схем триггеров с внешним смешением существует ряд схем с автоматическим смещением, которое создается за счёт падения напряжения на сопротивлении Re в цепях эмиттеров транзисторов VT1 и VT2.
Симметричный триггер с автоматическим смещением.
Кроме резистора Re в цепи эмиттеров включается конденсатор Се, который выбирается достаточно большой ёмкости, чтобы за время переключения триггера из одного состояния в другое напряжение смещения практически не менялось. За счёт элементов Re и Се отпадает необходимость в отдельном источнике напряжения смещения, но это же приводит к тому что уменьшается уровень напряжения, которое может быть снято с выходов триггера. Кроме того на сопротивлении Re рассеивается достаточно большая мощность. В остальном же параметры схемы практически идентичны и схема с автоматическим смещением так же как схема с внешним смещением может использоваться как с раздельным запуском, так и с общим запуском.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
www.electronicsblog.ru
Триггер Шмитта на транзисторах | joyta.ru
Триггер Шмитта на транзисторах, так же как и триггер Шмитта на ОУ, является системой двух устойчивых состояний, переход которого из одного состояния в другое связан с амплитудой запускающего импульса.
Подобные триггеры широко используются, в вычислительной технике и всевозможных промышленных приборах, где нужно менять форму сигнала, преобразовывать прямоугольные импульсы из синусоиды колебаний и регистрировать завышение сигнала определенного порога. Стандартная схема триггера Шмитта на двух биполярных транзисторах n-p-n приводится ниже.
Для правильного уяснения работы триггера Шмитта сперва допустим, что на входе транзистора VT1 нет сигнала. Сопротивления R1, R2 и R3, подключены к минусу и плюсу питания, и создают своеобразный делитель напряжения. По отношению к эмиттеру транзистора VT2, падение напряжения на сопротивлении R3 окажется положительным, по причине этого данный транзистор будет открыт.
От источника питания на коллектор транзистора VT2 через резистор R4 идет положительный потенциал. Когда транзистор открыт, ток эмиттера, протекающий через R4, создает на нем падение напряжения. Сквозь вторичную обмотку трансформатора Тр1, имеющего малое сопротивление, потенциал на резисторе R5 оказывается между базой и эмиттером VT1 и формирует обратное смещение на переходе Б-Э. В связи с этим VT1 закрыт. Данное устойчивое состояние схемы Шмитта является одним из двух вероятных состояний.
Вследствие падения напряжения на R4 по причине протекания через него тока, потенциал коллектора VT2 будет намного ниже напряжения питания. При поступлении на вход сигнала, он не окажет никакого воздействия на устойчивость триггера Шмитта, если его амплитуда будет меньше напряжения смещения между эмиттером и базой транзистора VT1, идущего с сопротивления R5.
В том случае если входной сигнал будет по амплитуде больше этого смещения, то произойдет открытие VT1. Из-за снижения потенциала на коллекторе VT1 снижается смещение на базе VT2, и в итоге его эмиттерный ток также снизится.
Из-за этого снизится падение напряжения на сопротивлении R5, а смещение на базе VT1 увеличится и инициирует последующий рост тока через VT1. Падение напряжения на R1 также значительно повысится, что в свою очередь уменьшит смещение на базе VT2 и снизит падения напряжения на R5. Этот алгоритм будет длиться до тех пор, пока VT1 до конца не откроется, а транзистор VT2, не закроется.
Как только ток коллектора VT2 достигнет нуля и на сопротивлении R4 начнет падать напряжение, потенциал же на его коллекторе станет увеличиваться, который пройдя через конденсатор С2 становится выходным сигналом.
Величина и форма сигнала на выходе триггера Шмитта находятся в прямой зависимости от постоянной времени (R4+Rн)C2 и сопротивления нагрузки Rн. Устойчивое положение, которое отвечает закрытому транзистору VT2 и открытому VT1, является вторым состоянием триггера Шмитта, и оно длится, пока есть входной сигнал. И как только входной сигнал пропадет, триггер Шмитта переходит в первоначальное состояние.
Если постоянная времени (R4+Rн)С2 существенно превышает продолжительность входного сигнала, то амплитуда сигнала на выходе триггера Шмитта практически оказывается стабильной, без изменений.
Источник: «200 избранных схем электроники», Мэндел М.
www.joyta.ru
Симметричные триггеры. Теория и практика. Определение, схемы и принцип работы
ВВЕДЕНИЕ
Триггером называется спусковое устройство имеющее два электрических состояния устойчивого равновесия, способное скачком переходить из одного состояния в другое при воздействии на вход триггера управляющего сигнала.
Триггеры могут быть выполнены на различных элементах — электровакуумных или газонаполненных лампах, транзисторах, тиристорах, туннельных диодах, ферромагнитных элементах и т.д. Триггеры, устойчивые состояния которых характеризуются уровнем потенциала на выходах, называются потенциальными или статическими. По схемному выполнению и особенностям работы, статические триггеры различают на симметричные и несимметричные.
Статические триггеры широко применяются в импульсных и цифровых устройствах. Посредством их осуществляется переключение ветвей радиоэлектронных цепей, управление генераторами линейно-изменяющихся напряжений и токов, формирование прямоугольных импульсов тока, запоминание информации и т.д.
В вычислительной технике также популярны так называемые динамические триггеры, которые при воздействии на вход управляющего сигнала, в отличие от статических триггеров, обеспечивают на выходе серию импульсов тока или напряжения.
Ниже рассматривается только симметричный потенциальный триггер, построенный на основе транзисторных ключей, замкнутых в петлю положительной обратной связи с коэффициентом петлевого усиления Ko > I.
Симметричный триггер. Принцип работы
Рис.1 Схема симметричного триггера и диаграмма.
На рис.1 изображена схема статического симметричного триггера на транзисторах типа p-n-p и диаграмма напряжений на коллекторах и базах. В каждом из состояний устойчивого равновесия один из транзисторов открыт (в режиме насыщения), другой закрыт (в режиме отсечки).
Пусть транзистор T1 открыт, а Т2 закрыт. При этом потенциал на коллекторе транзистора Т1 близок к нулю; а на коллекторе Т2 близок к -Ek. Из базы транзистора T1 через резистор R1» отбирается ток, удерживающий этот транзистор в состоянии насыщения.
Транзистор Т2 закрыт, так как на его базе образуется положительное напряжение смещения за счет источника Есм Конденсатор С1‘ практически разряжен, а С1» заряжен до напряжения близкого к Ek. В связи с тем, что коэффициент усиления по току транзисторов, находящихся в режиме отсечки и насыщения, равен нулю, общее усиление в петле обратной связи также равно нулю. Этим обеспечивается устойчивость описанного состояния.
Переход триггера из одного устойчивого состояния в другое (т.е. его переключение или опрокидывание) осуществляется путем воздействия внешнего запускающего импульса на базы или коллекторы транзисторов. (Подробнее о запуске триггера см. ниже.) Причем параметры запускающего сигнала должны обеспечивать вывод транзисторов в активный режим работы, когда восстанавливается усиление по току у транзисторов и в течение времени опрокидывания действует положительная обратная связь между ключами.
После опрокидывания на коллекторе транзистора T1 устанавливается отрицательный потенциал, близкий к -Ek, а на коллекторе T2 потенциал, близкий к нулю. Конденсатор С1‘ заряжается, a С1» разряжается, и на базе транзистора T1, устанавливается положительный потенциал, примерно равный Есм, а на базе T2 небольшой отрицательный потенциал (см. диаграмму). Новое устойчивое состояние триггера сохраняется до прихода очередного запускающего импульса.
Переходные процессы в триггере
Рассмотрим более подробно переходные процессы, происходящие в триггере при его переключении.
Вследствие инерционности транзисторов и наличия паразитных емкостей переключение триггера происходит не мгновенно, а в течение конечного промежутка времени. Характер и длительность переходного процесса переключения зависят от параметров и структуры схемы, а также от способа запуска и параметров запускающих импульсов (амплитуды, длительности, формы). Рассмотрим переходные процессы при раздельном запуске триггера.
Примем по-прежнему, что в исходном состоянии транзистор T1 открыт и насыщен, а T2 закрыт и пусть положительный запускающий импульс тока поступает в базу открытого транзистора. Под его действием начинается процесс рассасывания неосновных носителей в базе насыщенного транзистора и через некоторое время tp (рис.2) этот транзистор окажется на границе насыщения. С этого момента начинает уменьшаться его коллекторный ток, что приводит к возрастанию отрицательного напряжения на коллекторе Uk1. Это вызовет снижение положительного напряжения смещения Uб2 на базе закрытого транзистора T2. Время tn, в течение которого положительное напряжение смещения уменьшается от начального значения до нуля, называется временем предварительного формирования отрицательного фронта на коллекторе T1. Сумма tp+tn называется временем подготовки. По истечении этого времени, т.е. после достижения Uб2 = 0, транзистор T2 открывается, восстанавливается усиление в петле положительной обратной связи, и в триггере за время tрег происходит лавинообразный процесс опрокидывания (регенеративный процесс).
Рис.2 Диаграмма. Переходные процессы в триггере.
Действительно, при открывании транзистора T2 появляется ток ik2 в его коллекторной цепи. Приращение этого тока идет в базу транзистора T1 и, складываясь с входным запирающим импульсом тока способствует запиранию транзистора T1. Коллекторный ток ik1 запирающегося транзистора T1 уменьшается. Обратное приращение тока ik1 передается в базу открывающегося транзистора T2 вызывает его еще большее отпирание в т.д. Лавинообразный процесс заканчивается закрыванием транзистора T1 и открыванием T2. При этом положительная обратная связь между каскадами снова обрывается.
Длительность tрег интервала опрокидывания составляет назначительную долю общей длительности переходного процесса. К моменту окончания опрокидывания при достаточно больших ускоряющих емкостях изменение тока базы |Δ iб2| в отпирающемся транзисторе T2 равно по величине изменению коллекторного тока |Δ ik1| запирающегося транзистора T1. Чем больше базовый ток к моменту окончания опрокидывания, тем быстрее происходит установление напряжения на коллекторе отпирающегося транзистора.
Установление напряжений и токов на коллекторах и базах транзисторов происходит в течение некоторого времени tуст когда осуществляется перезарядка ускоряющих конденсаторов С1.
До начала запускающего импульса конденсатор С1‘ был разряжен, а С1» заряжен до напряжения близкого Ek. При опрокидывании триггера конденсатор С1‘ заряжается током, отбираемым из базы транзистора T2 по цепи: плюс источника питания Ek, входное сопротивление транзистора T2, конденсатор С1‘ резистор Rk‘ минус источника Ek. Время заряда конденсатора определяется постоянной времени зарядной цепи tзар=C1Rk. Зарядный ток создает падение напряжения на сопротивлении Rk‘. Таким образом, нарастание отрицательного потенциала коллектора закрывающегося транзистора завершится тогда, когда прекратится зарядный ток, т.е. зарядится конденсатор С1‘. Следовательно, время заряда конденсатора С1‘ определяет отрицательный фронт t(-)ф выходного напряжения. Отрицательный фронт тем меньше, чем меньше величина ускоряющей емкости. По окончании заряда конденсатора С1‘ базовый ток транзистора T2 становится меньше, он определяется сопротивлениями резисторов R1 и R2.
Из анализа транзисторных ключей известно, что чем большим базовым током включается транзистор, тем быстрее время его включения, т.е. короче положительный фронт t(+)ф (для транзисторов р-n-р типа). Очевидно также, что по мере заряда конденсатора С1‘ зарядный ток уменьшается. Следовательно, если емкость ускоряющего конденсатора мала, то конденсатор успеет зарядиться до окончания опрокидывания триггера. Тогда базовый ток отпирающегося транзистора заметно уменьшится еще до окончания отпирания транзистора, и фронт нарастания коллекторного тока и коллекторного напряжения (положительный фронт t(+)ф) увеличится. Таким образом, для уменьшения отрицательного фронта выходного напряжения нужно уменьшать емкость ускоряющих конденсаторов, а для уменьшения положительного фронта — увеличивать ее.
При опрокидывании триггера конденсатор С1» получает возможность разрядиться по двум цепям:
а) левая обкладка С1«, резистор R2‘, источник смещения, сопротивление эмиттер-коллектор T2, правая обкладка С1«;
б) левая обкладка С1«, сопротивление R1«, правая обкладка С1«. Вследствие разряда конденсатора С1«, напряжение Uб1 на базе транзистора T1 оказывается положительным и большим стационарного значения напряжения запирания (динамическое смещение). По мере разряда конденсатора С1» разрядный ток убывает и Uб1 стремится к станционарному значению.
Способы запуска триггера
В зависимости от функции, выполняемой триггером, применяют два способа его запуска — раздельный и общий (или счетный). При раздельном запуске запускающие импульсы одной полярности поступают на входы (базы или коллекторы) транзисторов от двух разных источников (т.е. от одного источника запускающие импульсы поступают на вход одного транзистора, а от другого — на вход другого) (рис.3). Импульсы с одного из входов устанавливают триггер в одно из двух состояний равновесия. Если к приходу такого импульса триггер уже находится в этом состоянии, то оно не изменяется. Импульсы, подаваемые на второй вход устанавливают триггер в противоположное состояние.
Для раздельного запуска триггера требуются сравнительно короткие импульсы. Часто в качестве входного сигнала запуска используются перепады напряжений. В этих случаях формирование необходимых запускающих импульсов производится с помощью подключаемых ко входам триггера укорачивающих RC — цепей. Чтобы предотвратить срабатывание триггера от импульсов обратной полярности, возникающих на выходах укорачивающих цепей применяются диоды Дн.
При счетном запуске управляющие импульсы поступаю от общего генератора на один общий вход триггера (рис.4). При этом каждый импульс изменяет состояние триггера на противоположное.
В исходном состоянии напряжение на коллекторе насыщенного транзистора T1 близко к нулю» диод Дн‘ открыт, конденсатор Су‘ разряжен. За счет высокого отрицательного потенциала закрытого транзистора T2 передаваемого через сопротивление Rб«, диод Дн» закрыт, а конденсатор Су» заряжен до напряжения Ек (в полярности, указанной на рис. 4 ). Следовательно, положительный запускающий импульс напряжения поступит только через открытый диод Дн‘ на базу насыщенного транзистора и вызовет опрокидывание триггера.
Если действие положительного входного импульса не завершится до окончания опрокидывания триггера, то напряжение, прикладываемое к диоду Дн«, окажется равным сумме положительного входного напряжения и отрицательного напряжения на конденсаторе Су«. Так как обычно амплитуда входного сигнала меньше Ек, то результирующее напряжение, приложенное к диоду Дн» будет отрицательным, и диод попрежнему будет закрыт. По окончании входного импульса конденсатор Су» разрядится через малое сопротивление открывшегося транзистора T2 и внутреннее сопротивление источника запускающих импульсов, а конденсатор Су‘ зарядится до напряжения Ек. Диод Дн» откроется, а Дн‘ закроется. Очередной запускающий импульс пройдет через диод Дн» и вызовет новое опрокидывание триггера.
Способы повышения быстродействия симметричного триггера
Быстродействие триггера как устройства, основанного на транзисторных ключах, определяется скоростью переключения выбранных транзисторных ключей.
Следовательно, основными методами повышения быстродействия триггера являются:
1) применение высокочастотных транзисторов;
2) устранение (или уменьшение) задержки выключения, обусловленной рассасыванием неосновных носителей в базе насыщенного транзистора;
3) применение специальных способов, уменьшающих время установления напряжения на коллекторах и ускоряющих конденсаторах.
С целью сокращения времени рассасываний неосновных носителей в базе применяются ненасыщенные ключи, например, за счет введения нелинейной отрицательной обратной связи через диоды Дос(рис.5). Ненасыщенный триггер обладает более высокой чувствительностью к запускающим импульсам, с чем связано снижение его помехоустойчивости.
Действие нелинейной обратной связи состоит в следующем. При отпирании транзистора входным током отрицательный потенциал его коллектора уменьшается. Когда он сравняется с потенциалом в точке «а», диод открывается, и часть входного тока замыкается через диод. Транзистор не входит в насыщение.
Для сокращения фронтов выходного напряжения (главным образом отрицательного фронта) может быть применена фиксация минимального коллекторного потенциала через диод Дф (рис.6). При отпертом транзисторе диод Дф заперт. При запирании транзистора отрицательное напряжение на его коллекторе растет, и когда достигает значения Еф, диод отпирается и фиксирует коллекторный потенциал на уровне — Дф. Как видно из рисунка, длительность отрицательного фронта существенно уменьшается, а положительного, как более крутого в первоначальной стадии, изменяется мало.
Влияние нагрузки на работу триггера
Обычно нагрузка Rн подключается параллельно транзистору (рис.7) и существенно влияет на работу триггера.
Если транзистор закрыт, то нагрузка приводит к снижению потенциала его коллектора (а значит, и выходного напряжения), так как напряжение Ек делится между сопротивлениями Rк и Rн, и к уменьшению базового тока открытого транзистора. Транзистор может выйти из режима насыщения. Чтобы сохранить режим насыщения, надо уменьшать величину сопротивления резистора связи R1.
Когда транзистор открыт, нагрузка практически не влияет на его режим работы, так как сопротивление открытого транзистора мало.
www.xn--b1agveejs.su
Запуск транзисторных триггеров
Запуск триггера можно производить, запирая насыщенный транзистор или отпирая предварительно запертый. Первый вариант предпочтительнее, так как на отпертый транзистор с очень малым входным сопротивлением переключающий импульс воздействует меньшее время, чем при втором варианте. Этим уменьшается мощность, потребляемая от генератора запуска. В этом случае ускоряющие конденсаторы могут иметь меньшую ёмкость, что сокращает время переходных процессов и установления напряжений в схеме после её опрокидывания. Переключающий импульс должен иметь вполне определённую длительность, чтобы не влиять на схему после возникновения лавинообразного процесса. Поэтому составной частью цепей запуска часто являются дифференцирующие цепи (укорачивающие цепи).
Существуют два вида запуска триггеров: раздельный и общий (счётный).
При раздельном запуске импульсы запуска, чередующиеся по полярности, подаются либо на базу одного транзистора, либо импульсы одной полярности подаются на базу то одного, то другого транзистора.
Триггер с раздельным запуском показан на рис.3.12. Другой вариант такого же триггера, на входах которого установлены дифференцирующие цепи, показан на рис.3.18.
Рис.3.18. Триггер с раздельным запуском и дифференцирующими
цепями на входах
Вследствие дифференцирования входных прямоугольных импульсов на резисторах R1 (R2)выделяются разнополярные импульсы, что создаёт опасность вторичного переключения триггера от входного импульса. Такая опасность устраняется с помощью отсекающих диодов VD1 и VD2, пропускающих на базы транзисторов импульсы только одной полярности. Отрицательный прямоугольный импульс, поступающий на один из входов, дифференцируется, и соответствующий переднему фронту отрицательный остроконечный импульс через диод VD1 или VD2 воздействует на базу насыщенного транзистора. Последний выходит из состояния насыщения, развивается лавинообразный процесс, и схема опрокидывается. Следующее переключение схемы произойдёт под действием импульса, поступившего на другой вход.
Триггер со счётным запуском
Счётный запуск осуществляется импульсом определённой полярности, поступающим на общий вход обоих плеч триггера. Такой триггер часто называют счётным (Т-триггером). Схема счётного триггера показана на рис.3.19.
Рис.3.19. Схема триггера со счётным запуском (Т-триггера)
Как и при раздельном запуске, переключение триггера произойдёт, если запускающий импульс поступит на базу того транзистора, с которого оно должно начаться (отрицательный запускающий импульс должен поступить на базу насыщенного транзистора). Задача цепи запуска – направить каждый запускающий импульс в нужном направлении (т.е. на базу насыщенного транзистора). Кроме того, она должна устранить опасность повторного переключения от одного запускающего импульса, ещё присутствующего на общем входе уже после опрокидывания триггера.
Работа Т-триггера
Пусть в исходном состоянии VT1открыт, а VT2 закрыт. Ускоряющий конденсатор C’ разряжен, так как потенциал его левой обкладки близок к нулю ввиду того, что VT1 насыщен, а на правой обкладке потенциал немного меньше нуля (из-за наличия источника смещения –Ек). Поэтому можно сказать, что UС‘≈ 0. Ускоряющий конденсатор C» заряжен, так как его левая обкладка подключена к базе насыщенного VT1, потенциал на которой примерно равен нулю, а правая обкладка присоединена к коллектору запертого VT2, потенциал которого примерно равен +Ек. Следовательно, можно сказать, что UС»≈+Ек.
При подаче на вход схемы отрицательного импульса запуска оба диода VD1 и VD2 отпираются. Через диод VD1 отрицательный импульс запуска подаётся на базу VT1 и запирает его. Напряжение на коллекторе VT1 становится равным +Ек. Через диод VD2 отрицательный импульс запуска подаётся на базу запертого VT2 и не изменяет его состояния. Через диод VD2 протекает ток заряда C’ по цепи:
+Ек→ Rк1 → C’ → VD2(открытый) → источник импульсов → – Ек
(корпус).
Ввиду того, что длительность импульса запуска мала, конденсатор C’ заряжается на очень незначительную величину (ΔUС’). После окончания входного импульса запуска оба диода запираются и отключают источник импульсов запуска от триггера. В этом состоит основное назначение отсекающих диодов.
Таким образом, на некоторое время оба транзистора оказываются запертыми. При этом напряжение +Ек на коллекторах обоих транзисторов через делители R’ – Rб2и R» – Rб1оказывается приложенным к базам обоих транзисторов, и они начинают открываться. Однако плечи триггера в этот момент не будут симметричны, так как C’ и C» заряжены к этому моменту неодинаково: C’ заряжен до величины UС’≈ 0, а C» – до величины UС»≈+Ек. Поэтому ток Ік2 будет больше тока Ік1. Ток, протекающий через VT2 , будет равен сумме токов от источника питания и от заряженного до +Ек конденсатора C», а ток, протекающий через VT1, будет равен сумме токов от источника питания и от заряженного до +ΔUС’ конденсатора C’. В результате неравенства токов, протекающих через транзисторы, возникает лавинообразный процесс, и схема опрокидывается: VT1 запирается, а VT2 отпирается.
Перед следующим тактом запуска запертым оказывается VT1, а отпертым – VT2. Теперь C’ заряжается по цепи:
+Ек→ Rк1 → C’ → Rб2 → –Есм→ +Есм (корпус) → – Ек.
C» разряжается по цепи:
+C»→ VT2 → корпус(+Есм) → –Есм → Rб1 → – C».
В этом состоянии схема будет находиться до прихода следующего импульса запуска. Далее цикл работы триггера повторяется, но меняются ролями его плечи.
Отсюда можно увидеть особенность ускоряющих конденсаторов в таком триггере: кроме обычной функции ускорения опрокидывания, они выполняют функции элементов «памяти», запоминающих состояние триггера и способствующих течению процессов опрокидывания в нужном направлении. Если в триггерах с раздельным запуском отсутствие ускоряющих ёмкостей приводит лишь к уменьшению быстродействия триггера, то в рассмотренной схеме наличие их является обязательным, в противном случае триггер нормально работать не сможет.
Существуют и другие схемы триггеров со счётным запуском, но и в них элементами «памяти» служат конденсаторы.
Блокинг-генератор
Блокинг-генератор – это релаксационный генератор коротких импульсов, представляющий собой однокаскадный неинвертирующий усилитель с глубокой положительной обратной связью. Выполнение фазового условия самовозбуждения (т.е. создание положительной обратной связи) обеспечивается соответствующим включением обмоток импульсного трансформатора. Импульсный трансформатор – это трансформатор с ферромагнитным сердечником, служащий для преобразования электрических импульсов длительностью от нескольких наносекунд до десятков микросекунд. Основным требованием, предъявляемым к импульсному трансформатору, является обеспечение минимальных искажений генерируемого импульса. Для выполнения этого требования конструкция импульсного трансформатора имеет ряд особенностей, которые обеспечивают уменьшение индуктивности рассеивания и вихревых токов в сердечнике, а также незначительные паразитные ёмкости. Таким образом, импульсный трансформатор, как и усилительный элемент, осуществляет инвертирование сигнала, в результате чего сдвиг по фазе между выходным и входным сигналами становится равным 2π, и, следовательно, при выполнении амплитудного условия самовозбуждения в схеме возможно возникновение регенеративного процесса.
Блокинг-генератор формирует практически прямоугольные импульсы с достаточно широким диапазоном длительностей и периода повторения. При формировании радиолокационной последовательности импульсов, когда , мощность формируемых импульсов оказывается очень большой даже при применении маломощных транзисторов. Это объясняется тем, что в транзисторах за счёт импульсной инжекции можно получать токи, намного превышающие допустимые токи непрерывного режима работы. Восстановление эмиссионных свойств эмиттера происходит во время паузы между формированием соседних импульсов.
Во время формирования импульса блокинг-генератор имеет очень малое выходное сопротивление и поэтому может работать на низкоомную нагрузку. С обмоток импульсного трансформатора можно получать импульсы различной полярности, причём, с дополнительных обмоток амплитуда выходных импульсов может намного превышать напряжение источника питания.
Блокинг-генератор может работать в автоколебательном, ждущем (заторможенном) режиме и в автоколебательном режиме с внешней синхронизацией.
Схема транзисторного блокинг-генератора изображена на рис.3.20. Временные диаграммы работы блокинг-генератора показаны на рис.3.21.
Рис.3.20. Схема транзисторного блокинг-генератора
Работа блокинг-генератора.
Поскольку данный блокинг-генератор работает в автоколебательном режиме, то рассмотрение процессов можно начать с любого момента. Начнём
с момента перезаряда конденсатора, когда транзистор заперт (находится в режиме отсечки).
1-й этап. Перезаряд конденсатора.
Конденсатор C, заряженный при формировании предыдущего импульса, перезаряжается по цепи: + Ек (корпус) →ωб →C →Rб →– Ек
Рис.3.21. Временные диаграммы работы блокинг-генератора
Ток перезаряда создаёт на Rб падение напряжения, полярность которого приложена к базе транзистора плюсом. В результате потенциал базы относительно эмиттера оказывается более положительным и поэтому транзистор находится в запертом состоянии. По мере перезаряда конденсатора положительное напряжение на базе уменьшается (рис.3.20, а; б).
2-й этап. Первое опрокидывание схемы (прямой блокинг-процесс).
В тот момент, когда напряжение на базе VT1 достигнет нуля (t = t1), транзистор отпирается, и в цепях базы и коллектора начинают протекать токи iби iк. Появление iк вызывает возникновение ЭДС самоиндукции е1в обмотке импульсного трансформатора ωк, препятствующей возникновению и росту iк. Возникновение е1, в свою очередь, вызывает появление ЭДС взаимоиндукции е2 в обмотке ωб, минус которой оказывается приложенным к базе. При этом замыкается цепь положительной обратной связи:
+Δiк→ +Δе1→ –Δе2 → –ΔUб→ +Δiб→ +Δi’к (>Δiк)
и начинается лавинообразный процесс отпирания транзистора (прямой блокинг-процесс). Говорят, что схема «опрокидывается». Процесс опрокидывания идёт до тех пор, пока транзистор не зайдёт в область насыщения. В этот момент токи iб и iк достигают максимальных значений, а отрицательное напряжение на коллекторе становится равным почти нулю.
3-й этап. Формирование вершины импульса.
С момента перехода транзистора в режим насыщения входной ток iб перестаёт управлять током коллектора iк, и транзистор теряет свои усилительные свойства. ЭДС самоиндукции е1и взаимоиндукции е2пропадают; начинается формирование плоской вершины импульса. С момента отпирания транзистора в цепи базы появляется ток. В обмотке импульсного трансформатора ωб возникает ЭДС за счёт энергии, запасённой во время формирования вершины импульса, и начинается заряд конденсатора C током базы по цепи:
корпус → переход (Э-Б) → C → ωб → корпус (эмиттер).
Напряжение на конденсаторе нарастает быстро, так как прямое сопротивление перехода «эмиттер-база» очень мало. По мере заряда конденсатора положительный потенциал базы увеличивается, а ток в цепи эмиттер — база (iб) уменьшается, что приводит к выходу транзистора из режима насыщения.
4-й этап. Второе опрокидывание схемы (обратный блокинг-процесс).
Процесс формирования вершины заканчивается в тот момент (t = t2), когда ток заряда конденсатора iбуменьшится настолько, что величина коэффициента усиления по току β будет достаточной для возникновения обратного блокинг-процесса. В этот момент транзистор вновь становится активным элементом, обладающим усилительными свойствами. Уменьшение тока базы iб вызывает уменьшение тока коллектора iк и появление ЭДС самоиндукции е’1 и взаимоиндукции е’2. Эти ЭДС имеют направление, противоположное соответствующим ЭДС, возникающим при первом опрокидывании схемы. Вновь замыкается петля положительной обратной связи:
–Δiб→ –Δiк → –Δе’1 → +Δе’2 → ΔUб → –Δi’б(> –Δiб).
Процесс развивается лавинообразно и приводит к резкому запиранию транзистора. Напряжение на коллекторе Uк понижается до величины – Ек, даже ниже – Ек. Это объясняется тем, что в процессе формирования вершины импульса ток намагничивания импульсного трансформатора после запирания транзистора не может исчезнуть мгновенно. В результате ударно возникает ЭДС самоиндукции, приводящая к «всплеску» Uк. При достаточно высокой добротности паразитного колебательного контура в цепи коллектора этот «всплеск» может перейти в паразитные колебания (пунктир). Для предотвращения возникновения паразитных колебаний обычно параллельно обмотке, стоящей в цепи коллектора, включается диод. Малое прямое сопротивление диода шунтирует паразитный колебательный контур, образованный индуктивностью и межвитковой ёмкостью первичной обмотки ωк. Добротность колебательного контура при этом становится низкой, и колебания быстро затухают.
После запирания транзистора вновь начинается описанный выше процесс сравнительно медленного перезаряда конденсатора C.
Ждущий блокинг-генератор
Блокинг-генератор может работать в ждущем режиме. Для этого в общем случае необходимо поддерживать транзистор в запертом состоянии до момента поступления отпирающего импульса. Запереть транзистор можно различными способами: подать положительное напряжение на базу или отрицательное напряжение на эмиттер (если транзистор структуры p-n-p). Обычно выбирается второй вариант (рис.3.22), так как при этом используется общий источник питания – Ек.
Рис.3.22. Ждущий блокинг-генератор
infopedia.su