Указка фарадея что это такое – Вечный фонарик или фонарик Фарадея

Вечный фонарик или фонарик Фарадея

Вечный фонарик или фонарик Фарадея так называют фонарик с источником альтернативного питания. То есть данный фонарь не требует батареек или зарядки аккумулятора. Что бы его «зажечь» необходимо его потрясти. В самом фонарике стоит генератор и аккумуляторная батарея.

Давайте сначала познакомимся с заводским фонарем:

Я постарался максимально разрисовать конструкцию. Суть в том, что цилиндрический постоянный магнит свободно болтается в трубке — корпусе между резиновыми упорами или пружинками (где как) . А в цетре трубки намотана катушка. При тряске магнит бегает вверх вниз внутри катушки, создавая в ней при этом переменное электричество.

Далее это электричество поступает на диодный мостик и превращается в постоянное и заряжает аккумуляторы напряжением 3 вольта.

Посмотрим без корпуса.

Мы видим соленоид, цилиндрический магнит, ограничители, небольшую плату с диодами, переключателем и аккумуляторы. Ах да и светодиод на плате. 

Трясем фонарик, включаем. Работает ! 

А вот наш опытный образец:

Коробочка из под Тик-так. Трубка на которую намотана катушка — корпус от шариковой ручки. Пару магнитиков от жесткого диска, есть там такие. Да, вместо аккумуляторов использованы конденсаторы. Белый светодиод. пару диодов. 

Схема. 

Есть особенность намотки катушки. Как Вы, наверное, заметили из схемы — катушка состоит из двух обмоток, общая длина катушки 40 мм. Делим мысленно попала. На первой половине наматываем 600 витков самого тонкого провода диаметром примерно 0,08мм. И на второй половине 600 витков. Вот и всё — двух секционная катушка готова. Далее по схеме.

Не забудте про ограничители, чтоб магнитики отталкивались и шустренько скакали.

А вот мой более мощный образец. Тут уже использована катушка с большим числом витов и трех секционный магнит.

Желаю удачных самоделок !

sdelaysam-svoimirukami.ru

Лазерная указка Фарадея

Указка Фарадея – лазерная указка, работающая исключительно от кинетической энергии, создаваемой встряхиванием устройства.

Об этой указке написано в книге “Инферно”, автор Дэн Браун. Ниже приведен отрывок из нее (глава 13).

“– Смотрите, – сказал Лэнгдон и принялся энергично трясти трубочку. Предмет внутри гремел, катаясь все быстрее и быстрее.
Сиена отскочила назад.
– Что вы делаете?!
Продолжая трясти трубочку, Лэнгдон подошел к выключателю и нажал его. Кухня погрузилась в относительную темноту.
– Нет там никакой пробирки, – сказал он, по-прежнему тряся трубочку изо всех сил. – Это Фарадеева указка.

Один из учеников Лэнгдона как-то подарил ему подобную штучку – лазерную указку для преподавателей, которым не нравится постоянно менять батарейки и не жалко несколько раз встряхнуть устройство, чтобы преобразовать свою собственную кинетическую энергию в необходимую порцию электричества. Когда такую указку приводят в движение, металлический шарик внутри ее скользит туда-сюда по ряду маленьких лопастей и заряжает крошечный генератор. Очев

идно, кто-то решил засунуть Фарадееву указку в пустую костяную трубку, украшенную резьбой, – иначе говоря, одеть в древний панцирь современную электрическую игрушку.
Кончик указки в руке Лэнгдона уже разгорелся как следует, и он невесело ухмыльнулся Сиене:
– Кино начинается!
Он направил указку в костяном футляре на голый участок кухонной стены. Когда стена осветилась, Сиена тихонько ахнула. Однако самого Лэнгдона увиденное изумило еще больше – настолько, что он невольно отпрянул.
На стене появилась не маленькая красная точка, след лазерного луча, а четкая фотография с высоким разрешением, как будто у Лэнгдона в руках была не костяная трубочка, а старомодный диапроектор.”

О механизме, по которому построен этот прибор, посмотрите фото и видео в этой публикации.

izobreteniya.net

Фонарик Фарадея из шприца своими руками


Привет всем любителям самоделок. В повседневной жизни осветительные приборы играют большую роль, а в тех местах, где нет электросети или возможности зарядить аккумулятор фонаря приходится искать альтернативу, но так или иначе подсветить себе путь в погреб ночью в походе за огурчиками можно при помощи данной самоделки, о которой и пойдет речь в этой статье. Речь пойдет о фонарике Фарадея, который работает независимо от того, есть ли электросеть в помещении или нет, также не зависит от аккумуляторов и батареек, что существенно экономит, как деньги, так и время на ту же зарядку устройства.

Перед прочтением статьи, я рекомендую посмотреть данный ролик, где показан принцип работы данной самоделки, а также ее сборка.

Для того, чтобы сделать самодельный фонарик Фарадея, понадобится:
* Медицинский шприц 20 мл
* Проволока
* Электродрель
* Клей «секунда» моментальный
* Неодимовые магниты
* Изолента
* Светодиоды
* Паяльник, припой, флюс
* Пара проводов
* Картон

Вот и все, что нужно для сборки данной самоделки.



Шаг первый.
Корпусом нашей самоделки будет медицинский шприц, на него необходимо установить два кольца из картона. Сделать кольца из картона достаточно просто, обводим любую круглую вещь или же при помощи циркуля размечаем окружность на картоне и вырезаем, внутренний диаметр должен совпадать с диаметром шприца, таких кольца понадобится два.

Расстояние между данными картонными перегородками должно быть равно длине неодимовых магнитов или же близко к этому. Фиксируем данные кольца на супер клей.

Шаг второй.
Главным элементом данной самоделки является катушка, ее необходимо сделать, намотав проволоку на шприц , не заходя за кольца.


С этой задачей хорошо справляется электродрель, устанавливаем шприц в ее зажимной патрон при помощи винта, который заранее продет в носик шприца и затянут гайкой с внешней стороны, и наматываем около тысячи витков, после чего фиксируем второй вывод катушки супер клеем.

Шаг третий.
Для того, чтобы неодимовые магниты не стучали об стенки корпуса, устанавливаем резиновую прокладку от его же штока или так можно сказать, поршня.

Теперь фиксируем выводы и зачищаем их скальпелем, залуживаем, предварительно нанеся немного флюса на оголенный конец проволоки.

К данным выводам припаиваем два провода и фиксируем к шприцу при помощи изоленты.

Шаг четвертый.
Для того, чтобы фонарик заработал, нужно припаять светодиоды, в данном случае эти три светодиода, распаянных на плате. Припаиваем их к проводам, идущим от катушки и помещаем в шприц неодимовые магниты. В итоге при возвратно-поступательных движениях шприца в катушке возникает ЭДС, за счет того, что магниты двигаются относительно катушки, что в свою очередь вырабатывает ток, который и питает три светодиода.

На этом у меня все, данная самоделка готова, но ее доработки также имеют место быть, чтобы ток сохранялся и свечение не было таким дерганным нужно установить ионистор на выводы катушки или же емкий электролитический конденсатор, который плавно будет накапливать и также плавно отдавать энергию светодиодам.


Всем спасибо за внимание, всем творческих успехов. Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Вечный фонарик или фонарик Фарадея — ОчУмелые ручки

Вечный фонарик или фонарик Фарадея так называют фонарик с источником альтернативного питания. То есть данный фонарь не требует батареек или зарядки аккумулятора. Что бы его «зажечь» необходимо его потрясти. В самом фонарике стоит генератор и аккумуляторная батарея.

Давайте сначала познакомимся с заводским фонарем:

Я постарался максимально разрисовать конструкцию. Суть в том, что цилиндрический постоянный магнитсвободно болтается в трубке — корпусе между резиновыми упорами или пружинками (где как) . А в цетре трубки намотана катушка. При тряске магнит бегает вверх вниз внутри катушки, создавая в ней при этом переменное электричество.

Далее это электричество поступает на диодный мостик и превращается в постоянное и заряжает аккумуляторы напряжением 3 вольта.

Посмотрим без корпуса.

Мы видим соленоид, цилиндрический магнит, ограничители, небольшую плату с диодами, переключателем и аккумуляторы. Ах да и светодиод на плате.

Трясем фонарик, включаем. Работает !

А вот наш опытный образец:

Коробочка из под Тик-так. Трубка на которую намотана катушка — корпус от шариковой ручки. Пару магнитиков от жесткого диска, есть там такие. Да, вместо аккумуляторов использованы конденсаторы. Белый светодиод. пару диодов.

Схема.

Есть особенность намотки катушки. Как Вы, наверное, заметили из схемы — катушка состоит из двух обмоток, общая длина катушки 40 мм. Делим мысленно попала. На первой половине наматываем 600 витков самого тонкого провода диаметром примерно 0,08мм. И на второй половине 600 витков. Вот и всё — двух секционная катушка готова. Далее по схеме.

Не забудте про ограничители, чтоб магнитики отталкивались и шустренько скакали.

А вот мой более мощный образец. Тут уже использована катушка с большим числом витов и трех секционный магнит.

Желаю удачных самоделок !

Источник: https://sdelaysam-svoimirukami.ru/284-vechnyj_fonarik_ili_fonarik_faradeja.html

delomastera.info

Вечный фонарик своими руками: генератор Фарадея

Подробная фото инструкция: как сделать вечный фонарик из генератора Фарадея, который работает без батареек.

Вечный фонарик не требует питания от батареек или аккумулятора, его конструкция сделана по принципу простого генератора Фарадея, который позволяет от нескольких движений магнита в обмотке, выработать ток и зажечь небольшой светодиод.

На рисунке показан генератор Фарадея, при прохождении магнита внутри катушки, в обмотке вырабатывается переменный ток.

 

Материалы для изготовления:

  • Труба ПВХ, диаметром 20 мм;
  • Круглые неодимовые магниты, размер 15 х 3 мм;
  • Медная проволока, сечение – 0,5 мм;
  • Транзистор маломощный обратной проводимости;
  • Диодный мост или выпрямитель 2W10;
  • Резистор;
  • Суперконденсатор или ионистор 1F 5.5V;
  • Выключатель;
  • Светодиод на 5V;
  • Термо клей;
  • Кусок фанеры;

Весь процесс изготовления вечного фонарика представлен на фото.

Корпус фонарика будет изготовлен из ПВХ трубы.

Отрезаем кусок трубы длиной 16 см.

От центра отмечаем по 1,5 см в каждую сторону, это будет зона для обмотки шириной в 3 см.

Затем нужно изготовить катушку, берём медный провод диаметром 0,5 мм, оставляем один конец его длиной около 10 см, и наматываем на трубку по разметке. Мотаем около 500 витков. Первые несколько из них можно зафиксировать клеем. Начальный ряд катушки плотно прижимаем друг к другу, и делаем его строго последовательным.

Изготовим подвижный магнитный сердечник катушки, он может быть цельным или собранным из нескольких магнитов. Неодимовые магниты подбираем по внутреннему диаметру ПВХ трубки. Опытным путем набираем магнитный стержень, через колебания которого и будет создаваться электрический ток.

Па шкале осциллографа показана разницу между потенциалами, получаемыми от колебаний одного и десяти магнитов.

От колебаний магнитного стержня получилось напряжение в 4,5V, чего достаточно для питания светодиода.

Теперь нужно сделать две заглушки, чтобы магнит не выпадал из трубки.

 

К выводам катушки подключаем выпрямитель. Схема, отображенная на фото, показывает какие два его контакта из четырех подключить к катушке. Такой диодный мост способен принимать переменный ток, и выдавать постоянный в одном направлении.

 

Повышающий автотрансформатор поможет преобразовать низкие спонтанные импульсы от первичной катушки в достаточное напряжение для работы светодиода за счет самоиндукции коллекторной обмотки. Так как она связана с базовой обмоткой, постоянный и стабильный электрический ток будет подаваться на суперконденсатор в достаточном количестве. Резистор же ограничит превышение допустимых номиналов. Конденсатор достаточной емкости также подобран автором опытным путем с помощью замеров исходящих сигналов осциллографом.

На рисунке показана схема фонарика с генератором Фарадея.

Замыкает эту схему биполярный транзистор обратной проводимости, который и управляет поступающим электрическим током к светодиоду. Собрать схему можно без платы, поскольку деталей не так много. Кнопку выключатель монтируем на один из контактов, идущий от автотрансформатора.

 

В результате автор изготовил фонарик на одном светодиоде, который не требует питания от батареек, конечно это лабораторный вариант, но на его основе можно изготовить фонарик для использования в полевых условиях.

В этом видео, подробно показан процесс изготовления вечного фонарика без батареек.

samodelki-n.ru

Отзыв о Вечный фонарик Фарадея «Универсал»

Пластиковый корпус,сильное магнитное поле, слабый свет.

Добрый день. Честно говоря, фонарик попал ко мне в руки буквально позавчера, поэтому про длительность использования ничего вам не скажу, разве только то, что на вид он выглядит довольно потрёпанным и инструкция к нему (на нем. яз.) видавшая виды.

Бросив краем глаза на него, я сразу отметил, что фонарик нам в семье пригодится весьма кстати, особенно осенью, так как впереди наверняка предстоят веерные отключения, ну или включения света :-), и лишний источник света нам точно пригодится. Решив его протестировать, я немного был удивлён. Судя по толщине корпуса, я прикинул, что фонарь должен быть рассчитан под 373-ий вид батареек. По цене получилось бы очень недёшево, длинна примерно на 3 шт. Я даже точно не знаю, существуют ли вообще такие аккумуляторы. Но покрутив фонарик в руках, и внимательней его наконец-то осмотрев, я удивился ещё больше. Во-первых, фонарик не имеет никаких полостей внутри для размещения батарейки, никаких отверстий для штекера подзарядки, и, по-моему, он вообще даже не раскручивается, хотя нет, лампочку, точнее светодиод, всё-таки заменить можно. Внутри видна, какая-то плата, катушка с медной проволокой и болтается по всей длине какой-то поршень.

Я понимаю, что я сейчас пишу какую-то чушь, и выгляжу дикарем, но я действительно никогда раньше таких фонарей не видел, и не слышал о такой технологии. Я нажал кнопку на фонаре, …света нет, …потряс… света нет, … решил порыться в коробке и… О чудо!…Есть инструкция!!! Всего с одной картинкой, показывающей поступательные движения с зажатым кистью руки фонариком.

Я начал интенсивно трясти рукой, как показано на картинке, так чтоб поршень летал по внутренней втулке от края до края, и через пару минут нажал на кнопку снова. Иии-хх-аа!!! Фонарь ненадолго и слабенько засветился. Значит, я всё делал правильно, остальное оставалось за временем, минут пять-шесть тряски и фонарик просветил уже минуту. Ещё минут десять разминки, и фонарь уверенно светит довольно продолжительное время. Но всё равно как то тускловато, как то грустно, что ли. Попытки разогнать его и сделать свет ярче ни к чему не привели :-(.

Вот, собственно говоря, и вся история. Теперь о достоинствах и недостатках, которые я для себя обнаружил за столь короткий срок.

Достоинства: не надо тратиться на батареи; удобен, насколько может быть удобен обычный бытовой фонарик.

Недостатки: их больше…Пластиковый корпус, соответственно достаточно хрупкий; обладает сильным магнитным полем, соответственно рекомендую в турпоходе держать подальше от кредиток и часов; свет недостаточно яркий и сфокусированный, соответственно бесполезен при работе в охране. Годится, пожалуй, только для бытового использования в погребе или на чердаке.

А вообще конечно отличная технология, довести до ума и я думаю можно расширить область применения.

otzovik.com

Эффект Фарадея — Википедия

Оптический изолятор — прибор, использующий вращение плоскости поляризации света за счет эффекта Фарадея

Эффект Фарадея (продольный магнитооптический эффект Фарадея) — магнитооптический эффект[en], который заключается в том, что при распространении линейно-поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света. Теоретически, эффект Фарадея может проявляться и в вакууме в магнитных полях порядка 1011—1012 Гс[1].

Проходящее через изотропную среду линейно поляризованное излучение всегда может быть представлено как суперпозиция двух право- и левополяризованных волн с противоположным направлением вращения. Во внешнем магнитном поле показатели преломления для циркулярно право- и левополяризованного света становятся различными (n+{\displaystyle n_{+}} и n−{\displaystyle n_{-}}). Вследствие этого, при прохождении через среду (вдоль силовых линий магнитного поля) линейно поляризованного излучения его циркулярно лево- и правополяризованные составляющие распространяются с разными фазовыми скоростями, приобретая разность хода, линейно зависящую от оптической длины пути. В результате плоскость поляризации линейно поляризованного монохроматического света с длиной волны λ{\displaystyle \lambda }, прошедшего в среде путь l{\displaystyle l}, поворачивается на угол

Θ=πl(n+−n−)λ{\displaystyle \Theta ={\frac {\pi l(n_{+}-n_{-})}{\lambda }}}.

В области не очень сильных магнитных полей разность n+−n−{\displaystyle n_{+}-n_{-}} линейно зависит от напряжённости магнитного поля и в общем виде угол фарадеевского вращения описывается соотношением

 Θ=νHl{\displaystyle \ \Theta =\nu Hl},

где ν{\displaystyle \nu } — постоянная Верде, коэффициент пропорциональности, который зависит от свойств вещества, длины волны излучения и температуры.

Эффект Фарадея тесно связан с эффектом Зеемана, заключающимся в расщеплении уровней энергии атомов в магнитном поле. При этом переходы между расщеплёнными уровнями происходят с испусканием фотонов правой и левой поляризации, что приводит к различным показателям преломления и коэффициентам поглощения для волн различной поляризации. Грубо говоря, различие скоростей различно поляризованных волн обусловлено различием длин волн поглощаемого и переизлучаемого фотонов.

Строгое описание эффекта Фарадея проводится в рамках квантовой механики.

Используется в лазерных гироскопах, лазерной измерительной технике, лазерных передатчиках в системах связи как элемент защитного оптического изолятора. Кроме того, эффект применяется при создании ферритовых СВЧ-устройств. В частности, эффект Фарадея лежит в основе работы циркуляторов СВЧ- и оптического диапазона. [2]

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.

Данный эффект был обнаружен М. Фарадеем в 1845 году.

Первоначальное объяснение эффекта Фарадея дал Д. Максвелл в своей работе «Избранные сочинения по теории электромагнитного поля», где он рассматривает вращательную природу магнетизма. Опираясь в том числе на работы Кельвина, который подчеркивал, что причиной магнитного действия на свет должно быть реальное(а не воображаемое) вращение в магнитном поле, Максвелл рассматривает намагниченную среду как совокупность «молекулярных магнитных вихрей». Теория, считающая электрические токи линейными, а магнитные силы вращательными явлениями, согласуется в этом смысле с теориями Ампера и Вебера. Исследование, проведённое Д. К. Максвеллом, приводит к заключению, что единственное действие, которое вращение вихрей оказывает на свет, состоит в том, что плоскость поляризации начинает вращаться в том же направлении, что и вихри, на угол, пропорциональный:

  • толщине вещества,
  • составляющей магнитной силы, параллельной лучу,
  • показателю преломления луча,
  • обратно пропорциональный квадрату длины волны в воздухе,
  • среднему радиусу магнитных вихрей,
  • ёмкости магнитной индукции (магнитной проницаемости).

Все положения «теории молекулярных вихрей» Д. Максвелл доказывает математически строго, подразумевая, что все явления природы в глубинной сути своей аналогичны и действуют похожим образом.

Многие положения данной работы были впоследствии забыты или не поняты (например, Герцем), однако известные на сегодняшний день уравнения для электромагнитного поля выведены были Д. Максвеллом из логических посылок указанной теории.

Австрийский физик-теоретик Л. Больцман в примечаниях к работе Д. Максвелла отзывался следующим образом:

Я мог бы сказать, что последователи Максвелла в этих уравнениях, пожалуй, ничего кроме букв не переменили… Результаты переведенного здесь цикла работ, следовательно, должны быть причислены к важнейшим достижениям физической теории»

ru.wikipedia.org

0 comments on “Указка фарадея что это такое – Вечный фонарик или фонарик Фарадея

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *