Унч класса а на транзисторах – Ультралинейный усилитель класса «А»

Усилитель на транзисторах Класс А 10Вт

Уже и не помню откуда мне пришла идея собрать Унч класса А, зато четко помню как я искал эту схему. А все как было, нашел я на свалке 4 транзистора советских КТ803А в железном корпусе. Они такие были тертые, но тем не менее мультиметр показал что все четыре живые, как пользоваться мультиметром можно посмотреть тут. Ища что можно собрать на этих транзисторах, попала мне схема усилителя Класс А от J. Linsley Hood… Кто этот человек понятия я не имею, но схема рабочая и очень качественная, не смотря что отзывы о ней не лучшие и человеку этому огромное спасибо за качество и простоту…

Короче после кучки эксперементов до ума довел я одну из плат и проект бросил из-за не хватки время, а схема у меня осталась и я сейчас с вами поделюсь..

Схема усилителя Класс А на КТ803А

Используемые в схеме усилителя компоненты
C1 = 1.5мФ
C2 = 100мФ
C3 = 220мФ

C5 = 10000мФ
C7-8 = 0,1мФ

P1 = 100к
R1 = 39к
R2 = 100к
R3 = 8.2к
R4 = 2.7к
R5 = 220
R8 = 2.2к
R9 = 10

VT1 = КТ361
VT2 = КТ602БМ
VT3-4 = КТ803А

Некоторые детали, напряжение питания и ток покоя берутся из этой таблицы исходя из нагрузки, которую вы будете подключать к выходу УНЧ.

Rнагр

R6

R7

C4

C6

U пит

4

47

180

470мФ

4700мФ

18В

8

100

560

220мФ

2200мФ

27В

16

200

1,2к

220мФ

2200мФ

37В

Настройка вся сводится к выставлению на плюсовом выходе конденсатора C6 подстроечным резистором P1, половины от напряжения питания, естественно без подключенного источника сигнала и без подключенной нагрузки

Короче собирал я данный усилитель, звук был на столько насыщенный и чистый. Питал все добро от старенького трансформатора от УНЧ Радиотехника У101 вроде(время прошло 2 года как собирал), источник звука был мой пк и неоцифрованный звук компакт диска с любимыми треками моего брата, группы «Любэ».

Все кто будет повторять схему, будьте внимательны к разводке печатной платы. Помните что расположение деталей на плате играет огромное значение в качестве звука…

Удачи в повторении и побольше качественных и простых схем..
С ув. Админ-чек

Загрузка… Полезные материалы по этой теме:

Навигация по записям

rustaste.ru

А, B, AB, D, G, H / Habr

Здравствуй, Хабр!


В данной статье мы рассмотрим звуковые усилители классов: А, B, AB, D, G, H
Сначала рассмотрим классы по положению рабочей точки. Каждый транзистор имеет выходную характеристику, которую можно найти в DataSheet.

Пример характеристики на рисунке ниже.


Выходная характеристика транзистора.

Именно с помощью данной характеристики мы сможем выбрать класс усилителя по положению точки покоя.

Выходная характеристика показывает какой ток нам нужно задать базе транзистора, для того чтобы получить определённый класс усилителя, также мы узнаем Iк.


Класс А


Класс А — это такой режим работы усилительного элемента, при котором входные значения, проходя через усилительный элемент не прерывается. То есть точно повторяет входной сигнал.
Усилительный элемент приоткрыт всегда и точно повторяет отрицательную и положительную волну.

Класс B


Элемент, работающий в данном классе способен усиливать только одну полуволну, положительную либо отрицательную.
Такой класс используют в двухтактных усилителях, где положительную полуволну усиливает один транзистор, а отрицательную другой.
Двухтактный усилительный каскад класса В. Но на выходе усилителя работающего в данном классе мы имеем искажение. Данное искажение называется «Ступенькой».

Для устранения данного искажения нужно перейти к классу АВ. На рисунке ниже показаны два класса усилителя В и АВ и их выходные сигналы относительно входным.


Класс D


Принцип действия данного класа. В данном режиме работы, транзистор либо открыт либо полностью заперт. Это достигается с помошью модулятора ШИМ сигнала. Именно это дает такому каскаду кпд свыше 90% (практически на любых мощностях).
Минусом данного каскада являются искажения. Они вознакают из-за способа модуляции так-как существует «мертвый» период который необходим для предотвращения сквозных утечек.
Также сильными источниками искажений являются L и C элементы в фильтре (НЧ).

Усилители класса G и H


Сначала поговорим о питании усилителей. Для получения большой мощности, необходимо иметь большое напряжение питания.

Но сигнал входной и соответственно выходной не всегда обладают большой амплитудой и на маленькой мощности большое напряжение питания не является необходимым, более того КПД данного усилителя на маленькой мощности падает.

Отсюда и вытекают классы усилителей G и H.

Отличие данных усилителей заключается в питании, напряжение которого меняется при необходимости, а в зависимости какой класс G или H оно меняется либо ступенчато, либо плавно.

В усилителе класса H напряжение питания меняется плавно то есть транзисторы находятся в усилительном режиме, а в классе G оно меняется ступенчато, транзисторы в данном классе находятся в ключевом режиме (полностью открыты или полностью заперты).


Усилитель класса H
Усилитель класса G

Вывод: Усилители для комфортного прослушивания звукового тракта в домашних условиях должны работать в классе А, АB или D.

Спасибо за внимание.

habr.com

Транзисторный унч своими руками. Транзисторный усилитель класса а своими руками. Классы работы звуковых усилителей

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах — музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин — практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» — ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно — чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД — свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД — менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток — полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточны

innovakon.ru

Усилитель Класса А усилитель JLH Джона Ли Худа John Linsley Hood усилители класса А

Новое — это хорошо забытое старое

 

Последние несколько лет наблюдается волна интереса к знаменитому усилителю Джона Линсли Худа (John Linsley-Hood). Повышенный интерес к JLH обусловлен тем, что интернет-магазины и аукционы Hi-End начали предлагать множество вариаций этого усилителя в готовом виде и в виде комплектов для домашней сборки. На многочисленных форумах по электронике и звукотехнике проводятся бурные обсуждения предложенной более 40 лет назад схемы и способов ее улучшения применительно к сегодняшней компонентной базе.

Нередко лейбл «JLH» навешивают на конструкции, ничего общего с легендарным оригинальным усилителем не имеющие. Предлагаю разобраться в достоинствах и недостатках этого усилителя класса А и его поразительно изящной, и простой схемотехнике. Усилитель этого талантливого инженера из Англии, созданный почти 50 лет назад дожил до сегодняшнего дня пережив несколько реинкарнаций, и сегодня, в конце 2016 года он, по-прежнему будоражит воображение настоящих аудиофилов.

Первая публикация схемы появилась в журнале «Wireless World» в 1959 году. Перевод основной идеи схемы John Linsley-Hood:

 

«В последнее время издания для любителей качественного звучания опубликовали множество схем усилителей на транзисторах, большинство из которых малопригодны для повторения ввиду чрезвычайной сложности для повторения среднестатистическим радиолюбителем. Мощность предлагаемых к повторению транзисторных усилителей как правило многократно завышена, что совершенно не требуется для комфортного прослушивания музыки в обычной комнате. Повышенная мощность тянет за собой необходимость применения дорогостоящих транзисторов и мощных блоков питания. До эры появления транзисторов огромной популярностью пользовались ламповые усилители фирм Mullard, Leak и другие обладающие выходной мощностью до 10-15 Ватт на канал, которой с лихвой хватало для воспроизведения практически любой музыки в условиях реальной жилой комнаты. Уровень громкости с колонками средней чувствительности и такой выходной мощностью усилителя в стерео-режиме получался даже больше необходимого. Инженеру Джону Линсли Худу пришла идея разработать простой для повторения, но максимально качественный усилитель класса А с разумной выходной мощностью и минимально возможными искажениями. Что он блистательно и осуществил»

 

Один из приверженцев максимально простых и линейных Hi-End усилителей класса «А» и по совместительству владелец фирмы «Pass Aleph» Нельсон Пасс (Nelson Pass) написал в своей статье, что усилитель Д. Ли. Худа даже спустя 40 лет восхищает великолепным качеством звучания при предельно простотой конструкции.

 

Искажения и выходная мощность

 

В период 1947-1949 годов патриарх усилителе строения David Theodore Nelson Williamson написал в серии статей, опубликованных в том же журнале «Wireless World», что величина искажений для высококачественного звуковоспроизведения не должна превышать 0,1%. Основные искажения в ламповом усилителе вносит выходной трансформатор, а поскольку транзисторные конструкции могут обойтись без этого нелинейного элемента, то требования к транзисторным схемам можно ужесточить. Можно считать допустимыми не более 0,05% искажений, вносимых транзисторным усилителем при полной выходной мощности в полосе частот от 30 Гц до 20 кГц.

В связи с «гонкой мощностей» когда во главу угла ставились параметры усилителей, а их реальное звучание отодвигалось на второй план, подавляющее число разработок и воплощение их в готовых конструкциях было сосредоточено на усилителях класса «В» или «АВ». Потенциальный клиент читал отзывы об усилителях в аудио прессе и его глаза невольно наталкивались на эту «гонку параметров». На первое место ставились преимущества усилителей с характеристиками, изобилующие многими нулями: 0,01 – 0,001 % искажений, 100 – 200 – 300 Ватт выходной мощности, а не редко и больше. Эти цифры объявлялись «главными достоинствами» усилителей, а их цена напрямую зависела от количества нулей. Потенциальный покупатель усилителя намеренно ставился перед искусственно навязанным выбором, таким же, как в случае с автомобилями и рекламируемыми «преимуществами» с упором на мощность двигателя и максимальную скорость. В отличие от автомобиля, в усилителях выходная мощность и уровень искажений к реальному качеству звучания имеют очень опосредованное отношение. На звук гораздо большее влияние оказывает грамотно выбранная схемотехника, режимы работы каждого каскада и качество деталей.

 

По простому о классах «А» и «АВ»

 

Усилители класса А получили малое распространение в первую очередь из-за низкого КПД. При «гонке параметров» когда рынок требует от усилителя получение выходных мощностей 50 – 100 – 200 и более Ватт в канал применять режим класса А крайне невыгодное и неблагодарное мероприятие. Потребляемую мощность с этим режимом нужно смело умножить на три или четыре, и вся эта мощность, в отличие от полезной не идет на динамики, а преобразуется в банальное тепло. Соответственно для усилителя, работающего в классе А требуется блок питания в три — четыре раза мощнее аналогичного, работающего в классе АВ. Плюс, нужны огромные радиаторы, которые должны рассеять излишнее тепло. Себестоимость усилителя довольно сильно зависит от мощности блока питания и размеров радиаторов выходных транзисторов. В итоге усилители класса «А» получаются намного более дорогими и «горячими» в прямом смысле этого слова, по сравнению с аналогичными по мощности усилителями, работающими в классе АВ.

Вот этот маленький КПД усилителей класса А помноженный на «Горячесть» и высокую по сравнению с моделями класса «АВ» стоимость и предопределил малую распространенность этих на самом деле – замечательных конструкций.

Если абстрагироваться от желания получить сто ваттные мощности на выходе и смириться с повышенным тепловыделением, усилители класса А по звучанию уложат «на обе лопатки» абсолютно все другие модели усилителей с их техническими изысками. Как правило усилители класса А намного более просты схемотехнически, чем их собратья, работающие в других режимах. Режим работы А пришел из ламповых схем, которые отличаются от транзисторных намного более «коротким» трактом и малым количеством деталей. Платой за кажущуюся простоту является необходимость тщательного подбора каждого элемента усилителя класса А и высокие требования к качеству комплектующих.

Благодаря простой конструкции и малому количеству каскадов, усилитель класса А поддается точной настройке путем оптимизации работы каждого каскада и наилучшему согласованию каскадов между собой. В Усилителях класса АВ с их десятками и сотнями последовательно включенных звеньев, индивидуальная настройка каждого каскада в принципе невозможна. Для обеспечения приемлемых параметров в них приходится вводить глубокую отрицательную обратную связь, которая позволяя достичь заданных характеристик, при этом начисто «убивает» звук.

 

Особенности схемотехники JLH

 

Основная идея John Linsley-Hood, построение максимально простого усилителя, все каскады которого работают в классе А. В классе А транзисторы работают на максимально линейных участках своих характеристик, и имеют практически постоянную, хоть и немного повышенную температуру, при которой их параметры практически не «плывут». В классе А можно достичь очень хорошей симметрии плеч и избавиться от так называемых «коммутационных» искажений, ведь в классе А транзисторы в отличие от класса В и АВ вообще не выключаются.

Каскады класса А в однотактном включении с нагрузкой – резистором самые неэффективные по КПД в сравнении со всеми остальными вариантами включения транзисторов. Зато они самые линейные и самые «музыкальные». Путем замены резистора на дроссель или трансформатор можно повысить КПД и легко согласовать простейший каскад на транзисторе с практически любым следующим каскадом. Но это «палка о двух концах». Применив дроссель или трансформатор, мы получаем максимально качественно «звучащий» каскад, но при этом имеем в конструкции сложное, тяжелое и дорогостоящее моточное изделие.

Для упрощения и удешевления конструкции Джон Линсли Худ применил двухтактный выходной каскад с возбуждением противофазным сигналом, изображенный на Рис.1. Оптимальным решением здесь является применение каскада на транзисторе VT1 обратной проводимости (n-p-n), который для выходных транзисторов является фазоинвертором и управляет обоими плечами (верхним и нижним), собранными на транзисторах VT2 и VT3.

За счёт компенсации взаимной нелинейности характеристик транзисторов, это включение даёт низкие искажения даже без применения отрицательной обратной связи. Как бонус, низкое выходное сопротивление каскада на VT1 хорошо согласуется с довольно высоким входным сопротивлением каскадов на VT2, VT3.

 

Упрощенная схема усилителя JLH показана на Рис.2

 

Входной сигнал подается на базу транзистора VT1. С его коллектора инвертированный и усиленный сигнал поступает на базу транзистора VT2. Транзистор VT2 усиливает входной сигнал и формирует противофазные сигналы для выполненного на транзисторах VT3 и VT4 выходного каскада. Нижний выходной транзистор VT3 включен по схеме с общим эмиттером и усиливает как ток, так и напряжение. Верхний выходной транзистор VT4 включен по схеме с общим коллектором и усиливает только ток (это классический эмиттерный повторитель).

Резисторы R4-R5 задают напряжение смещения для транзистора VT1, резистор R3 формирует смещение выходного каскада. Резисторы R1-R2 задают глубину отрицательной обратной связи по току. Транзистор VT2 является сердцем этой схемы и применен здесь для управления выходным каскадом — элегантно и просто.

Нельсон Пасс являясь приверженцем максимально простых схем и коротких трактов, работающих в классе «А» обошёл стороной одну особенность представленной топологии. В своих конструкциях он применяет исключительно полевые транзисторы, которые управляются напряжением на затворе, в отличие от примененных Джоном Ли Худом биполярных транзисторов, управляемых током базы. И если в далеком 1959 году мощных серийных полевых транзисторов попросту не существовало и Джона Ли Худа можно понять, то Нельсона Паса понять сложно, по какой именно причине он не применяет в своих усилителях биполярные транзисторы.  Путем обращения к «коллективному» разуму армии любителей, повторивших конструкции как Нельсона Пасса, так и Джона Ли худа было «вычислено», что с полевыми транзисторами гораздо легче работать. Они менее капризны и для достижения искомых параметров не требуют вокруг себя «танцев с бубнами» (многомесячных настроек) как биполярные. Но тот же «коллективный разум» говорит о том, что биполярные транзисторы звучат все-таки лучше полевых… хотя это как раз не факт.

Выходной ток предыдущего каскада усилителя Джона Ли Худа является входным током для последующего. Ток коллектора транзистора VT1 является управляющим для транзистора VT2 и втекает в его базу. В других каскадах все происходит аналогично. Резистор R3 является источником стабильного тока и изменение тока коллектора транзистора VT2 полностью отражается на токе базы транзистора VT4. Такая топология построения «двойки» транзисторов делает условия их взаимного управления идеальными.

Вся идеология построения усилителя Джона Ли Худа подчиняется идее минимализма, в ней нет ничего лишнего…

Дизайн усилителя JLH родился в то время, когда эра усилителей на лампах близилась к своему завершению, транзисторы быстро вытеснили электровакуумные приборы практически из всех областей электроники. Не избежала этой участи и звуковая техника. Инженеры начали проектировать транзисторные усилители с оглядкой в первую очередь на параметры: высокую выходную мощность и предельно низкие искажения. Их разработки в большинстве своем были крайне сложны и отличались от ламповых схем применением многочисленных и глубоких обратных связей. А это, как в последствии выяснилось, качества звуку совсем не добавило.

За прошедшие 47 лет прогресс в электронной промышленности ушел далеко вперед. А вот про технику для воспроизведения звука такого сказать нельзя. За почти сто лет с момента изобретения электронного усилительного прибора – лампы, а за ней транзистора, вдруг выяснилось, что лучшее звучание имеют простые схемотехнические решения, известные уже много лет. И никакими современными технологическими изысками качество звучания почему-то не улучшается.

 

P.S. Усилитель JLH в отличие от конкурентов, воспроизводит почти «живую» музыку. Данный усилитель имеется в наличие. Так же Вы можете заказать аппарат в индивидуальной комплектации. Мощность усилителя JLH может варьироваться от 5 до 150 Вт на канал в классе А.

 

Ссылки по теме

 

aovox.com

Простой УНЧ класса А на транзисторе

   Рассмотрим очень простой УНЧ класса «А@? собранный всего на одном транзисторе. Помню этот усилитель собрал 2 года назад. Схема попалась мне на глаза совершенно случайно, поковырялся в своих деталях и к моему удивлению нашел нужный транзистор. Усилитель без ООС, чистый А класс ! Было решено собрать стерео вариант схемы, а поскольку она одноканальная, пришлось купить второй транзистор.

   Схема — подобие той, которую создал Нельсон Пасс, тут она значительным образом упрощена, хотя в то время у меня был дефицит с деталями, особенно трудно мне достался резистор на 15 ом, ну сейчас вы подумаете, разве 15 ом дефицит? Да друзья! Если учесть, что резистор нам нужен с мощностью в 30-40 ватт! Он в схеме будет жутко греться, а по другому и быть не могло. Тут греется все — транзистор, резистор, усилитель берет от источника питания 35-40 ватт , чтобы отдать всего 10 ватт мощности в подключенную нагрузку, не нужно забывать, что это чистый А класс! а значит все сказанное это норма, так и должно быть. Взамен мы получаем достаточно качественный усилитель со сверхминимальным количеством деталей, всего один мощный полевой транзистор и все!

   Транзистор нужно установить на громадном теплоотводе, кулер ставить не нужно. Все полярные конденсаторы нужно использовать с напряжением 35 — 50 вольт. Источник питания однополярный 24 вольта (хоть это утешает). Смещение задаётся резистором 1 мОм и потенциометром на 100 кОм. Просто установите потенциометром половину напряжения питания в точке соединения транзистора и нагрузочного резистора.

   Блок питания следует использовать ватт на 80-100, поскольку в пиках усилитель <кушает> аж 60 ватт! Диодный мост можно заменить готовой диодной сборкой на 5 ампер, можно также использовать любые 4 диода на 5-10 ампер, например очень хорошо подходят диоды серии кд2010 с любой буквой.

   Рассматривать детали конструкции смысла нет, поскольку тут все и так понятно: один транзистор, пару конденсаторов и резисторов. Регулятор громкости от 10 до 100 килоом, но его можно исключить если сигнал подается от регулируемого источника звука, например от компьютера. 

   Звучание усилителя как не странно на очень высоком уровне, многие наверное не поверят,к что такая схема способна работать без искажений, но то действительно так, искажения наблюдались только тогда, когда на вход усилителя подавал сигнал от музыкального центра, этим пытался понять какую максимальную мощность способен развивать усилитель. Ну наверное все понятно со схемой, в блоке питания тоже следует использовать конденсаторы с напряжением от 50 вольт.


Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

amplif.ru

Схема усилителя мощности класса А 24Вт


Схема усилителя мощности класса А 24Вт

Схема усилителя мощности класса А 24Вт — показанная здесь схема высокоэффективного усилителя, выходной каскад которого работает в классе А и способен развивать выходную мощность более 24 Вт.

Схема усилителя собрана с использование десяти фирменных транзисторов. Пара, из которых 2N2222 установлены в дифференциальном каскаде усилителя, другая пара транзисторов 2N2907 выполняет защитные функции схемы. Еще два 2N2222 установлены в каскаде предварительного усиления. В выходном каскаде на радиаторах охлаждения установлены мощные четыре биполярных транзистора 2N3055.


Все электронные приборы с n-p-n переходом, то есть обратной проводимости, кроме пары 2N2907, они прямой проводимости с переходом p-n-p типа. Схема усилителя рассчитана на напряжение питания от 34v до 46v, но при этом необходимо взять во внимание номинальную мощность постоянных резисторов и рабочее напряжение конденсаторов установленных в усилителе. Выходной каскад аппарата в состоянии покоя имеет ток в пределах 1.6 ампера, настройка схемы производится с помощью переменного резистора R20 путем установки падения напряжения 0.75v на резисторе R25 включенного в эмиторную цепь выходного транзистора 2N3055, при токе покоя менее 1.6v. Очень маленький коэффициент нелинейных искажений, его не удалось точно измерить. Данный усилитель с потрясающим звучанием был разработан и испытан Марком Клинхансом из Южной Африки.

Технические характеристики:

  • Выходная мощность усилителя — 24 Вт;
  • Диапазон частот — 0.1-100кГц;
  • Напряжение на входе — 305мВ для 24Вт;
  • Усилитель мощности класс — A;

Если усилитель собран без существенных ошибок, то он сразу будет работать без каких либо особых настроек. Указанные на схеме детали все актуальны, именно в таком варианте аппарат проходил тестирование.

Сделай сам

usilitelstabo.ru

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей


Введение

Мне захотелось построить усилитель со следующими параметрами:

1. без ООС, так называемый вариант «0-NFB» (zero negative feed back)
2. чистый класс А
3. однотактный


Нельсон Пасс (Nelson Pass) проделал огромную работу в этом направлении при строительстве своего усилителя «Zen», но я решил пойти еще дальше! Я построю «Усилитель Без Деталей» — Zero Component Amplifier (ZCA).
smile
Думаете, я пытался найти Священный Грааль в усилительной схемотехнике, этакий прямой кусок серебрянного провода, дающий чистое усиление без искажений?

Содержание / Contents

Несомненно, чтобы усилитель назывался усилителем, он должен содержать активные компоненты, обеспечивающие усиление. Меня всегда восхищали однотактные ламповые усилители. Как такое вообще возможно? Посмотрите, одна лампа, пара резисторов и выходной трансформатор. Поэтому я и решил создать усилитель на полевом транзисторе, придерживаясь такой же простоты дизайна.

Один канальный полевой униполярный МОП-транзистор, пригодный для аудио, парочка резисторов и конденсаторов, и конечно же умощненный хорошо «профильтрованный» блок питанния. Схема такого усилителя представлена на рис. 1.


Рис. 1: Схема однотактного усилителя класса A на MOSFET-е

Применен полевик 2SK1058 от Hitachi. Это N-канальный MOSFET. Внутренняя схема и распиновка для 2SK1058 представлена на рис. 2.

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Рис. 2: Hitachi 2SK1058 N-Channel MOSFET

Я использовал конденсаторы Sprague Semiconductor Group во входных цепях и большие электролиты на выходе с «бутербродом» из полиэстерного конденсатора на 10 мф. Все резисторы, если не указано иначе, на 0,5 Ватт. Четыре 10-ти Ваттных проволочных резистора работают в качестве нагрузки. Внимание, эти резисторы рассеивают около 30 Ватт и становятся чрезвычайно горячими даже при простое усилителя. Да, это класс А, а низкий КПД — расплата. Он съедает 60 Ватт, чтобы выдать ок. 5Вт! Мне пришлось использовать мощный и качественный радиатор с эффективным теплоотведением (0.784 °C/Ватт).


Фото 1: Печатная плата усилителя в сбореБлок питания состоит из трансформатора мощностью 160 Ватт, нагруженного на 25-ти Амперный выпрямительный мост, и обеспечивает напряжени ок. 24 Вольт. Используется П-образный фильтр (конденсатор — дроссель — конденсатор) состоящий из электролитов на 10.000 Мф и 5-ти Амперных дросселей индуктивностью 10 мГн.

Рис. 3: Схема блока питания
Фото 2: Усилитель в сборе
Фото 3: Усилитель в сборе, вид сзадиСмещение задаётся резистором на 1 мОм и потенциометром на 100 кОм. Просто установите потенциометром половину напряжения питания в точке соединения MOSFET-а и нагрузочного резистора.Я прослушивал мой усилитель с ламповым предусилителем на 12AU7, т. к. он обеспечивает наиболее чистый звук. Я понятия не имею об коэффициентах искажений этого усилителя и т.п. цифрах, лишь скажу, что у него точная звукопередача и деликатно текстурированный тембральный окрас.

Для работы с усилителем требуется высокочувствительная, эффективная аккустика, т. к. он выдаёт ок. 5 Ватт RMS (и до 15 Ватт на пиках, что я ясно наблюдал на экране осциллографа). Передача басса оказалась значительно лучшей, чем можно было ожидать от такого решения. Усилитель с легкостью раскачивает мои 12-ти дюймовые трех-полосные колонки.

Усилитель удался. Конечно, не совсем «без деталей», но очень близко! Один 18-ти баксовый полевик надрывает задницу, чтобы подарить Вам офигенное впечатление от прослушивания. Не просите от него больше, чем ожидали.

Усилитель воспроизводит все аккустические инструменты с несравненным натуралистичным качеством. Простое джазовое трио, классический квартет или нежный мужской/женский вокал показывают то, для чего этот усилитель и был сделан — красоту!

Игорь Котов (Datagor)

Россия, Сибирь, г.Новокузнецк

Основатель, владелец и главный редактор Журнала практической электроники datagor.ru.
Founder, owner and chief editor of datagor.ru.

 

datagor.ru

0 comments on “Унч класса а на транзисторах – Ультралинейный усилитель класса «А»

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *