Устройство трансформаторов тока – Трансформатор тока — Википедия

Трансформатор тока — устройство, принцип работы и виды

Трансформатор тока представляет собой измерительное устройство, первичная обмотка (высокая сторона) которого подключается к источнику переменного электрического тока, а его вторичная обмотка (низкая сторона) подключается к приборам измерения или к приборам защиты с малым сопротивлением.

Если точнее, то первичная обмотка любого трансформатора тока включается только последовательно в силовую электрическую цепь, по которой протекает электрическая нагрузка. К вторичной обмотке или нескольким вторичным обмоткам подключаются защитные приборы, измерительные приборы и приборы учёта электроэнергии.

Принцип действия трансформатора тока

Работа обычного трансформатора тока базируется на физическом явлении электромагнитной индукции. Это значит, что при подаче напряжения на первичную обмотку, в её витках будет проходить переменный ток, образующий впоследствии появление переменного магнитного потока. Появившийся магнитный поток проходит по сердечнику и пронизывает витки всех обмоток трансформатора, таким образом, индуцируя в них электродвижущие силы (э.д.с.). В случае закорачивания вторичной обмотки или же при включении нагрузки в её цепь, под воздействием э.д.с. в витках обмотки начнёт протекать вторичный ток.

Назначение трансформаторов

Общее назначение трансформаторов тока – преобразование (снижение) большой величины переменного тока до таких значений, которые будут удобны и безопасны для измерения.

Трансформаторы тока позволяют безопасно измерять большие электрические нагрузки в сетях переменного тока. Это становится возможным благодаря изолированию первичной обмотки и вторичной обмотки друг от друга.

При изготовлении к трансформаторам тока предъявляются строгие требования по качеству изоляции и по точности измерений электрических нагрузок.

Конструкция трансформатора тока

Трансформатор тока – это устройство, основой которого является сердечник, шихтованный из особой трансформаторной стали. На сердечник (магнитопровод) наматываются витки одной, двух или даже нескольких вторичных обмоток, электрически изолированных друг от друга, а также и от сердечника.

Что касается первичной обмотки, то она может представлять собой катушку, также намотанную на сердечник измерительного трансформатора. Однако чаще всего первичная обмотка представляет собой алюминиевую или медную шину (пластину). Не менее часто в трансформаторе тока вообще отсутствует первичная обмотка как таковая. В этом случае функцию первичной обмотки выполняет силовой проводник, проходящий через кольцо трансформатора тока. Это может быть отдельная жила электрического кабеля.

Вся конструкция трансформатора тока помещается в корпус для защиты от механических повреждений. 

Коэффициент трансформации

Основной технической характеристикой каждого трансформатора тока является номинальный коэффициент трансформации. Его значение указывается на специальной табличке (шильдике) в виде отношения номинального значения первичного тока к номинальному значению вторичного тока.

Например, указанное значение 400/5 означает, что при первичной нагрузке в 400А, во вторичной цепи должен протекать ток в 5А и, следовательно, коэффициент трансформации будет равен 80. Если на шильдике указано значение 50/1, то коэффициент трансформации будет равен 50.

Практически у каждого трансформатора тока есть определённая погрешность. В зависимости от её величины каждому трансформатору тока присваивается свой класс точности.  

Классификация трансформаторов

Существует несколько признаков, по которым трансформаторы тока делятся.

По своему назначению они бывают измерительными, защитными, а также промежуточными и лабораторными.

  • Измерительные выполняют функцию измерения. К ним подключаются приборы, такие как амперметр или приборы учёта (счётчики электрической энергии).
  • Защитные трансформаторы тока выполняют функцию электрической защиты совместно с устройствами защиты, поэтому к ним подключаются устройства, такие как реле тока или современные цифровые устройства высоковольтной защиты.
  • Промежуточные трансформаторы тока применяют в токовых цепях релейной защиты.
  • Лабораторные устройства обладают очень высокой степенью точности измерений. Также у них может быть несколько разных коэффициентов трансформации.

По виду установки трансформаторы тока бывают наружными и внутренними, а также встроенными внутрь электрооборудования (внутри высоковольтных выключателей, внутри питающих силовых трансформаторов и т.д.). Кроме того трансформаторы тока бывают накладными и переносными. Переносные трансформаторы используют для измерений токовой нагрузки в лабораторных условиях.

По исполнению первичной обмотки бывают одновитковые,

многовитковые и шинные трансформаторы тока. По количеству ступеней трансформации – одно- и двухступенчатые.

По напряжению трансформаторы тока делятся на две группы – устройства с напряжением до 1000В и устройства с напряжением выше 1000В.

Кроме обычных измерительных трансформаторов тока, существуют и специальные, такие как трансформаторы тока нулевой последовательности.

aquagroup.ru

устройство, принцип работы и схема подключения

В статье читатель узнает, что такое трансформатор тока, где они применяются. Мы постараемся дать краткую характеристику видам и типам устройства, объясним принцип действия. Также предлагаем ознакомиться с видеороликом в конце текста для лучшего понимания материала.

Без такого привычного устройства современный мир был бы невозможен в том виде, каком мы к нему привыкли. Его задача – помочь передавать энергию на большие расстояния. Тех, кто дочитает материал до конца, ждет приятный бонус: файл с книгой о трансформаторах тока Афанасьева А.А. По любым вопросам не стесняйтесь писать в комментариях, опытные эксперты будут рады вам помочь.

Опорные трансформаторы тока.

Что это за устройство

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.

Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.

Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным. Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Схематичный рисунок опорного трансформатора тока.

Это устройство, первичная обмотка которого последовательно включена в рабочую цепь, а вторичная служит для проведения измерений. Подобные устройства используются не только в лабораториях для оценки величин. Истинное место трансформаторов тока возле электростанций, где они помогают контролировать режимы, внося коррективы в процесс эксплуатации оборудования.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Тем, кому будет интересно почитать, материал в тему: малоизвестные факты о двигателях постоянного тока.

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Трансформаторы тока принято классифицировать по роду тока. Измеряемое напряжение различается по роду. Для проведения измерений в цепи постоянного тока используется нарезка сигнала на импульсы. Напрямую трансформация невозможна:

  • для переменного тока;
  • для постоянного тока.

По назначению: мы уже сказали, что часто трансформаторы тока применяются для измерений (к примеру, кВт ч). Называют системы, где требуется защитить персонал для повышения безопасности.

Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования. Трансформаторы делят в зависимости от назначения. Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

Принцип работы устройства

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток, выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток. Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1, U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек, либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией.

Микротрансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги. Подробнее принцип работы трансформатора тока рассмотрен в видеоролике:

Вкратце принцип работы и устройство трансформатора тока заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления.

Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.

Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.

Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Схема режима работы трансформатора тока.

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.

Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство:

U_2/U_1 =N_2/N_1

где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.

Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Интересный материал для ознакомления: что такое трехфазный двигатель и как он работает.

Виды и типы трансформаторов

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на несколько видов.

  1. Автотрансформаторы.
  2. Импульсные трансформаторы.
  3. Разделительный трансформатор.
  4. Пик-трансформатор.

Стоит выделить способ классификации трансформаторов по способу их охлаждения. Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Сравнительные характеристики различных видов трансформаторов.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели, где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того, производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией. Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:

  1. Сухие.
  2. Тороидальные.
  3. Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

Принцип работы трансформатора тока.

Параметры трансформаторов тока

При выборе для работы в тандеме с трёхфазным счётчиком первым делом обращают внимание на коэффициент трансформации. Ряд значений стандартизирован, и нужно выбирать приборы, способные работать в паре. Выше говорилось, что в иных случаях коэффициент трансформации возможно менять, и нужно этим пользоваться.

Помимо рабочего напряжения роль играет ток в первичной обмотке (исследуемой сети). Понятно, что с ростом увеличивается нагрев, и однажды токонесущая часть может сгореть. Это требование не столь актуально для трансформаторов без первичной обмотки. Номинальный вторичный ток обычно равен 1 либо 5 А, что служит критерием для согласования с сопрягаемыми устройствами.

Полагается обращать внимание на сопротивление нагрузки в цепи измерения. Вряд ли найдётся счётчик, выбивающийся из общего ряда, но нужно контролировать момент. В противном случае не гарантируется точность показаний. Коэффициент нагрузки обычно не ниже 0,8.

Это уже касается измерительных приборов, с индуктивностями в составе. ГОСТ нормирует значение в вольт-амперах. Для получения сопротивления в омах требуется поделить цифру на квадрат тока вторичной обмотки.

Интересно почитать: однофазные асинхронные двигатели на службе человечества.

Предельные режимы работы обычно характеризуются током электродинамической стойкости, возникающим при коротком замыкании. В паспорте пишут значение, при котором прибор проработает сколь угодно долго без выхода из строя.

В условиях короткого замыкания ток столь силен, что начинает оказывать механическое воздействие. Порой вместо тока электродинамической стойкости указывается кратность его к номинальному.

Остаётся лишь произвести операцию умножения. Указанный параметр не касается приборов без первичной обмотки. Вдобавок определяется ток термической стойкости, который трансформатор выдерживает без критического перегрева. Этот вид устойчивости способен выражаться кратностью.

Отличие трансформатора тока от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Заключение

Надеемся, что теперь вам полностью понятен принцип работы трансформаторов тока. Предлагаем скачать файл с книгой о трансформаторах тока Афанасьева А.А., в котором подробно рассмотрены все нюансы работы с трансформаторами тока. Если хотите регулярно узнавать новую информацию по этой теме, а также по теме металлоискателей и радиодеталей: подписывайтесь на нашу группу в социальной сети «Вконтакте».

Для этого вам необходимо будет перейти по следующей ссылке https://vk.com/electroinfonet. Там можно не только узнавать различного рода полезную информацию, но еще и задавать вопросы и получать на них подробные ответы. В завершение хочу поблагодарить источники, откуда мы черпали информацию:

kuhnileona.ru

vashtehnik.ru

electroinfo.net

Устройство трансформатора тока, типы и подключение обмоток, испытания и поверка

Трансформаторы тока (ТТ) представляет собой устройства, обеспечивающие пропорциональное соответствие вторичных и первичных токовых значений. Основной нагрузкой токовых трансформаторов являются цепи измерения и защиты.

Включение первичной обмотки производится в рассечку (разрыв) измеряемой линии, то есть последовательно. Вторичная обмотка трансформатора тока образует так называемые токовые цепи схем защиты и измерений.

Одной из отличительных особенностей ТТ является то, что цепи их вторичных обмоток при работе токового трансформатора строго запрещено размыкать. Это влечёт за собой повышение напряжения вплоть до пробоя изоляции, а также повреждение магнитопровода вследствие перегрева.

Существуют специальные правила работы в токовых цепях. При необходимости отключить измерительный прибор или реле, включенные в токовую цепь, необходимо сначала закоротить выводы вторичной обмотки.

В релейных шкафах для соединения токовых цепей используются клеммники особой конструкции. В них предусмотрены дополнительные зажимы, позволяющие устанавливать закорачивающие перемычки до разрыва токовой цепи.

Токовый трансформаторный преобразователь, работающий в измерительных цепях, относится к средствам измерений со всеми вытекающими последствиями:

  • измерительные трансформаторы тока подлежат регулярной процедуре поверки;
  • измерительные трансформаторы, также как любое средство измерений имеют определённый класс точности.

Если быть более точным, класс точности присваивается не трансформатору тока, а отдельно взятой его вторичной обмотке. Дело в том что ТТ, особенно высоковольтный, представляет собой достаточно объёмную конструкцию, занимающую место в распределительном устройстве.

С другой стороны, вторичные токовые параметры нужны для измерений и работы различных защит, причём каждая защита подключена к отдельной обмотке. Поэтому обычно используются многообмоточные ТТ.

Каждая из вторичных обмоток имеет свой класс точности и предназначена для подключения определённых цепей. Например, согласно требованию ПУЭ, обмотки токовых трансформаторов, использующиеся в цепях коммерческого учёта должны иметь класс точности не хуже 0,5.

Счётчики технического учёта допускается подключать через трансформаторы тока с обмотками класса 1,0. Если для технического учёта используются встроенные ТТ, допускается использовать их обмотки, которые имеют класс точности хуже 1,0. Это распространяется на случаи, когда для достижения более высокого класса требуется установка дополнительных комплектов трансформаторов.

ТТ, использующиеся в цепях приборов релейной защиты и автоматики, называются защитными.

КОНСТРУКЦИИ И УСТРОЙСТВО ТРАНСФОРМАТОРОВ ТОКА

Конструктивную основу ТТ составляют магнитные сердечники, выполненные из тонколистовой электротехнической стали. Форма магнитного сердечника может быть прямоугольной либо тороидальной (имеющей форму бублика). В первом случае сердечник набирается из пластин, во втором – свивается из тонкой стальной ленты.

Вторичная обмотка наматывается на сердечник, первичная же может иметь различные конструкции:

  • одновитковую;
  • многовитковую.

Одновитковые конструкции подразделяются на стержневые и шинные устройства. В первом варианте внутри корпуса трансформатора через магнитопровод проходит стержень, на концах которого оборудованы линейные зажимы.

Во втором случае роль первички играет токоведущая шина распределительного устройства, то есть при монтаже он просто одевается на шину.

Исполнение может быть предназначено для наружной или внутренней установки. Кроме этого бывают встроенные варианты, располагающиеся внутри высоковольтных выключателей и вводах силовых трансформаторов. Классификация устройств по способу установки делит их на проходные и опорные.

Конструкции проходного типа используются в случаях, когда токопровод должен пройти через стену, потолок или перегородку распределительного устройства. То есть, проходные одновременно играют роль проходных изоляторов. Устройства опорного типа устанавливаются на несущие опорные конструкции распределительных устройств и сами служат опорой токоведущим шинопроводам.

ТТ выпускаются на все классы напряжений. Эти устройства предназначены для преобразования первичных токовых параметров различных уровней, но при этом токовый номинал вторичной обмотки составляет 1 ампер или 5 ампер. Наибольшее распространение получили устройства со вторичным токовым номиналом 5 ампер.

Большинство измерительных приборов предназначены для работы совместно с пятиамперными устройствами. Например, счётчики, подключаемые через трансформаторы тока, рассчитаны на номинал тока 5 ампер.

Коэффициенты трансформации принято указывать в виде дроби. В числителе ставится номинал в амперах для первичной цепи, в знаменателе – ток вторички. Например, 100/5, 500/5. Номинальное напряжение и коэффициент трансформации ТТ являются основными техническими параметрами этих устройств. Вторичные обмотки токовых трансформаторов должны быть заземлены на месте установки.

К особой категории относятся трансформаторы тока нулевой последовательности. Эти устройства представляют собой тороидальные сердечники с намотанной на них вторичной обмоткой. То есть, конструктивно они не отличаются от некоторых обычных типов . Разница заключается в том, что при установке через такой «бублик» пропускается не шина одной из фаз, а трёхжильный кабель целиком.

При работе электрооборудования распределительного устройства в нормальном режиме магнитные поля трёх фаз дают при сложении нулевой результат. Синфазные токи во всех фазах трёхфазной системы фиксируются трансформатором тока нулевой последовательности только при однофазных замыканиях на землю. Такие типы не используются для целей измерения, а только в цепях защит.

ИСПЫТАНИЯ ТРАНСФОРМАТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ ТОКА

Перед вводом в работу ТТ подвергается стандартной процедуре проверок и испытаний. Объём предпусковых испытаний включает следующие виды работ:

  • проверка уровня изоляции;
  • замеры сопротивления вторичных обмоток;
  • проверка коэффициента трансформации;
  • снятие вольт — амперной характеристики.

Проверка изоляции производится с применением мегаомметра на 2500 вольт. При этом ориентируются на нормы, указанные в заводской документации. Испытания изоляции повышенным напряжением производится в сборе после монтажа в распределительном устройстве.

Сопротивление вторичных обмоток измеряется высокоточными мостами постоянного тока. Полученные результаты сравнивают с данными заводских замеров, приведённых в паспорте устройства. Результат, приведённый к температуре 20оС не должен отличаться от заводского более, чем на 2%.

Коэффициент трансформации трансформатора тока проверяется путём прогрузки первичным током. В ходе такой проверки все вторичные обмотки должны быть закорочены либо подключены к амперметрам. Коэффициент определяют как отношение первичного и вторичного токовых значений.

Вольт – амперная характеристика (ВАХ) позволяет выявить неисправности, например, межвитковое замыкание. В ходе данного испытания определяется намагничивающая характеристика. При этом снимаются значения напряжений обмотки при изменении токовых параметров.

Результаты предпусковых испытаний оформляются протоколами установленной формы. Выдаваться протоколы должны организацией, выполняющей пуско-наладочные работы. Организация должна обладать соответствующей лицензией.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


eltechbook.ru

Устройство, назначение и принцип работы трансформаторов тока

Трансформаторы тока широко используются в современной энергетике как оборудование по изменению различных электрических параметров в аналогичные с сохранением основных значений. Работа оборудования базируется на законе индукции, который актуален для полей магнитного и электрического типа, меняющихся синусоидально. Трансформатор преображает первичное значение тока с соблюдением модуля и передачи угла пропорционально исходным данным. Выбирать оборудование требуется, исходя из сферы использования приборов и количества подключенных потребителей.

Что такое трансформатор тока?

Данное оборудование используется в промышленности, городских коммуникациях и инженерных сетях, на производстве и в других сферах для подачи тока с определенными физическими параметрами. Подача напряжения производится на витки первичной обмотки, где в результате воздействия магнитного излучения образуется переменный ток. Это же излучение проходит по остальным виткам, за счет чего происходит движение сил ЭДС, а при закоротивших вторичных витках или при подключении к электроцепи в системе появляется вторичный ток.

Современные трансформаторы тока позволяют преобразовывать энергию с такими параметрами, чтобы ее применение не позволило нанести вред оборудованию, которое работает на ней. Кроме того, они дают возможность измерить повышенную нагрузку с максимальной безопасностью для техники и персонала, поскольку витки первичного и вторичного ряда имеют надежную изоляцию друг от друга.

Назначение трансформаторов

Определить, для чего нужен трансформатор тока, достаточно просто: сфера применения включает все отрасли, в которых происходит преобразование энергетических величин. Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.

Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.

Принцип работы

Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.

Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.

Классификация трансформаторов тока

Существует несколько типов такого оборудования, которые разделяются по ряду критериев, включая назначение, метод монтажа, число ступеней преобразования и иные факторы. Перед тем как выбрать трансформатор тока, требуется учесть эти параметры:

  • Назначение. По этому критерию выделяют измерительные, промежуточные и защищающие модели. Так, устройства промежуточного типа используются при подключении приборов для вычислительных действий в системах релейной защиты и прочих цепях. Отдельно выделяют лабораторные трансформаторы, которые обеспечивают повышенную точность показателей, имеют большое количество коэффициентов преобразования.
  • Способ установки. Существуют трансформаторы для внешнего и внутреннего монтажа: они не только по-разному выглядят, но и имеют различные показатели устойчивости к внешним воздействиям (так, устройства для уличной эксплуатации имеют защиту от осадков и перепадов температур). Также выделяют накладные и портативные трансформаторы; последние имеют сравнительно небольшую массу и габариты.
  • Тип обмотки. Трансформаторы бывают одно- и многовитковыми, катушечными, стержневыми, шинными. Отличаться может как первичная, так и вторичная обмотка, также отличия касаются изоляции (сухая, фарфоровая, бакелитовая, масляная, компаундовая и пр.).
  • Уровень ступеней трансформации. Оборудование бывает одно- и двухступенчатым (каскадным), предел напряжения 1000 В может быть минимальным либо, напротив, максимальным.
  • Конструкция. По этому критерию выделяют две разновидности трансформаторов тока – масляные и сухие. В первом случае витки обмотки и магнитопровод находятся в емкости, содержащей специальную маслянистую жидкость: она играет роль изоляции и позволяет регулировать рабочую температуру среды. Во втором случае охлаждение происходит воздушным путем, такие системы применяют в промышленных и жилых зданиях, поскольку масляные трансформаторы нельзя устанавливать внутри по причине повышенной пожарной опасности.
  • Вид напряжения. Трансформаторы могут быть понижающими и повышающими: в первом случае напряжение на первичных витках снижено, а во втором – повышено.
  • Еще один вариант классификации – выбор трансформатора тока по мощности. Этот параметр зависит от назначения оборудования, количества подключенных потребителей, их свойств.

Параметры и характеристики

При выборе такого оборудования требуется учитывать основные технические параметры, влияющие на спектр применения и стоимость. Главные качества:

  • Номинальная нагрузка, или мощность: подбор по этому критерию можно сделать, воспользовавшись сравнительной таблицей характеристик трансформаторов. Значение параметра определяет другие токовые характеристики, поскольку строго нормируется и служит для определения нормального функционирования оборудования в выбранном классе точности.
  • Номинальный ток. Этот показатель определяет, в течение какого периода прибор может функционировать, не перегреваясь до критичных температур. В трансформаторном оборудовании, как правило, заложен солидный запас по уровню нагрева, при перегрузке до 18-20% работа происходит в нормальном режиме.
  • Напряжение. Показатель важен для качества обмоточной изоляции, обеспечивает бесперебойное функционирование техники.
  • Погрешность. Это явление возникает по причине воздействия магнитного потока, показатель погрешности является разницей между точными данными первичного и вторичного тока. Усиление магнитного потока в трансформаторном сердечнике способствует пропорциональному возрастанию погрешности.
  • Коэффициент трансформации, представляющий собой соотношение тока в первичных и во вторичных витках. Реальное значение коэффициента отличается от номинала на величину, равную степени потерь при преобразовании энергии.
  • Предельная кратность, выраженная в отношении первичного тока в действительном виде к номиналу.
  • Кратность тока, возникающего в витках обмотки вторичного типа.

Определяются ключевые данные трансформатора тока схемой замещения: она позволяет изучить характеристики оборудования в разных режимах, от холостого хода до полной нагрузки.

Главные показатели обозначают на корпусе прибора в виде специальной маркировки. Также она может содержать данные о способе подъема и монтажа оборудования, предостерегающие сведения о повышенном напряжении на вторичных витках (свыше 350 Вольт), информацию о наличии заземляющей площадки. Маркировка преобразователя энергии наносится в виде наклейки или с помощью краски.

Возможные неисправности

Как любое другое оборудование, трансформаторы время от времени выходят из строя, и им требуется квалифицированное обслуживание с диагностикой. Перед тем как проверить устройство, необходимо знать, какие бывают поломки, какие признаки им соответствуют:

  • Неравномерный шум внутри корпуса, потрескивание. Это явление обычно говорит об обрыве заземляющего элемента, перекрытии на корпус с витков обмотки или ослаблении прессовки листов, служащих для магнитопровода.
  • Слишком большой нагрев корпуса, увеличение силы тока на стороне потребления. Проблема может быть вызвана замыканием обмотки из-за износа или механического повреждения изоляционного слоя, частыми перегрузками, возникающими вследствие короткого замыкания.
  • Трещины изоляторов, скользящие разряды. Они появляются при не выявленном до старта эксплуатации производственном браке, набросе инородных предметов и перекрытием между вводом фаз разного значения.
  • Выбросы масла, в ходе которых разрушается мембрана выхлопной конструкции. Проблема объясняется межфазовым замыканием, происходящим по вине износа изоляции, снижением масляного уровня, перепадами напряжения или появлением сверхтоков при условии появления короткого замыкания сквозного типа.
  • Протечки масляной жидкости из-под прокладок или в кранах трансформатора. Основные причины – некачественная сварка узлов, слабое уплотнение, разрушение прокладок или непритертые крановые пробки.
  • Включение реле газозащиты. Такое явление возникает при разложении масла, которое происходит по причине обмоточного замыкания, обрыва цепи, выгорания контактов переключающего устройства или в случае замыкания на трансформаторный корпус.
  • Выключение реле газовой защиты. Проблему вызывает активное разложение масляной жидкости в результате межфазового замыкания, перенапряжения внутренней или внешней части либо вследствие так называемого «пожара стали».
  • Сработавшая дифференциальная защита. Эта неисправность появляется при пробое на вводный корпус, при перекрытии между фазами или в иных случаях.

Чтобы максимально повысить эффективность функциональности прибора, требуется регулярно выполнять поверку, используя тепловизор: оборудование позволяет диагностировать снижение качества контактов и уменьшение рабочей температуры. В ходе поверки специалисты выполняют следующий спектр манипуляций:

    1. Снятие показателей по напряжению и силе тока.
    2. Проверка нагрузки с использованием внешнего источника.
    3. Определение параметров в рабочей схеме.
    4. Вычисление коэффициента трансформации, сравнение и анализ показателей.

Расчет трансформатора

Основной принцип работы этого устройства определяется формулой U1/U2=n1/n2, элементы которой расшифровывают следующим образом:

  • U1 и U2 – напряжение первичных и вторичных витков.
  • n1 и n2 – их количество на обмотках первичного и вторичного типа соответственно.

Для определения площади сечения сердечника используют другую формулу: S=1,15 * √P, в которой мощность измеряют в ваттах, а площадь – в квадратных сантиметрах. Если сердечник, использующийся в оборудовании, имеет форму буквы Ш, показатель сечения вычисляют для среднего стержня. При определении витков в обмотке первичного уровня применяют формулу n=50*U1/S, при этом компонент 50 не является неизменяемым, в расчетах для профилактики появления электромагнитных помех рекомендуется ставить вместо него значение 60. Еще одна формула – d=0,8*√I, в которой d – это сечение провода, а I – показатель силы тока; она используется для вычисления диаметра кабеля.

Полученные при расчетах цифры доводят до круглых значений (например, расчетную мощность в 37,5 Вт округляют до 40). Округление допустимо исключительно в большую сторону. Все указанные формулы применяют для подбора трансформаторов, работающих в сети 220 Вольт; при сооружении высокочастотных линий используют другие параметры и расчетные методы.

odinelectric.ru

Назначение, принцип действия трансформаторов тока и отличие от ТН

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют существенные отличия в работе ТТ и ТН.

Во-первых, первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.

Во-вторых, ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.

В-третьих, не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

pomegerim.ru

Трансформаторы тока. Виды и устройство. Назначение и работа

В системе обеспечения электрической энергией трансформаторы выполняют различные функции. Конструкции классического вида применяются для изменения определенных свойств тока до значений, наиболее подходящих для осуществления измерений. Существуют и другие виды трансформаторов, которые выполняют задачи по корректировке свойств напряжения до значений, подходящих наилучшим образом для последующего распределения и передачи электроэнергии. Трансформаторы тока согласно своему назначению имеют особенности конструкции, и перечень основных и вспомогательных функций.

Назначение

Основной задачей такого трансформатора является преобразование тока. Он корректирует свойства тока с помощью первичной обмотки, подключенной в цепь по последовательной схеме. Вторичная обмотка измеряет измененный ток. Для такой задачи установлены реле, измерительные приборы, защита, регуляторы.

По сути дела, трансформаторы тока – это измерительные трансформаторы, которые не только измеряют, но и осуществляют учет с помощью приборов. Запись и сохранение рабочих параметров тока нужно для рационального применения электроэнергии при ее транспортировке. Это одна из функций трансформатора тока. Модели конструкций бывают преобразующего типа и силовые варианты исполнений.

Устройство

Обычно все варианты исполнений трансформаторов подобного вида снабжены магнитопроводами с вторичной обмоткой, которая при эксплуатации нагружена определенными значениями параметров сопротивления. Выполнение показателей нагрузки важно для дальнейшей точности измерений. Разомкнутая цепь обмотки не способна создавать компенсации потоков в сердечнике. Это дает возможность чрезмерному нагреву магнитопровода, и даже его сгоранию.

С другой стороны, магнитный поток, образуемый первичной обмоткой, имеет отличие в виде повышенных эксплуатационных характеристик, что также приводит к перегреву магнитопровода. Сердечник трансформатора тока изготавливают из нанокристаллических аморфных сплавов. Это вызвано тем, что трансформатор может работать с более широким интервалом эксплуатационных величин, которые зависят от класса точности.

Отличие от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды
Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:
  • Сухие.
  • Тороидальные.
  • Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Принцип работы и применение

При эксплуатации в цепях с большим током появляется необходимость использовать небольшие устройства, которые бы помогали контролировать нужные параметры тока бесконтактным методом. Для таких задач широко применяются токовые трансформаторы. Они измеряют ток, а также выполняют много вспомогательных функций.

Такие трансформаторы производятся в значительном количестве и имеют разные формы и модели исполнения. Отличительными параметрами этих устройств является интервал измерения, класс защиты устройства и его конструкция.

В настоящее время новые трансформаторы тока работают по простому методу, который был известен в то время, когда появилось электричество. При действии с нагрузкой в проводе образуется электромагнитное поле, улавливающееся чувствительным прибором (трансформатором тока). Чем сильнее это поле, тем больший ток проходит в проводе. Нужно только рассчитать коэффициент усиления прибора и передать сигнал в управляющую цепь, либо в цепь контроля.

Трансформаторы выполняют функцию рамки на силовом проводе и реагируют на значение сети питания. Современные измерительные трансформаторы выполнены из большого числа витков, имеют хороший коэффициент трансформации. Во время настройки устройства определяют вольтамперные свойства для расчета точки перегиба кривой. Это нужно для выяснения участка графика с интервалом устойчивости функции трансформатора, который также имеет свой коэффициент усиления.

Кроме задач измерения, измеритель дает возможность разделить цепи управления и силовые цепи, что является важным с точки зрения безопасности. Применяя современные трансформаторы тока, получают сигнал небольшой мощности, не опасный для человека и удобный в работе.

В качестве нагрузки такого устройства может быть любой прибор измерения, который может работать с ним. При большом расстоянии оказывает влияние внутреннее сопротивление линии. В этом случае прибор калибруют. Также, сигнал можно передавать в цепь защиты и управления на основе электронных приборов.

С помощью них производят аварийное отключение линий. Приборы производят контроль сети, определяют нужные параметры. При проектировании встает задача по подбору прибора для измерения и контроля. Трансформаторы выбирают по средним параметрам сети и конструкции прибора измерения. Чаще всего мощные установки комплектуются своими измерительными устройствами.

На современном производстве широко применяются измерительные трансформаторы. Также они нашли применение и в обыденной жизни. Чувствительные приборы осуществляют защиту дорогостоящего оборудования, создают безопасные условия для человека. Они работают в электроцепях, создавая контроль над эксплуатационными параметрами.

Коэффициент трансформации

Этот коэффициент служит для оценки эффективности функционирования трансформатора. Его значение по номиналу дается в инструкции к прибору. Коэффициент означает отношение тока в первичной обмотке к току вторичной обмотки. Это значение может сильно меняться от числа секций и витков.

Нужно учитывать, что этот показатель не всегда совпадает с фактической величиной. Есть отклонение, определяемое условиями работы прибора. Назначение и метод работы определяют значения погрешности. Но этот фактор также не может быть причиной отказа от контроля коэффициента трансформации. Имея значение погрешности, оператор сглаживает ее аппаратурой специального назначения.

Установка

Простые трансформаторы тока, работающие на шинах, устанавливаются очень просто, и не требуют инструмента или техники. Прибор ставится одним мастером при помощи крепежных зажимов. Стационарные требуют оборудования фундамента, монтажа несущих стоек. Каркас крепится сваркой. К этому каркасу монтируется аппаратура. Комплект оснащения зависит назначение устройства и его особенности.

Подключение

Чтобы облегчить процесс соединения проводов с устройством, изготовители маркируют комплектующие детали цифровым и буквенным обозначением. С помощью такой маркировки операторы, которые обслуживают устройство, могут легко сделать соединение элементов.

Способ подключения взаимосвязан с устройством, принципом работы и назначением прибора. Также оказывает влияние и схема обслуживаемой сети. Трехфазные линии с нейтралью предполагают установку прибора только на двух фазах. Эта особенность вызвана тем, что электрические сети на напряжение 6-35 киловольт не оснащены нулевым проводом.

Контроль

Это мероприятие состоит из разных операций: визуальный осмотр, дается оценка всей конструкции, проверяется маркировка, паспортные данные и т.д. Далее, осуществляется размагничивание трансформатора с помощью медленного повышения тока на первичной обмотке. Далее, величину тока уменьшают.

Затем готовят главные мероприятия по измерению параметров. Поверка основывается на оценке правильности полярности клемм катушек по нормам, также определяют погрешность с дальнейшей сверкой с паспортными данными.

Безопасность

Основные опасности при функционировании измерительных трансформаторов обусловлены качеством намотки катушек. Необходимо учитывать, что под витками действует основа из металла, которая в открытом виде создает опасность и угрозу для обслуживающего персонала.

Поэтому создается график обслуживания, по которому проводится периодическая проверка устройства. Персонал обязан следить за состоянием обмоток катушек. Перед проведением проверки трансформатор отключается и подключаются шунтирующие закоротки и заземление обмотки.

Похожие темы:

electrosam.ru

Трансформатор тока — принцип работы, устройство и назначение

Для моделирования процессов, протекающих в электрических установках, а также безопасного измерения требуется проведение преобразований одних электрических величин в другие, аналогичные, имеющие измененные пропорционально значения. Трансформаторы тока (ТТ) работают на основе электромагнитной индукции, закон которой действует в магнитном и электрическом поле. Он проводит преобразование вектора тока первичного значения с соблюдением пропорции в его пониженное значение с точной передачей угла и величины по модулю.

Трансформатор, в котором вторичное значение протекающего тока пропорционально первичной величине тока, имеющего сдвиг, равный нулю, когда он правильно включен, — это трансформатор тока. У ТТ первичная обмотка включается последовательно в цепь на токопровод, а вторичная обмотка имеет нагрузку в виде измерительных приборов для создания условия протекания электротока по ней, который по величине пропорционален величине тока в первичной обмотке.

Трансформаторы тока

Необходимо отметить, что в ТТ (высокого напряжения) первичная обмотка имеет изоляцию от вторичной обмотки, так как она одним концом заземляется, и потенциал во вторичной обмотке приравнивается к потенциалу земли.

Существует разделение токовых трансформаторов на измерительные и защитные, бывают случаи, когда эти функции в ТТ совмещаются. Трансформатор тока предназначен для передачи измеряемых величин измерительным приборам. Место установки ТТ такого вида на высокой стороне, когда нет возможности провести измерения величин непосредственно приборами измерения, когда высокий ток или напряжение. Приборы измерений (обмотки ваттметров, амперметр, счетчик учета, другие приборы) подключаются к вторичной обмотке ТТ. Назначение трансформатора тока заключается в следующем:

  • возможность преобразования любой величины переменного тока в значение, возможное для измерения приборами стандартного измерения величин;
  • безопасность персонала, проводящего измерения, от доступа к высокому напряжению.

Защитные трансформаторы тока назначение имеют для передачи информации измерений в приборы и устройства управления и защиты, они обеспечивают:

  • возможность преобразования любой величины переменного тока в значение для обеспечения работы релейной защиты;
  • безопасность персонала, который работает с релейной защитой, от доступа к высокому напряжению.

Как работает устройство?

Принцип работы трансформатора тока

Через первичную обмотку токового трансформатора с количеством витков w1 и сопротивлением z1 протекает ток трансформатора I1, этот процесс формирует магнитный поток Ф1, который улавливает сердечник трансформатора (магнитопровода), расположенный под 90 градусов к вектору тока I1. Такое положение сердечника не допускает потерь электроэнергии, когда происходит ее преобразование в магнитную энергию.

Когда поток Ф1 пересекает обмотку с витками w2, он наводит в ней ЭДС (Е2), которая воздействует на обмотку, и в ней возникает ток I2, который протекает по вторичной катушке с сопротивлением z2, и сопротивление подключенной нагрузки (z нагрузки). Во вторичной цепи происходит падение напряжения на зажимах U2.

В данной схеме принципа действия трансформатора тока показано, как находится коэффициент трансформации — это значение К1, которое задается при разработке устройства и тестируется на заводе. Класс точности определяется метрологической инстанцией и показывает реальные значения трансформации. На практике этот коэффициент определяют по номинальным параметрам, так, 1000/5 говорит о том, что при токе в 1000 ампер первичной обмотки вторичная обмотка будет иметь 5 ампер нагрузки.

Как классифицируются токовые трансформаторы?

Специалисты классифицируют токовые трансформаторы, предназначенные для защиты и измерений, по выраженным признакам:

  1. Размещение и установка, когда токовые трансформаторы могут монтироваться:
  • на открытой площадке — ГОСТ15150-69, категория размещения №1;
  • закрытое помещение — ГОСТ15150-69;
  • встраиваемые токовые трансформаторы в электрическое оборудование — ГОСТ 15150-69;
  • токовые трансформаторы для установки в специальном оборудовании (шахты, корабли, электропоезда, другое оборудование).
  1. Метод установки: трансформаторы тока проходные, которые устанавливаются в стеновых проемах или других конструкциях, опорные ТТ устанавливаются на плоскости, встраиваемые токовые трансформаторы в щиты электрооборудования.
  2. Коэффициент трансформации. Может быть один или несколько, которые получаются изменением числа витков первичной и вторичной обмотки ТТ.
  3. Количество ступеней трансформации: каскадные, одноступенчатые.
  4. Количество витков в первичной обмотке: многовитковые токовые трансформаторы, одновитковые ТТ.
Схема токового трансформатора

Одновитковые трансформаторы тока имеют стержневую первичную обмотку (3 трансформатор), а также могут иметь U-образную форму (4 трансформатор).

Назначение и применение

Промышленное производство выпускает токовые трансформаторы для решения задач учета электроэнергии, с целью защиты силовых трансформаторов и линии передачи электрической энергии.

Выносные токовые трансформаторы На оборудовании применяются конструкции встроенных токовых трансформаторов, для размещения непосредственно на силовом объекте, устройства со стороны 110 кВ

Высоковольтные токовые трансформаторы вместо изолятора применяют специальное трансформаторное масло.

Конструкция трансформатора тока марки ТФЗМ для работы на линии 35 кВ

Трансформаторы тока на линии до 10 кВ в качестве изоляционного материала между обмотками применяют твердые изоляционные материалы.

ТПЛ-10

Возможные неисправности

Наиболее частые неисправности в токовых трансформаторах, по мнению специалистов, следующие:

  • нарушение изоляции в обмотках, когда изделие работает под нагрузкой из-за тепловой перегрузки, механического удара, из-за плохого монтажа;
  • межвитковое замыкание в ТТ, происходит утечка тока, возможность КЗ (короткого замыкания).

Для улучшения эффективной работы рекомендуется делать поверку работы ТТ при помощи тепловизора, когда проявляются некачественные контакты и достигается понижение температурного режима работы оборудования. Проверку ТТ на КЗ должны периодически делать работники лабораторий. Эти действия включают:

  • снятие характеристик по току и напряжению;
  • нагрузка ТТ посторонним источником;
  • снятие параметров в действующей схеме;
  • проведение аналитических исследований по выявлению коэффициента трансформации.
Об обмотке

Требования к конструкции

Когда проектируются токовые трансформаторы, должны соблюдаться следующие требования:

  1. Выводы первичной обмотки делаются по ГОСТ 10434-82, для ТТ наружного исполнения учитывается ГОСТ 21242-75. Выводы вторичной обмотки делаются также по ГОСТ 10434-82, они могут располагаться на конструкции изделия, в который встраивается токовый трансформатор. Для наружного исполнения выводы контактов вторичной обмотки должны закрываться специальной крышкой, в коробке, которая не пропускает влагу.

Маркировка выводов:

  1. Когда в качестве изолятора используется трансформаторное масло, этот вид ТТ должен иметь компенсатор (расширитель), а также указатель количества масла по уровню. Масло расширитель должен иметь достаточный объем для обеспечения работы ТТ во всех режимах и нужного для этого количества масла.
  2. В токовых трансформаторах с указателем количества масла его размер должен быть достаточным для определения объема масла в расширителе с расстояния, безопасного для здоровья персонала.
  3. Если токовый трансформатор весит больше 50 кг, он обязательно оборудуется креплением для подъема. Существуют марки ТТ, в которых нельзя сделать крепления, для этого в документации указывается место для его охвата.
  4. В ТТ, имеющем на вторичной обмотке напряжение больше 350 вольт, должна быть предостерегающая надпись: «Опасно! Высокое напряжение!».
  5. Если токовый трансформатор не встроенной конструкции, он оборудуется контактной площадкой для заземления. Возле зажима заземления устанавливается специальный знак ГОСТ 21130-75.

Как выбрать токовый трансформатор для прибора учета электроэнергии

Для выбора нужного вам ТТ необходимо руководствоваться следующей информацией:

  • знать параметры сети, номинальное напряжение;
  • какой будет ток в первичной и вторичной обмотке ТТ;
  • какой у токового трансформатора коэффициент;
  • класс точности изделия;
  • конструкция токового трансформатора.

Когда определяются параметры напряжения, надо принимать максимально возможное значение напряжения. Для счетчика 0,4 кВ рекомендуется токовый трансформатор 0,66 кВ.

Как подключить счетчик через токовый трансформатор

Величина тока на вторичной обмотке — около 5 ампер, а ток первичной обмотки можно рассчитать по коэффициенту трансформации. Необходимо учитывать всю нагрузку, выбирая коэффициент трансформации, допускается подключение ТТ с завышенным коэффициентом трансформации.

Выбор ТТ по классу точности зависит от цели, в которых используется изделие, коммерческий учет рекомендует класс точности не ниже 0,5S, а для условий технического учета достаточная точность — 1S.

Вывод

Схема замещения ТТ позволяет определить его точность, кроме того, используя схему замещения токового трансформатора можно описать все процессы, протекающие в нем, можно построить векторную диаграмму, но необходимо учесть разницу на намагничивание сердечника вторичной обмотки. Чем больше отклонения в замещенной схеме, тем меньше класс точности ТТ.

Похожие статьи:

domelectrik.ru

0 comments on “Устройство трансформаторов тока – Трансформатор тока — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *