Увеличение силы тока в цепи – Как повысить силу тока, не изменяя напряжения

Как повысить силу тока, не изменяя напряжения

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

СОДЕРЖАНИЕ (нажмите на кнопку справа):

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

3 / 5 ( 2 голосов )

elektrikexpert.ru

как увеличить силу тока? если увеличить напряжение то сила тока

Большинство электрических процессов протекают в проводах в соответствии с законами Ома. В соответствии с проверенными временем формулами подтверждено, что сила тока в проводниках напрямую зависит от напряжения в сети, а также нагрузки, создаваемой сопротивлением.

Точного и однозначного ответа на вопрос, как увеличить силу тока, дать нельзя. Фактически величина эта зависит от целого ряда параметров. Но чтобы более глубоко разобраться с проблематикой вопроса, предлагаем немного вспомнить основы электротехники.

Сила тока как один из параметров электрической цепи

Прежде чем попытаться разобраться и узнать, как увеличить силу тока в цепи, а также понять, можно ли это сделать практически, необходимо понять, что из себя представляет электрический ток. Фактически – это направленное, упорядоченное движение в одном направлении заряженных частиц, находящихся внутри проводника. Обязательным условием для обеспечения такого движения является наличие замкнутого контура.

Внутри проводника движутся положительно заряженные электроны и свободные ионы. Важно понимать, что такое движение не обходится без сопутствующих физических явлений и процессов, а именно – нагревание проводника, а также химическое воздействие на материал.

От каких других параметров зависит сила тока в проводнике в конкретный момент времени?

I в цепи повысить можно (теоретически) меняя целый ряд других параметров, таких как:

  • Сопротивление. Зависимость между параметрами здесь обратно пропорциональная. Уменьшение R (измеряется в Ом) приводит к автоматическому увеличению тока.
  • Напряжение. Если рассматривать ситуацию с точки зрения практического действия закона Ома, т получается, если увеличить напряжение, то сила тока тоже возрастет.

Это основные параметры. Кроме них, на исследуемый параметр влияние оказывают такие факторы, как напряженность магнитного поля и число витков катушки (прямая зависимость). Непосредственное воздействие на величину тока также происходит при изменении мощности передаваемого на ротор усилия.

Необходимо учесть и диаметр проводников, используемых в собранной замкнутой электрической цепи. При недостаточном размере повышается риск перегрева проводника и, как следствие, перегорания. Также учитываются и основные параметры генератора (величина рабочего тока, диапазон напряжения и частоты, а еще – скорость вращения ротора).

Повышение силы тока в цепи: несколько возможных вариантов действий

У различных категорий пользователей достаточно часто возникают такие ситуации, при которых необходимо внести определенные изменения в параметры действующей. Ранее собранной и апробированной сети. Увеличить силу постоянного тока, протекающего в замкнутом контуре той или иной цепи можно, есть даже несколько различных вариантов и способов практических действий. Но при этом важно понимать – сделать это безопасно удастся только в том случае, если обеспечить принятие мер по защите электроприборов. Для этого потребуется использовать ряд специальных устройств.

1 способ

Самое простое решение задачи – увеличение подаваемого на вход в цепь напряжения. Так, например, если в цепи с сопротивлением в 20 Ом установлено напряжение 3 вольта, то сила тока здесь по закону Ома, составляет 0,15 А. Если ввести в цепь дополнительное устройство, еще один источник питания с тем же U = 3В, то и сила тока возрастет вдвое и составит 3А.

2 способ

Уменьшение сопротивления. Если в цепи снизить нагрузку вдвое, с 2 Ом до 1 Ом, то получим следующий результат: 2 В: 1 Ом = 2 А. Таким образом, удвоение происходит автоматически на аналогичную величину (если в цепи нет других источников, потребителей и устройств, способных оказывать воздействие на эффективность функционирования цепи и ее параметры). Естественно, если увеличить сопротивление, то сила тока уменьшится.

3 способ

Меняем параметры проводников. Для этого потребуется собрать цепь, в которую войдут: источник, потребитель и провода. Параметры проводников также играют важную роль в формировании силы тока в цепи. Сначала необходимо понять, из каких материалов сделаны исходные проводники, по специальным таблицам, зная размер сечения, можно установить точные показатели. Увеличение тока можно обеспечить путем снижения сопротивления, а для этого можно подобрать проводники, изготовленные их других металлов.

Также можно регулировать параметры, укорачивая длину имеющихся проводников. Если увеличить вдвое силу тока не получается, то кроме изменения параметров проводников потребуется принять другие решения, из числа тех, что были описаны выше.

Также можно увеличить поперечное сечение проводника, что приведет к параллельному росту тока.

Интересный вариант действий по увеличению силы постоянного тока при помощи магнита, для чего необходимо изменить, увеличить показатели магнитной индукции поля, внутри которого располагается этот проводник.

Подведем итог

В быту достаточно часто появляется необходимость увеличения силы тока. Важно понимать, что предварительные вычисления далеко не всегда на практике приводят точно к тем результатам, которые ожидались. Существует множество сторонних факторов, влияющих на конечный результат (нагрев проводника, его длина и сечение, материал изготовления и т.п.). Поэтому, внося коррективы в основные электротехнические параметры сети, проводите замеры с помощью мультиметра.

podvi.ru

Как увеличить силу тока 🚩 в силу того что 🚩 Естественные науки

Согласно закону Ома для электрических цепей постоянного тока:U=IR, где:U — величина подаваемого на электрическую цепь напряжения,
R — полное сопротивление электрической цепи,
I — величина протекающего по электрической цепи тока,для определения силы тока нужно разделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того чтобы увеличить силу тока, можно увеличить подаваемое на вход электрической цепи напряжение или уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально повышению напряжения. Например, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то протекающий по ней ток составлял:
1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В общее напряжение станет 3 В, а протекающий по электрической цепи ток повысится до 0,3 А.
Подключение осуществляется «последовательно , то есть плюс одного элемента питания присоединяется к минусу другого. Таким образом, соединив последовательно достаточное количество источников питания, можно получить необходимое напряжение и обеспечить протекание тока нужной силы. Объединенные в одну цепь несколько источников напряжения называются батареей элементов. В быту такие конструкции обычно называют «батарейками (даже если источник питания состоит всего из одного элемента).Однако на практике повышение силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, происходящим при увеличении проходящего по ним тока. При этом, как правило, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Кроме того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию или даже возгоранию. Особенно внимательным нужно быть при эксплуатации электробытовых приборов, которые могут работать лишь при фиксированном напряжении.

www.kakprosto.ru

Как увеличить силу тока | Сделай все сам

Изредка нужно увеличить силу происходящего в электрической цепи тока . В данной статье будут рассмотрены основные методы увеличения силы тока без применения трудных устройств.

Вам понадобится

Инструкция

1. Согласно закону Ома для электрических цепей непрерывного тока:U=IR, где:U – величина подаваемого на электрическую цепь напряжения,R – полное сопротивление электрической цепи,I – величина происходящего по электрической цепи тока,для определения силы тока надобно поделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того дабы увеличить силу тока, дозволено увеличить подаваемое на вход электрической цепи напряжение либо уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально возрастанию напряжения. Скажем, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то происходящий по ней ток составлял:1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В всеобщее напряжение станет 3 В, а происходящий по электрической цепи ток повысится до 0,3 А.Подключение осуществляется «ступенчато , то есть плюс одного элемента питания присоединяется к минусу иного. Таким образом, объединив ступенчато довольное число источников питания, дозволено получить нужное напряжение и обеспечить протекание тока требуемой силы. Объединенные в одну цепь несколько источников напряжения именуются батареей элементов. В быту такие конструкции обыкновенно называют «батарейками (даже если источник питания состоит каждого из одного элемента).Впрочем на практике возрастание силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, протекающим при увеличении проходящего по ним тока. При этом, как водится, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Помимо того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию либо даже возгоранию. Исключительно внимательным надобно быть при эксплуатации электробытовых приборов, которые могут трудиться лишь при фиксированном напряжении.

2. Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Скажем, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если после этого сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то происходящий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки фактически равно нулю. Безмерного тока при этом, безусловно, не появляется, потому что в цепи имеется внутреннее сопротивление источника питания. Больше существенного уменьшения сопротивления дозволено добиться, если крепко охладить проводник. На этом результате сверхпроводимости основано приобретение токов большой силы.

3. Для возрастания силы переменного тока применяются всевозможные электронные приборы, в основном – трансформаторы тока, применяемые, скажем, в сварочных агрегатах. Сила переменного тока возрастает также при понижении частоты (потому что в итоге поверхностного результата понижается энергичное сопротивление цепи).Если в цепи переменного тока присутствуют энергичные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

По закону Ома, возрастание тока в цепи допустимо при выполнении правда бы одного из 2-х условий: увеличение напряжения в цепи либо уменьшение ее сопротивления. В первом случае поменяйте источник тока на иной, с большей электродвижущей силой; во втором – подберите проводники с меньшим сопротивлением.

Вам понадобится

  • обычный тестер и таблицы для определения удельных сопротивлений веществ.

Инструкция

1. Согласно закону Ома, на участке цепи сила тока зависит от 2-х величин. Она прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. Всеобщая связанность описывается уравнением, которое выводится непринужденно из закона Ома I=U*S/(?*l).

2. Соберите электрическую цепь, которая содержит источник тока , провода и покупатель электроэнергии. В качестве источника тока используйте выпрямитель с вероятностью регулировки ЭДС. Подключите цепь к такому источнику, заранее установив в нее тестер ступенчато покупателю, настроенный на измерение силы тока . Увеличивая ЭДС источника тока , снимайте показания с тестера, по которым дозволено сделать итог, что при увеличении напряжения на участке цепи сила тока в нем пропорционально увеличится.

3. 2-й метод увеличения силы тока – уменьшение сопротивления на участке цепи. Для этого по особой таблице определите удельное сопротивление данного участка. Дабы сделать это, заранее узнайте, из какого материала сделаны проводники. Для того дабы увеличить силу тока , установите проводники с меньшим удельным сопротивлением. Чем поменьше эта величина, тем огромнее сила тока на данном участке.

4. Если нет других проводников, измените размеры тех, которые имеются в наличии. Увеличьте площади их поперечного сечения, параллельно им установите такие же проводники. Если ток течет по одной жиле провода, параллельно установите несколько жил. Во сколько раз увеличится площадь сечения провода, во столько раз усилится ток. Если есть вероятность, укоротите используемые провода. Во сколько раз уменьшится длина проводников, во столько раз увеличиться сила тока .

5. Методы возрастания силы тока дозволено комбинировать. Скажем, если увеличить площадь поперечного сечения в 2 раза, уменьшить длину проводников в 1,5 раза, а ЭДС источника тока увеличить в 3 раза, получите возрастание силы тока вы 9 раз.

Слежения показывают, что если проводник с током разместить в магнитное поле, то он начнет двигаться. Это значит, что на него действует некая сила. Это и есть сила Ампера. От того что для ее появления нужно присутствие проводника, магнитного поля и электрического тока, метаморфоза параметров этих величин и дозволит увеличить силу Ампера.

Вам понадобится

  • – проводник;
  • – источник тока;
  • – магнит (непрерывный либо электро).

Инструкция

1. На проводник с током в магнитном поле действует сила, равная произведению магнитной индукции магнитного поля B, силы тока, происходящего по проводнику I, его длины l и синуса угла ? между вектором магнитной индукции поля и направлением тока в проводнике F=B?I?l?sin(?).

2. Если угол между линиями магнитной индукции и направлением силы тока в проводнике острый либо тупой, сориентируйте проводник либо поле таким образом, дабы данный угол стал прямым, то есть между вектором магнитной индукции и током должен быть прямой угол, равный 90?. Тогда sin(?)=1, а это наивысшее значение для этой функции.

3. Увеличьте силу Ампера , действующую на проводник, увеличив значение магнитной индукции поля, в котором он размещен. Для этого возьмите больше сильный магнит. Используйте электромагнит, тот, что разрешает получить магнитное поле разной интенсивности. Увеличьте ток в его обмотке, и индуктивность магнитного поля начнет возрастать. Сила Ампера увеличится пропорционально магнитной индукции магнитного поля, скажем, увеличив ее 2 раза, получите увеличение силы тоже в 2 раза.

4. Сила Ампера зависит от силы тока в проводнике. Присоедините проводник к источнику тока с изменяемым ЭДС. Увеличьте силу тока в проводнике за счет увеличения напряжения на источнике тока, либо замените проводник на иной, с такими же геометрическими размерами, но с меньшим удельным сопротивлением. Скажем, замените алюминиевый проводник на медный. При этом у него должна быть такая же площадь поперечного сечения и длина. Увеличение силы Ампера будет прямо пропорционально увеличению силе тока в проводнике.

5. Для увеличения значения силы Ампера увеличьте длину проводника, тот, что находится в магнитном поле. При этом неукоснительно рассматривайте, что при этом пропорционально уменьшится сила тока, следственно примитивное удлинение результата не даст, единовременно доведите значение силы тока в проводнике до начального, увеличивая напряжение на источнике.

Видео по теме

Видео по теме

jprosto.ru

Как повысить силу тока не изменяя напряжения: как понизить вольтаж?

Как повысить силу тока в генераторе

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Это интересно: Режимы работы электродвигателей

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 ( Ом * мм2 / м ).

Как повысить силу тока в цепи

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств. . Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

5 Ответы


0 голосов

Меняйте проводку, алюминий на медь, квадратов этак на 8 с учетом и другой нагрузки (чайник, стиральная машина и т. д. ) , не меньше и будет вам счастье. Скруток не делать, соединения через колодки или пайка, или сварка ( лучше всего) . Стабилизатор не поможет.

4 годов назад
от
ац


0 голосов

Хрен что понял. Что за внешний блок кондера (на улице который висит? ) . И что это за чудо стабилизатор на 10кВ.
Из физики сила тока это мощность 4кВт деленная на напряжение (в сети 220 вольт) следовательно 4000:220=18, 2 Ампера Округлим, итого 18 ампер сила тока вашего кондера. Хотите увеличить силу тока покупайте боле мощьный кондей, либо понижайте напряжение питающей сети : )
Скажите внешний блок кондея сам отключается, потом сам включается или как?
напряжение В-вольт
мощьность Вт- ватт
сила тока А- ампер
Возможно стабилизатор на 220 вольт до нагрузки 10кВатт.
Может у вас кондей какой нибудь «левой» фирмы, надо было отзывы на приобретаемый товар перед покупкой в интернете почитать. Вызывайте представителя фирмы, пусть он на месте посмотрит, определит в чем проблема, устранит или даст рекомендации по устранению. Вдруг у вас что то с питающей сетью, хотя через стабилизатор вы пробывали. В любом случае пусть посмотрит специалист. И в интернете поищите может найдете, что.

4 годов назад
от
Ирина Ходакова


0 голосов

Пусть они возвращают деньги. Грубо говоря, Вы заказали одно, а работает по-другому. Если бы это зависело от сети, инженеры фирмы обязаны были бы вас предупредить перед установкой. Да и действительно, это бред. Сейчас даже в деревнях, где свет есть, проблем с отдачей таких токов не бывает.

4 годов назад
от
Любовь Свиридова


0 голосов

Требуйте полного возврата денег и демонтажа оборудования. Закон на вашей стороне. Закажите новый кондер за эти деньги в другой нормальной организации, и все будет работать! ) Про амперы — это бред! Сила тока в сети ограничивается только предохранителями после вашего счетчика.

4 годов назад
от
Сания Габзалилова


0 голосов

Вам нужно проверить теряет ли сеть напряжение при подключении кондиционера (Безо всякого стабилизатора и другой приблуды) . Измерьте напряжение в сети при подключенном кондиционере, когда он выведен на максимальную мощность или близкую к ней. Мерять надо как можно ближе к розетке, куда включен кондиционер. Напряжение не должно упасть меньше 200В. Если упадет, значит у сети не хватает мощности (как вы говорите «нехватает апмеров») . Нехватка мощности может быть обусловлена плохим качеством проводки. Иначе дело не в сети.
Да, сразу скажу, что ни стабилизатор ни трансформатор не являеьтся волшебной палочкой, если сеть проседает даже без стабилизатора, то при подключении оного она просядет еще больше.
Если падает, значит у вас просто хреновая проводка, вот и весь секрет. Совет? Если вся проводка старая, есть смысл е полностью заменить (если она даже 4кВт не держит то это очень плохо) . Можно протянуть провод достаточного сечения (2, 5 — 4кв мм по меди) непосредственно от счетчика (щитка) . Можете проверить все скрутки и соединения на плотность затяжки. Проверьте автоматы (дешевые подгорают) . После всех работ нужно провести контроль напряжения снова.
Падение напряжения может быть также обусловлено хреновым контактом на вводе (до щитка/счетчика) . Тут надо тоже мерять под нагрузкой и делать выводы.
Вобще говоря, если проводке больше 20 лет то лучше всего е менять, иначе проблемы вас не отпустят. И если вам самим это все сложно делать, пригласите толкового электрика, чтоб все осмотрел и дал советы.
Да, в цепи не должно стоять никаких китайских удлинителей с дохленькими проводами и подобной лабудой.

4 годов назад
от
Сергей Иванов

Это интересно: Как сделать цветомузыку на диодах

Как повысить силу тока в зарядном устройстве

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству

Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал – это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

>Уголь, графит применяются в электрических щетках в электродвигателях.
Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Как повысить силу тока в блоке питания

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

U=Ф1-Ф2

Если выразить через работу, тогда:

U=A/q,

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Pпотерь = (Uвх-Uвых)*I

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

1. Автотрансформатор;

2. Трансформатор.

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Uвт=Uперв*Kтр

Kтр=N1/N2

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

  • Зарядное устройство вашего смартфона;

  • Блок питания ноутбука;

  • Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Алексей Бартош

kabel-house.ru

❶ Как повысить силу тока 🚩 Естественные науки

Автор КакПросто!

По закону Ома, повышение тока в цепи возможно при выполнении хотя бы одного из двух условий: увеличение напряжения в цепи или уменьшение ее сопротивления. В первом случае поменяйте источник тока на другой, с большей электродвижущей силой; во втором – подберите проводники с меньшим сопротивлением.

Статьи по теме:

Вам понадобится

  • обычный тестер и таблицы для определения удельных сопротивлений веществ.

Инструкция

Согласно закону Ома, на участке цепи сила тока зависит от двух величин. Она прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. Общая зависимость описывается уравнением, которое выводится непосредственно из закона Ома I=U*S/(ρ*l). Соберите электрическую цепь, которая содержит источник тока, провода и потребитель электроэнергии. В качестве источника тока используйте выпрямитель с возможностью регулировки ЭДС. Подключите цепь к такому источнику, предварительно установив в нее тестер последовательно потребителю, настроенный на измерение силы тока. Увеличивая ЭДС источника тока, снимайте показания с тестера, по которым можно сделать вывод, что при увеличении напряжения на участке цепи сила тока в нем пропорционально увеличится. Второй способ увеличения силы тока — уменьшение сопротивления на участке цепи. Для этого по специальной таблице определите удельное сопротивление данного участка. Чтобы сделать это, предварительно узнайте, из какого материала сделаны проводники. Для того чтобы увеличить силу тока, установите проводники с меньшим удельным сопротивлением. Чем меньше эта величина, тем больше сила тока на данном участке.

Если нет других проводников, измените размеры тех, которые имеются в наличии. Увеличьте площади их поперечного сечения, параллельно им установите такие же проводники. Если ток течет по одной жиле провода, параллельно установите несколько жил. Во сколько раз увеличится площадь сечения провода, во столько раз возрастет ток. Если есть возможность, укоротите используемые провода. Во сколько раз уменьшится длина проводников, во столько раз увеличиться сила тока.

Способы повышения силы тока можно комбинировать. Например, если увеличить площадь поперечного сечения в 2 раза, уменьшить длину проводников в 1,5 раза, а ЭДС источника тока увеличить в 3 раза, получите повышение силы тока вы 9 раз.

Совет полезен?

Статьи по теме:

www.kakprosto.ru

Увеличение — сила — ток

Увеличение — сила — ток

Cтраница 1

Увеличение силы тока i сопровождается некоторым падением напряжения в межэлектродном промежутке /; тем не менее, общая мощность дуги W возрастает. При этом, однако, происходит увеличение объема v дугового облака ( по данным [434, 167], для чистой угольной дуги при / 4 мм v О Ш1 3, а в присутствии натрия v i / 2), так что плотность тока /, а следовательно, и мощность, отнесенная к единице объема, возрастают незначительно.  [1]

Увеличение силы тока в первичной цепи приводит к возрастанию сопротивления реактора и к увеличению на нем падения напряжения, что в свою очередь обусловливает уменьшение напряжения Ui на первичной обмотке повышающего трансформатора и уменьшение силы тока в первичной цепи.  [2]

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому полю, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током.  [3]

Увеличение силы тока на температуру плазмы оказывает небольшое влияние, так как при этом увеличиваются и мощность разряда, и общий объем плазмы а за счет расширения токопроводящего канала. Одновременно возрастает температура электродов, а следовательно, и скорость испа — 5 рения пробы.  [5]

Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой.  [6]

Увеличение силы тока до 10 а уменьшало величину износа примерно в 3 раза. Аналогичный эффект достигается и при обработке металла волочением, протяжкой и другими процессами: пропускание тока через проволоку, смазанную маслом, содержащим органические фосфиты, облегчает процесс ее волочения.  [7]

Увеличение силы тока приводит к резкому возрастанию чувствительности, поскольку кроме того, что 5К — / 2 с увеличением / возрастает величина Tf, что в свою очередь ведет к увеличению R. Однако чрезмерное увеличение силы тока недопустимо, поскольку, начиная с определенной температуры нити, возрастают тепловые шумы, резко ухудшающие стабильность нулевой линии.  [8]

Увеличение силы тока приводит к уменьшению коэффициента провара, а рост напряжения, наоборот, к его увеличению. Повышение силы тока на каждые 100 А увеличивает глубину проплавления примерно на 1 мм, повышение напряжения на каждые 5 В вызывает уменьшение глубины проплавления примерно на эту же величину, но приводит к увеличению ширины шва.  [9]

Увеличение силы тока сверх указанных в табл. 288 величин ведет к перегреву электродов, появлению на них трещин и быстрому износу.  [10]

Увеличение силы тока сверх величин, указанных в табл. 81, ведет к перегреву электродов п появлению на них трещин.  [11]

Увеличение силы тока и напряжения на дуге повышает тепловую мощность, что позволяет увеличить скорость сварки. Однако увеличение скорости сварки за счет роста электрической мощности возможно только до определенного предела. Чрезмерное увеличение сварочного тока приводит к образованию дефектов на наружной поверхности трубы, а увеличение напряжения вызывает нарушение стабильности процесса горения дуги. При длине дуги R мм процесс горения ее очень неустойчив.  [12]

Увеличение силы тока при сварке или больший номер наконечника горелки увеличивают размеры зоны влияния. Увеличение скорости сварки, наоборот, уменьшает размеры зоны влияния. При автоматической сварке, которая ведется при большой силе тока и значительной скорости, температурный градиент будет очень большим, а это делает зону термического влияния чрезвычайно малой.  [13]

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому полю, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

0 comments on “Увеличение силы тока в цепи – Как повысить силу тока, не изменяя напряжения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *