Увеличение силы тока в цепи: Как увеличить силу тока

Как увеличить силу тока

Иногда необходимо увеличить протекающего в электрической цепи тока. В данной статье будут рассмотрены основные способы увеличения силы тока без использования сложных устройств.Вам понадобится

Согласно закону Ома для электрических цепей постоянного тока:U=IR, где:U — величина подаваемого на электрическую цепь напряжения,
R — полное сопротивление электрической цепи,
I — величина протекающего по электрической цепи тока,для определения силы тока нужно разделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того чтобы увеличить силу тока, можно увеличить подаваемое на вход электрической цепи напряжение или уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально повышению напряжения. Например, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то протекающий по ней ток составлял:
1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В общее напряжение станет 3 В, а протекающий по электрической цепи ток повысится до 0,3 А.
Подключение осуществляется «последовательно , то есть плюс одного элемента питания присоединяется к минусу другого. Таким образом, соединив последовательно достаточное количество источников питания, можно получить необходимое напряжение и обеспечить протекание тока нужной силы. Объединенные в одну цепь несколько источников напряжения называются батареей элементов. В быту такие конструкции обычно называют «батарейками(даже если источник питания состоит всего из одного элемента).Однако на практике повышение силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, происходящим при увеличении проходящего по ним тока. При этом, как правило, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Кроме того, увеличение нагрузки на электрическую цепь может привести к ее «перегораниюили даже возгоранию. Особенно внимательным нужно быть при эксплуатации электробытовых приборов, которые могут работать лишь при фиксированном напряжении.

Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Например, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если затем сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то протекающий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки практически равно нулю. Бесконечного тока при этом, конечно, не возникает, так как в цепи имеется внутреннее сопротивление источника питания. Более значительного уменьшения сопротивления можно добиться, если сильно охладить проводник. На этом эффекте сверхпроводимости основано получение токов огромной силы.

Для повышения силы переменного тока используются всевозможные электронные приборы, в основном — трансформаторы тока, применяемые, например, в сварочных аппаратах. Сила переменного тока повышается также при понижении частоты (так как вследствие поверхностного эффекта понижается активное сопротивление цепи).Если в цепи переменного тока присутствуют активные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

Как повысить силу тока не изменяя напряжения: как понизить вольтаж?

Как повысить силу тока в генераторе

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Это интересно: Режимы работы электродвигателей

Сопротивление проводников. Удельное сопротивление

Закон Ома является самым главным в электротехнике. Именно поэтому электрики говорят: «- Кто не знает Закон Ома, пусть сидит дома». Согласно этому закону ток прямо пропорционален напряжению и обратно пропорционален сопротивлению ( I = U / R ), где R является коэффициентом, которое связывает напряжение и силу тока. Единица измерения напряжения – Вольт, сопротивления – Ом, силы тока – Ампер.
Для того, чтобы показать, как работает Закон Ома, разберем простую электрическую цепь. Цепью является резистор, он же – нагрузка. Для регистрации на нем напряжения используется вольтметр. Для тока нагрузки – амперметр. При замыкании ключа ток идет через нагрузку. Смотрим, насколько соблюдается Закон Ома. Ток в цепи равен: напряжение цепи 2 Вольта и сопротивление цепи 2 Ома ( I = 2 В / 2 Ом =1 А). Амперметр столько и показывает. Резистор является нагрузкой, сопротивлением 2 Ома. Когда замыкаем ключ S1, ток течет через нагрузку. С помощью амперметра измеряем ток цепи. С помощью вольтметра – напряжение на зажимах нагрузки. Ток в цепи равен: 2 Вольта / 2 Ом = 1 А. Как видно это соблюдается.

Теперь разберемся, что нужно сделать, чтобы поднять силу тока в цепи. Для начала увеличиваем напряжение. Сделаем батарею не 2 В, а 12 В. Вольтметр будет показывать 12 В. Что будет показывать амперметр? 12 В/ 2 Ом = 6 А. То есть, повысив напряжение на нагрузке в 6 раз, получили повышение силы тока в 6 раз.

Рассмотрим еще один способ, как поднять ток в цепи. Можно уменьшить сопротивление – вместо нагрузки 2 Ом, возьмем 1 Ом. Что получаем: 2 Вольта / 1 Ом = 2 А. То есть, уменьшив сопротивление нагрузки в 2 раза, увеличили ток в 2 раза.
Для того, чтобы легко запомнить формулу Закона Ома придумали треугольник Ома:
Как можно по этому треугольнику определять ток? I = U / R. Все выглядит достаточно наглядно. С помощью треугольника также можно написать производные от Закона Ома формулы: R = U / I; U = I * R. Главное запомнить, что напряжение находится в вершине треугольника.

В 18 веке, когда был открыт закон, атомная физика находилась в зачаточном состоянии. Поэтому Георг Ом считал, что проводник представляет собой что-то, похожее на трубу, в которой течет жидкость. Только жидкость в виде электротока.
При этом он обнаружил закономерность, что сопротивление проводника становится значительнее при увеличении его длины и меньше при увеличении диаметра. Исходя из этого, Георг Ом вывел формулу: R = p *l / S, где p – это некоторый коэффициент, умноженный на длину проводника и деленный на площадь сечения. Этот коэффициент был назван удельным сопротивлением, характеризующим способность создавать препятствие протеканию эл.тока, и зависит из какого материала изготовлен проводник. Причем, чем больше удельное сопротивление, тем больше сопротивление проводника. Чтобы увеличить сопротивление необходимо увеличить длину проводника, либо уменьшить его диаметр, либо выбрать материал с большим значением данного параметра. В частности, для меди удельное сопротивление составляет 0,017 ( Ом * мм2 / м ).

Как повысить силу тока в цепи

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

. Рассмотрим, как повысить силу тока с помощью простых приборов

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

Вариант 1.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Также читают — как действует электрический ток на организм человека.

Вариант 2.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

5 Ответы


0 голосов

Меняйте проводку, алюминий на медь, квадратов этак на 8 с учетом и другой нагрузки (чайник, стиральная машина и т. д. ) , не меньше и будет вам счастье. Скруток не делать, соединения через колодки или пайка, или сварка ( лучше всего) . Стабилизатор не поможет.

4 годов назад
от
ац


0 голосов

Хрен что понял. Что за внешний блок кондера (на улице который висит? ) . И что это за чудо стабилизатор на 10кВ.
Из физики сила тока это мощность 4кВт деленная на напряжение (в сети 220 вольт) следовательно 4000:220=18, 2 Ампера Округлим, итого 18 ампер сила тока вашего кондера. Хотите увеличить силу тока покупайте боле мощьный кондей, либо понижайте напряжение питающей сети : )
Скажите внешний блок кондея сам отключается, потом сам включается или как?
напряжение В-вольт
мощьность Вт- ватт
сила тока А- ампер
Возможно стабилизатор на 220 вольт до нагрузки 10кВатт.
Может у вас кондей какой нибудь «левой» фирмы, надо было отзывы на приобретаемый товар перед покупкой в интернете почитать. Вызывайте представителя фирмы, пусть он на месте посмотрит, определит в чем проблема, устранит или даст рекомендации по устранению. Вдруг у вас что то с питающей сетью, хотя через стабилизатор вы пробывали. В любом случае пусть посмотрит специалист. И в интернете поищите может найдете, что.

4 годов назад
от
Ирина Ходакова


0 голосов

Пусть они возвращают деньги. Грубо говоря, Вы заказали одно, а работает по-другому. Если бы это зависело от сети, инженеры фирмы обязаны были бы вас предупредить перед установкой. Да и действительно, это бред. Сейчас даже в деревнях, где свет есть, проблем с отдачей таких токов не бывает.

4 годов назад
от
Любовь Свиридова


0 голосов

Требуйте полного возврата денег и демонтажа оборудования. Закон на вашей стороне. Закажите новый кондер за эти деньги в другой нормальной организации, и все будет работать! ) Про амперы — это бред! Сила тока в сети ограничивается только предохранителями после вашего счетчика.

4 годов назад
от
Сания Габзалилова


0 голосов

Вам нужно проверить теряет ли сеть напряжение при подключении кондиционера (Безо всякого стабилизатора и другой приблуды) . Измерьте напряжение в сети при подключенном кондиционере, когда он выведен на максимальную мощность или близкую к ней. Мерять надо как можно ближе к розетке, куда включен кондиционер. Напряжение не должно упасть меньше 200В. Если упадет, значит у сети не хватает мощности (как вы говорите «нехватает апмеров») . Нехватка мощности может быть обусловлена плохим качеством проводки. Иначе дело не в сети.
Да, сразу скажу, что ни стабилизатор ни трансформатор не являеьтся волшебной палочкой, если сеть проседает даже без стабилизатора, то при подключении оного она просядет еще больше.
Если падает, значит у вас просто хреновая проводка, вот и весь секрет. Совет? Если вся проводка старая, есть смысл е полностью заменить (если она даже 4кВт не держит то это очень плохо) . Можно протянуть провод достаточного сечения (2, 5 — 4кв мм по меди) непосредственно от счетчика (щитка) . Можете проверить все скрутки и соединения на плотность затяжки. Проверьте автоматы (дешевые подгорают) . После всех работ нужно провести контроль напряжения снова.
Падение напряжения может быть также обусловлено хреновым контактом на вводе (до щитка/счетчика) . Тут надо тоже мерять под нагрузкой и делать выводы.
Вобще говоря, если проводке больше 20 лет то лучше всего е менять, иначе проблемы вас не отпустят. И если вам самим это все сложно делать, пригласите толкового электрика, чтоб все осмотрел и дал советы.
Да, в цепи не должно стоять никаких китайских удлинителей с дохленькими проводами и подобной лабудой.

4 годов назад
от
Сергей Иванов

Это интересно: Как сделать цветомузыку на диодах

Как повысить силу тока в зарядном устройстве

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству

Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Проводники

Рассмотрим, какие бывают проводники. На сегодняшний день самым распространенным является проводник из меди. Из-за низкого удельного сопротивления и большой устойчивости к окислению, при этом довольно низкой ломкости, этот проводник все больше и больше находит применение в электрике. Постепенно медный проводник вытесняет алюминиевый. Медь применяют при производстве провода (жил в кабелях) и при изготовлении электротехнических изделий.

Вторым по применению можно назвать алюминий. Он часто используется в старой проводке, на смену которой приходит медь. Также применяется при производстве проводов и изготовлении электротехнических изделий.
Следующий материал – это железо. Оно обладает удельным сопротивлением гораздо больше, чем медь и алюминий (в 6 раз больше, чем у меди и в 4 раза выше, чем у алюминия). Поэтому, при производстве проводов, как правило, не применяется. Зато применяется при изготовлении щитов, шин, которые благодаря большому сечению обладают низким сопротивлением. Также как крепежное изделие.

Золото в электрике не применяется, так как оно достаточно дорогое. Благодаря низкому значению удельного сопротивления и большой защиты от окисления применяется в космических технологиях.

Латунь в электрике не применяется.

Олово и свинец обычно применяются в сплаве в качестве припоя. Как проводники, для изготовления каких-либо приборов, не применяются.

Серебро чаще всего применяется в военной технике высокочастотных приборов. В электрике применяется редко.

Вольфрам применяется в лампах накаливания. Благодаря тому, что он не разрушается при высоких температурах, его используют в качестве нитей накаливания для ламп.

>Уголь, графит применяются в электрических щетках в электродвигателях.
Проводники применяются с целью пропускать через себя силу тока. При этом ток совершает полезную работу.

Как повысить силу тока в блоке питания

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Ситуация №1.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

Узнайте больше — как проверить транзистор мультиметром на исправность.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Ситуация №2.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Что такое напряжение, как понизить и повысить напряжение

Напряжение и сила тока — две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током — Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой «Ф», а напряжение буквой «U». Если выразить через разность потенциалов, напряжение равно:

U=Ф1-Ф2

Если выразить через работу, тогда:

U=A/q,

где A — работа, q — заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов – это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов — в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, мультиметра), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп — то на дисплее перед результатом измерения появится знак «–».

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения — тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В — это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону — резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток — выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω – угловая частота в рад/с, L-индуктивность, 2пи – необходимо для перевода угловой частоты в обычную, f – частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление — это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется «бестрансфоматорный блок питания с балластным (гасящим) конденсатором».

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны — нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например в платах Arduino и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток – низкий КПД. Чем больше разница между входным и выходным напряжением – тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Pпотерь = (Uвх-Uвых)*I

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

1. Плата на базе микросхемы XL6009

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь – нужно корректировать цепи обратной связи.

4. Плата на базе MT3608

Здесь всё подписано на плате – площадки для пайки входного – IN и выходного – OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

1. Автотрансформатор;

2. Трансформатор.

Автотрансформатор – это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы – лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор – это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Uвт=Uперв*Kтр

Kтр=N1/N2

Отдельный вид – это импульсные трансформаторы. Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

  • Зарядное устройство вашего смартфона;

  • Блок питания ноутбука;

  • Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход диодный мост из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства – простота схемы, гальваническая развязка и малые размеры.

Недостатки – большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Алексей Бартош

Увеличение — сила — ток

Увеличение — сила — ток

Cтраница 1

Увеличение силы тока i сопровождается некоторым падением напряжения в межэлектродном промежутке /; тем не менее, общая мощность дуги W возрастает. При этом, однако, происходит увеличение объема v дугового облака ( по данным [434, 167], для чистой угольной дуги при / 4 мм v О Ш1 3, а в присутствии натрия v i / 2), так что плотность тока /, а следовательно, и мощность, отнесенная к единице объема, возрастают незначительно.  [1]

Увеличение силы тока в первичной цепи приводит к возрастанию сопротивления реактора и к увеличению на нем падения напряжения, что в свою очередь обусловливает уменьшение напряжения Ui на первичной обмотке повышающего трансформатора и уменьшение силы тока в первичной цепи.  [2]

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому полю, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током.  [3]

Увеличение силы тока на температуру плазмы оказывает небольшое влияние, так как при этом увеличиваются и мощность разряда, и общий объем плазмы а за счет расширения токопроводящего канала. Одновременно возрастает температура электродов, а следовательно, и скорость испа — 5 рения пробы.  [5]

Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную ко вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой.  [6]

Увеличение силы тока до 10 а уменьшало величину износа примерно в 3 раза. Аналогичный эффект достигается и при обработке металла волочением, протяжкой и другими процессами: пропускание тока через проволоку, смазанную маслом, содержащим органические фосфиты, облегчает процесс ее волочения.  [7]

Увеличение силы тока приводит к резкому возрастанию чувствительности, поскольку кроме того, что 5К — / 2 с увеличением / возрастает величина Tf, что в свою очередь ведет к увеличению R. Однако чрезмерное увеличение силы тока недопустимо, поскольку, начиная с определенной температуры нити, возрастают тепловые шумы, резко ухудшающие стабильность нулевой линии.  [8]

Увеличение силы тока приводит к уменьшению коэффициента провара, а рост напряжения, наоборот, к его увеличению. Повышение силы тока на каждые 100 А увеличивает глубину проплавления примерно на 1 мм, повышение напряжения на каждые 5 В вызывает уменьшение глубины проплавления примерно на эту же величину, но приводит к увеличению ширины шва.  [9]

Увеличение силы тока сверх указанных в табл. 288 величин ведет к перегреву электродов, появлению на них трещин и быстрому износу.  [10]

Увеличение силы тока сверх величин, указанных в табл. 81, ведет к перегреву электродов п появлению на них трещин.  [11]

Увеличение силы тока и напряжения на дуге повышает тепловую мощность, что позволяет увеличить скорость сварки. Однако увеличение скорости сварки за счет роста электрической мощности возможно только до определенного предела. Чрезмерное увеличение сварочного тока приводит к образованию дефектов на наружной поверхности трубы, а увеличение напряжения вызывает нарушение стабильности процесса горения дуги. При длине дуги R мм процесс горения ее очень неустойчив.  [12]

Увеличение силы тока при сварке или больший номер наконечника горелки увеличивают размеры зоны влияния. Увеличение скорости сварки, наоборот, уменьшает размеры зоны влияния. При автоматической сварке, которая ведется при большой силе тока и значительной скорости, температурный градиент будет очень большим, а это делает зону термического влияния чрезвычайно малой.  [13]

Увеличение силы тока в проводнике вызывает соответствующее усиление его магнитного поля, которое, подобно электрическому полю, обладает энергией. Найденная нами собственная энергия тока в контуре есть не что иное, как энергия Wm магнитного поля этого контура с током.  [14]

Страницы:      1    2    3    4

Изменение силы тока в цепи. Реостаты — Электрический ток — ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ — ВСЕ УРОКИ ФИЗИКИ 9 класс — конспекты уроков — План урока — Конспект урока — Планы уроков — разработки уроков по физике

1-й семестр

 

ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ

 

2. Электрический ток

Урок 11/17

Тема. Изменение силы тока в цепи. Реостаты

 

Цель урока: ознакомить учащихся с устройством и использованием реостатов для регулировки силы тока в цепи.

Тип урока: комбинированный урок.

План урока

Контроль знаний

12 мин.

Самостоятельная работа № 5 «Электрическое сопротивление. Удельное сопротивление»

Демонстрации

5 мин.

1. Строение и принцип действия реостатов.

2. Различные виды реостатов: ползунковый реостат; магазин резисторов; штепсельный реостат.

3. Изменение силы тока с помощью реостатов

Изучение нового материала

20 мин.

1. Для чего нужно изменять силу тока в цепи?

2. Реостаты. Виды реостатов.

3. Правила пользования реостатами

Закрепление изученного материала

8 мин.

1. Контрольные вопросы.

2. Учимся решать задачи

 

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

1. Для чего нужно изменять силу тока в цепи?

Следовательно, электрический ток может выполнять различные действия: тепловую, магнитную, электрическую, световую. Интенсивность действия тока зависит от силы тока в потребителе. На практике очень часто приходится регулировать интенсивность действия тока, т. е. изменять силу тока, проходящего через потребитель. Например, изменяя громкость звука радиоприемника мы изменяем силу тока в динамике. Регулируя яркость свечения лампы, изменяем силу тока в ее спирали. Переключая скорость вращения барабана стиральной машины, изменяем силу тока в обмотке его двигателя.

Встает вопрос: как же можно изменять силу тока? Чтобы ответить на этот вопрос, обратимся к закону Ома:

Из этой формулы следует, что существуют два пути изменения силы тока: изменять напряжение на участке цепи или менять сопротивление этого участка.

Удобнее изменять сопротивление участка цепи. Каким образом? Сопротивление зависит от размеров проводника и материала, из которого изготовлен данный проводник. Поскольку сопротивление проводника можно вычислить по формуле , то наиболее удобно для изменения сопротивления проводника изменять его длину.

2. Реостаты. Виды реостатов

В современной технике широко используются компактные устройства, ограничивающие силу электрического тока. Наиболее распространены резисторы. Обычно резистор состоит из каркаса из жаропрочного диэлектрика, намотанного на каркас проволоки из металла с большим удельным сопротивлением и выводов для включения в круг.

Для регулирования силы тока в электрической цепи используют резисторы с переменным сопротивлением — реостаты (от греческого ρηεοσ — течение, поток; σοσ — неподвижный).

Ø Устройство с переменным сопротивлением, предназначенное для регулирования силы тока, называется реостатом.

Простейшим реостатом может служить провод со скользящим контактом (ползунком). Передвигая ползунок вдоль провода, можно увеличивать или уменьшать длину участка цепи, по которой протекает электрический ток и, соответственно, уменьшать или увеличивать силу тока.

 

 

На практике используют более компактные реостаты. Например, ползунковый реостат.

 

 

В этом реостаті стальная проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем окалины, что не проводит тока, поэтому витки ее изолированы друг от друга. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витка проволоки к ползункам, а через него в стержень, имеющий на конце зажим. С помощью этого зажима и зажима, соединенного с одним из концов обмотки и расположенной на корпусе реостата, реостат подсоединяют в цепь.

На рисунке изображен реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками.

 

 

Такой реостат используют для запуска и выключения электродвигателей.

3. Правила пользования реостатами

Заканчивая изложение нового материала, необходимо ознакомить учащихся с правилами работы с реостатами. Стоит обратить особое внимание на технику безопасности (недопустимо касаться руками рабочих частей реостата и тому подобное). Во время работы проволока реостата может нагреваться, поэтому с целью безопасности сверху его обычно накрывают кожухом.

 

Вопросы к учащимся в ходе изложения нового материала

· Для чего нужно изменять силу тока в цепи?

· Как можно изменять силу тока в цепи?

· Почему в реостатах используют проволоку с большим удельным сопротивлением?

· Для каких величин указывают на реостаті их допустимые значения?

· Как на схемах электрических цепей изображают реостат?

 

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Качественные вопросы

1) Почему обмотку реостата не делают из алюминиевого провода?

2) Необходимо вдвое увеличить силу тока в данном проводнике. Что для этого нужно сделать?

3) Что изменилось на участке цепи, если включенный последовательно с ним амперметр показывает увеличение силы тока?

2. Учимся решать задачи

1) Вычислите силу тока, проходящего по медному проводнику длиной 100 м, площадью поперечного сечения 0,5 мм2, если к концам провода приложено напряжение 6,8 В.

2) Какова площадь поперечного сечения вольфрамового проволоки, через которую идет ток 0,05 А при напряжении 5 В? Длина провода 4 м.

3) Нікеліновий провод длиной 4 м и площадью поперечного сечения 0,4 мм2 включен в круг аккумулятора. Сила тока в цепи 0,3 А. Определить напряжение на полюсах аккумулятора.

4) Нужно изготовить провод длиной 100 м и сопротивлением 1 Ом. В каком случае провод получится легче: если его сделать из алюминия или из меди? Во сколько раз?

5) Медный провод длиной 5 км имеет сопротивление 12 Ом. Определите массу меди, которая необходима для его изготовления. Плотность меди 8900 кг/м3.

 

Что мы узнали на уроке

· Устройство с переменным сопротивлением, предназначенное для регулирования силы тока, называют реостатом.

 

Домашнее задание

1. Подр.: § 12.

2. Сб.:

рів1— № 6.12; 6.13; 6.25; 6.26; 6.27.

рів2— № 6.43; 6.44; 6.45; 6.46, 6.47.

рів3— № 6.53; 6.59, 6.60; 6.61.

3. Д.: подготовиться к самостоятельной работе № 6.

 

Задачи из самостоятельной работы № 6 «Закон Ома для участка цепи»

Средний уровень

1. Напряжение в сети 220 В. Определите силу тока в спирали электроплитки, имеющей сопротивление 44 Ом.

2. Определите сопротивление электрической лампы, сила тока в которой 0,5 А, при напряжении 120 В.

Достаточный уровень

1. а) Необходимо вдвое увеличить силу тока в цепи. Что для этого нужно сделать?

б) Какова цена деления шкалы амперметра (см. рис.)?

 

 

2. а) Как по данным, указанным на цоколе электрической лампочки, определить ее сопротивление?

б) Какова цена деления шкалы вольтметра (см. рис.)?

 

 

Высокий уровень

1. По медному проводнику с поперечным сечением 3,5 мм2 и длиной 14,2 м идет ток силой 2,25 А. Определите напряжение на концах этого проводника.

2. Определите силу тока, проходящего по стальному проводу длиной 100 м и поперечным сечением 0,5 мм2 при напряжении 68 В.

2. а) Необходимо вдвое увеличить силу тока в цепи. Что для этого нужно сделать?б) Какова цена

решите пожалуйста задачу 11 даю 20 баллов

решите пожалуйста задачу 10 даю 20 баллов

ДАМ 100 БАЛЛОВ! ПОЖАЛУЙСТА! Сосуд содержит смесь воды и льда при температуре 0 °С. Масса воды равна 0,8 кг, масса льда равна 100 г. После введения вод … яного пара при температуре 100 °С установилась температура, равная 30 °С. Найдите массу пара. Потерями тепла пренебречь. С высоты девятиэтажного здания упал молоток массой 900 г на железную пластину массой 3 кг и остановился. На сколько градусов нагрелась пластина, если на её нагревание израсходовалось 25 % выделившегося при ударе количества теплоты? Высоту этажа принять равной 3 м. Полезная мощность дизельного двигателя 500 л.с., КПД 35%. Сколько тонн топлива необходимо такому двигателю на 10 дней бепрерывной работы? Удельная теплота сгорания дизельного топлива 42 МДж/кг.

К однородной нерастяжимой верёвке массой 50 г подвешен груз массой 400 г. Найдите силу натяжения в центре верёвки . Ответ дайте в Н, округлив до со … тых. Ускорение свободного падения примите равным =10 Определите в рамках модели невесомой нити. Ответ дайте в Н, округлив до сотых. Найдите абсолютную погрешность определения . Ответ дайте в Н, округлив до сотых. Найдите относительную погрешность определения . Ответ дайте в процентах, округлив до целого числа.

К однородной нерастяжимой верёвке массой 50 г подвешен груз массой 400 г. Найдите силу натяжения в центре верёвки . Ответ дайте в Н, округлив до сотых … . Ускорение свободного падения примите равным =10g

Точка, движущаяся со скоростью v, в момент t0 находится на расстоянии s0 от начальной. Как зависит от времени расстояние s? Напишите плиз график и фор … мулу на листочке​

График точки, движущейся со скоростью v, отсекает на оси ординат отрезок s0. Как зависит от времени расстояние s от начальной точки? Напишите формулу … этой зависимости.Напишите плиз на листочке график и формулу​

К тележке привязаны 2 нити. За них тянут в горизонтальном направлении с силами 6 Н и 4 Н. Начертите силы на рисунке в масштабе 1 кл. = 1Н. Чему может … быть равна равнодействующая? Начертите равнодействующую. ​

28. На полиці стоять дві бронзові статуетки, одна з яких є учетверо зменшеною копією другої. У скільки разів відрізняються тиски, що створюють ці стат … уетки на полицю? 29. Знайти максимальну висоту колони, яку можна збудувати з каменю, що має межу міцності на стискання 5 МПа і густину 5000 кг/м³. Вважати g=10 м/с² 30. Який тиск чинить вода на нижню поверхню плоскої крижинки площею 20 см² та масою 500 г?

Qz9.5. Заряды 2 нКл и-8 нКл расположены нарасстоянии 10 см.см. Определите силу. с скоторой второй заряд действует на первый,напряженность и потенциал … электрическогополя в точке С. Расстояние от первогозаряда до точки Сравно 5 см.противлениееслиОпDernemenаккумулятора,​

Зависимость силы тока от напряжения

Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней.

Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи.

Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Эту зависимость можно установить на опыте.

На рисунке 256, а изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра. На рисунке 256, б показана схема этой цепи.

Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.

Таким образом, опыт показывает, что, во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

На рисунке 257 показан график зависимости силы тока в проводнике от напряжения между его концами. На этом графике в условно выбранном масштабе отложены по горизонтальной оси напряжение в вольтах, а по вертикальной — сила тока в амперах.

Вопросы. 1. Как зависит сила тока в проводнике от напряжения на концах проводника? 2. Как на опыте показать зависимость силы тока от напряжения? 3. Какой вид имеет график зависимости силы тона от напряжения?

Упражнения. 1. При напряжении на концах участка цепи, равном 2 В, сила тока в проводнике 0,4 А. Каким должно быть напряжение, чтобы в том же проводнике сила тока была 0,8 А? 2. При напряжении на концах проводника 2 В сила тона в проводнике 0,5 А. Какой будет сила тока в проводнике, если напряжение на его концах увеличится до 4 В? если напряжение на его концах уменьшится до 1 В?

Зависимость силы тока от напряжения. Закон Ома для участка цепи. 8-й класс

 (Приложение1.)

Цели урока: Установить зависимость между силой тока, напряжением на однородном участке электрической цепи и сопротивлением этого участка.

Задачи урока:

  • Выяснить, что сила тока в участке цепи обратно пропорциональна его сопротивлению, если при этом напряжение остается постоянным
  • Выяснить, что сила тока прямо пропорциональна напряжению на концах проводника, если при этом сопротивление не меняется.
  • Научиться применять закон Ома для участка цепи при решении задач.
  • Научиться определять силу тока, напряжение по графику зависимости между этими величинами, а также сопротивление.

Оборудование: экран, демонстрационный амперметр и вольтметр, источники тока, ключ, соединительные провода, демонстрационный магазин сопротивлений, ТСО, портреты ученых.

План урока:

  1. Организационный момент.
  2. Целью подготовки к восприятию нового материала.
  3. Изучение нового материала.
  4. Закрепление знаний, умений и навыков.
  5. Домашнее задание.
  6. Подведение итогов урока.

Ход урока

1. Организационный момент.

Учитель: По словам русского поэта XIX века Якова Петровича Полонского,

Царство науки не знает предела –
Всюду следы ее вечных побед,
Разума слово и дело,
Сила и свет.

Эти слова по праву можно отнести к теме, которую мы сейчас изучает – электрические явления. Они подарили нам много открытий, осветивших нашу жизнь в прямом и переносном смысле. А сколько еще неопознанного! Какое поле деятельности для пытливого ума, умелых рук и любознательной натуры. Так что запускайте свой “вечный двигатель”, и вперед! Вспомним, что изучая тему “Электрические явления”, вы узнали основные величины, характеризующие электрические цепи.

2. Актуализация знаний учащихся.

Учитель: В начале, пожалуйста, перечислим основные величины, характеризующие электрические цепи.
Ученики: Сила тока, напряжение и сопротивление.
Учитель: А теперь, дайте небольшую характеристику каждой из этих величин, по следующему плану:

  1. Название Величины.
  2. Что характеризует данная величина?
  3. По какой формуле находится?
  4. В каких единицах измеряется?
  5. Каким прибором измеряется или изменяется?

Ученики:

1. Сила тока – характеризует электрический ток в проводнике.

I = q / t – формула для нахождения силы тока, где q-заряд, проходящий через поперечное сечение проводника, t-время прохождение заряда. Единица измерения – ампер. Измеряется сила тока амперметром.

2. Напряжение – величина, которая характеризует электрическое поле.

U = A/q – формула для нахождения напряжения, где А – работа по переносу заряда через поперечное сечение проводника, q-заряд. Единица измерения – вольт. Напряжение измеряется вольтметром.

3. Сопротивление: характеризует сам проводник, обозначается R, единица измерения 1Ом.

Учитель: Вовочка! На доске заполни таблицу! (Приложение 2.)

Правильно, заполненная таблица. (Приложение 3.)

Учитель: Ребята, а что вы знаете об ученых, открывших силу тока, напряжение, сопротивление?

(Ученики приготовили сообщения об ученых физиках.)

Ученики: Единицы измерения физических величин силы тока, напряжение и сопротивления, названы в честь ученых открывших их. Ампер, Вольт и Ом.

1. Андре-Мари Ампер – на его памятнике надпись: “Он был также добр и также прост, как и велик”. Славился своей рассеянностью. Про него рассказывали, что однажды он с сосредоточенным видом варил в воде свои часы 3 минуты, держа яйцо в руке.

2. Алессандро Вольта – был рыцарем почетного легиона, получил звание сенатора и графа. Наполеон не упускал случая посетить заседания Французской академии наук, где он выступал. Изобрел электрическую батарею, пышно названную “короной сосудов”.

3. Георг Симон Ом – немецкий физик. Работал школьным учителем. Открыл закон зависимости силы тока от напряжения для участка цепи, а также закон, определяющий силу тока в замкнутой цепи. Чувствительный прибор для измерения силы тока он изготовил сам. Опыты и теоретические доказательства были описаны им в главном труде “Гальваническая цепь, разработанная математически”, вышедшем в 1827г.

Разноуровневые задания: (Задания выполняют 2 группы учащихся).

Задание№ 1.

1. Сколько ампер в 250мА?

А) 250А
Б) 25А
В) 2,5А
Г) 0,25 А

2. Вставьте пропущенное определение:

Величина, равная … называется электрическим напряжением.
А) произведению мощности на силу тока;
Б) отношению мощности к силе тока;
В) отношению работы к величине электрического заряда.

3. Начертите схему электрической цепи: источник тока, ключ, амперметр, соединительные провода, две лампочки и вольтметр, измеряющий напряжение на одной из лампочек.

Ответ: (1 – Г; 2 – В; 3 – (Приложение 4.))

Задание № 2.

1. Сколько киловольт в 750 В?

А) 750000кВ
Б) 0,75кВ
В) 75кВ
Г) 7,5кВ

2. Вставьте пропущенное определение:

Величина равная … называется силой тока.
А) отношению работы к величине электрического заряда
Б) отношению электрического заряда ко времени.
В) произведению работы на время.

3. Начертите схему электрической цепи: источник тока, ключ, амперметр, соединительные провода, две лампочки и вольтметр, измеряющий напряжение на двух лампочках.

Ответ: (1 – Б; 2 –Б; 3 – (Приложение 5.))

3. Изучение нового материала.

Учитель: На прошлых уроках ребята, мы изучали силу тока, напряжение и сопротивление в отдельности. Сегодня мы перед собой поставили цель: раскрыть взаимозависимость силы тока, напряжения и сопротивления на участке электрической цепи. Выясним, как зависит сила тока от сопротивления, если напряжение остается постоянным.

Обратимся к опыту:

1. Соберем цепь, состоящую из: источника тока, амперметра, вольтметра, проводников сопротивлением 1 Ом, 2 Ом, 4Ом. (Приложение 6.)

2. В цепь по очереди включаем проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. Силу тока в цепи измеряем амперметром.

Результаты измерений поместим в таблицу. (Приложение 7.)

Учитель: Что вы наблюдали?

Ученики: С увеличением сопротивления силы тока уменьшается.

Учитель: Какой вывод можно сделать из этого?

Ученики: Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Учитель: Выясним, как зависит сила тока от напряжения, если при этом сопротивление не меняется.

Обратимся к опыту:

1. Соберем цепь, состоящую из источника тока (гальванический элемент), амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединенного к спирали вольтметра. (Приложение 8.)

2. Присоединяем к первому элементу последовательно , второй, затем третий такой же, замыкаем цепь и отмечаем показание приборов при каждом подключении дополнительного элемента. (Приложение 9, Приложение 10.)

Результаты измерений поместим в таблицу. (Приложение 11.)

Учитель: Что вы наблюдали?

Ученики: При увеличении напряжения в два раза, сила тока увеличивается вдвое. При трех элементах напряжение на спирали увеличивается втрое, во столько же раз увеличилась сила тока.

Учитель: Какой вывод из этого можно сделать?

Ученики: Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Учитель: Используя результаты опытов, и выводы сделанные их них, установим зависимость силы тока, напряжения и сопротивления.

Такая запись носит название закона Ома для участка цепи.

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

I = U/R

Историческая справка: Этот закон открыл немецкий физик Георг Симон Ом в 1827году. (Приложение 12.)

Учитель: для того, чтобы вам было легче запомнить формулу закона Ома можно воспользоваться следующим способом ее записи. (Приложение 13.)

Физическая пауза.

Учитель: Прежде чем приступить к решению задач проведем физическую паузу. Представим что мы с вами пассажиры автобуса…
– автобус резко трогается с места – ученики должны наклониться назад,
– автобус тормозит – отклониться вперед,
– автобус поворачивает направо – наклоняются влево,
– автобус поворачивает налево – наклоняются вправо.

Учитель: Какое физическое явление вы изображали?

Ученики: Инерция – явление сохранения скорости тела, когда на это тело не действуют внешние силы.

4. Закрепление умений и навыков.

Используя закон Ома для участка цепи, решим задачу.

Задача 1. (Приложение 14.)

Напряжение на зажимах электрического утюга 220В, сопротивление нагревательного элемента утюга 50 Ом. Чему равна сила тока в нагревательном элементе?

Дано:
U = 220В
R = 50 Ом
I – ?

Решение:
I = U/R
I = 220В/50 Ом = 4,4А
Ответ: 4,4А.

Задача 2.

На рис. (Приложение 15) изображен график зависимости силы тока от напряжения для двух проводников А и В. Определите сопротивление каждого из проводников. Какой из этих проводников обладает большим сопротивлением?

Учитель: Решаем эту задачу по вариантам. Вариант 1 – находит сопротивление проводника А. Вариант 2 – находит сопротивление проводника В.

Вариант 1.

Дано:
U = 6 В
I = 3 А
RA – ?

Решение:
R = U/I
R = 6 В/3 А = 2 Ом
Ответ: 2 Ом

Вариант 2.

Дано:
U = 4 В
I = 1 А
RB – ?

Решение:
R = U/I
R = 4 В/ 1 А = 4 Ом
Ответ: 4 Ом.

Ученики: 2 Ом <4 Ом, значит RA < RB, сопротивление проводника А меньше, чем сопротивление проводника В.

5. Домашнее задание: п. 42 – 44, упр. 19 № 3, 4. (Приложение 16.)

6. Подведение итогов урока, оценки работы учащихся.

Самодиагностика.

Как увеличить ток в цепи? Ответьте здесь!

Напряжение, управляющее током, и сопротивление, которое ему сопротивляется, определяют количество электрического тока, протекающего по цепи. Под током понимается то, что цепи рассчитаны на определенное напряжение и сопротивление. Потери тепла из-за чрезмерного тока разрушат цепь, сожгут резисторы и даже соседние материалы.

Чтобы увеличить ток в любой электрической цепи, рассмотрите два члена — ампер и напряжения.

А электрический ток в цепи измеряется в амперах. Сумма ампер в цепи регулируется двумя факторами: вольтами и сопротивлением. E / R = A — это формула для измерения силы тока, где E — напряжение, приложенное к цепи, а R — сопротивление цепи.

Связанный обзор: Лучшие тестеры цепей

Возьмите этот чемоданчик. Движение воды в трубу аналогично: напряжение представляет собой энергию, толкающую воду, а сопротивление — высоту трубы.Чем больше добавляется энергии, тем больше воды течет. Чем шире трубка, тем меньше сопротивление и тем больше воды может пройти в нее.

2 способа увеличения тока в цепи

  1. Поднимите напряжение, поддерживая сопротивление;
  2. Понижение сопротивления при поддержании постоянного напряжения;

Увеличьте напряжение питания для установленной нагрузки. Увеличьте нагрузку с помощью установленного напряжения питания. Чтобы избежать недоразумений, «увеличение нагрузки» относится к снижению сопротивления (в случае цепи постоянного тока) или снижению импеданса (когда дело касается цепи питания переменного тока).

Взаимосвязь между напряжением, силой тока и сопротивлением в цепи описывается законом Ома. Эти 3 свойства неразрывно связаны; любое изменение в одном напрямую влияет на два других. Ампер (I) , умноженное на сумму или градус сопротивления (R) , равно Напряжение (В) . Следующая теорема, определенная как закон Ома, описывает математическую связь этих трех переменных: V = IR . В результате увеличение силы тока в электрической цепи может быть достигнуто двумя способами.

Поскольку напряжение равно силе тока, умноженной на сопротивление в цепи, сила тока в цепи может возрасти, если напряжение остается неизменным, а сопротивление уменьшается. Увеличьте размер проводов в электрической цепи, чтобы минимизировать сопротивление, т. Е. Используйте медные проводники большего диаметра.

Следуя предыдущему примеру с водопроводными трубами, если электрическая цепь включает в себя резисторы, сопротивление может быть уменьшено путем переключения на резистор с меньшим номиналом, например, резистор 4 Ом на резистор 2 Ом.Поскольку сопротивление в цепи уменьшается вдвое, а напряжение остается постоянным, сила тока в цепи увеличивается вдвое.

Похожие отзывы:

Сила тока в цепи может быть увеличена путем изменения напряжения, если сопротивление цепи остается неизменным. Если бы электрическая цепь представляла собой водопроводную трубу, напряжение отражало бы деформацию воды, сопротивление представляло бы ширину трубы, а сила тока представляла бы объем воды, протекающей по трубе за период времени.Объем воды, проходящей в трубу, увеличился бы вдвое, если бы труба была постоянной, а давление воды увеличивалось бы вдвое.

Для увеличения силы тока убедитесь, что вся проводка и электроника выдерживают более высокий ток. Сумма силы тока, которую могут выдерживать кабели, прерыватели и другое связанное оборудование, называется «номинальной силой тока».

Если ваша схема включает в себя микросхемы резисторов, вы можете уменьшить сопротивление и тем самым повысить силу тока, заменив текущий резистор на резистор с меньшим номиналом.Вы должны заменить резистор 6 Ом на резистор 4 Ом, если текущий резистор составляет 6 Ом. Вы увеличите силу тока цепи, поддерживая постоянное напряжение, но уменьшая сопротивление.

Как увеличить ток без изменения напряжения:

Значение тока определяется сопротивлением цепи:

В = ИК

R = ρ L / A

Температура, площадь поперечного сечения, длина провода и другие переменные влияют на сопротивление.Чтобы поднять ток в цепи, необходимо сделать следующее:

Выберите проводник с низким сопротивлением ρ.

  1. Используйте короткий провод;
  2. Использовать плотную проволоку;
  3. Снижение температуры контура — хорошая идея;
  4. Если рабочая температура высока, можно использовать полупроводник, так как он имеет отрицательный температурный коэффициент;
  5. Максимально уменьшить количество ошибок схемы;
  6. Удалите все ненужные схемы;

Как увеличить выходное напряжение Arduino Uno?

Корпус простой.Например, вам нужно увеличить выходное напряжение вашего Arduino Uno с 5 до 10 В. Что делать?

Требуется внешняя цепь с источником питания 10 В.

Вы можете использовать сигнал для активации транзистора и иметь 10 В на выходе внешней схемы, когда Arduino выдает логическую единицу (5 В).

Вы также можете использовать диодный насос, который представляет собой особую конфигурацию конденсаторов и диодов, которая увеличивает входное напряжение в два раза. Вы хотите запрограммировать плату Arduino на генерацию прямоугольной волны (имейте в виду — сигнал переменного тока с амплитудой 5 В).Производительность диодного насоса составляет 10 В постоянного тока.

Система, с другой стороны, не совсем способна обеспечивать большую интенсивность, поэтому она может оказывать или не оказывать желаемое воздействие в зависимости от нагрузки.

Вы также можете использовать Arduino для создания переменного напряжения, которое затем можно подать на трансформатор и выпрямить на вторичной обмотке. С правильным трансформатором вы можете получить 10 В или что-то еще. Вы не сможете произвести сигнал в миллион вольт без дополнительных источников питания, потому что трансформаторы не обладают 100-процентной эффективностью.Я уверен, что есть ограничение, но не знаю, как это понять.

Привет! Меня зовут Том, я автор блога. Мое хобби — электронные схемы и паяльники.

Закон Ома и соотношение V-I-R

В физике есть определенные формулы, которые настолько мощны и распространены, что достигают уровня общеизвестных знаний. Студент, изучающий физику, записывал такие формулы столько раз, что запоминал их, даже не пытаясь. Безусловно, для профессионалов в этой области такие формулы настолько важны, что остаются в их сознании.В области современной физики E = m • c 2 . В области ньютоновской механики существует F net = m • a. В области волновой механики v = f • λ. А в области текущего электричества ΔV = I • R.

Преобладающим уравнением, которое пронизывает изучение электрических цепей, является уравнение

ΔV = I • R

На словах, разность электрических потенциалов между двумя точками в цепи ( ΔV ) эквивалентна произведению тока между этими двумя точками ( I ) и общего сопротивления всех электрических устройств, присутствующих между этими двумя точками ( R ).В остальной части этого раздела Физического класса это уравнение станет самым распространенным уравнением, которое мы видим. Это уравнение, часто называемое уравнением закона Ома , является мощным средством прогнозирования взаимосвязи между разностью потенциалов, током и сопротивлением.

Закон Ома как предиктор тока

Уравнение закона Ома можно переформулировать и выразить как

В качестве уравнения это служит алгебраическим рецептом для вычисления тока, если известны разность электрических потенциалов и сопротивление.Тем не менее, хотя это уравнение служит мощным рецептом решения проблем, это гораздо больше. Это уравнение указывает две переменные, которые могут повлиять на величину тока в цепи. Ток в цепи прямо пропорционален разности электрических потенциалов, приложенной к ее концам, и обратно пропорционален общему сопротивлению внешней цепи. Чем больше напряжение аккумулятора (то есть разность электрических потенциалов), тем больше ток. И чем больше сопротивление, тем меньше ток.Заряд идет с наибольшей скоростью, когда напряжение батареи увеличивается, а сопротивление уменьшается. Фактически, двукратное увеличение напряжения батареи привело бы к двукратному увеличению тока (если все остальные факторы остаются равными). А увеличение сопротивления нагрузки в два раза приведет к уменьшению тока в два раза до половины его первоначального значения.

Приведенная ниже таблица иллюстрирует это соотношение как качественно, так и количественно для нескольких цепей с различными напряжениями и сопротивлением батарей.


Строки 1, 2 и 3 показывают, что удвоение и утроение напряжения батареи приводит к удвоению и утроению тока в цепи. Сравнение строк 1 и 4 или строк 2 и 5 показывает, что удвоение общего сопротивления служит для уменьшения вдвое тока в цепи.

Поскольку на ток в цепи влияет сопротивление, в цепях электроприборов часто используются резисторы, чтобы повлиять на величину тока, присутствующего в ее различных компонентах.Увеличивая или уменьшая величину сопротивления в конкретной ветви схемы, производитель может увеличивать или уменьшать величину тока в этой ветви . Кухонные приборы, такие как электрические миксеры и переключатели света, работают, изменяя ток в нагрузке, увеличивая или уменьшая сопротивление цепи. Нажатие различных кнопок на электрическом микшере может изменить режим с микширования на взбивание, уменьшив сопротивление и позволив большему току присутствовать в миксере.Точно так же поворот ручки регулятора яркости может увеличить сопротивление его встроенного резистора и, таким образом, уменьшить ток.

На схеме ниже изображена пара цепей, содержащих источник напряжения (аккумуляторная батарея), резистор (лампочка) и амперметр (для измерения тока). В какой цепи у лампочки наибольшее сопротивление? Нажмите кнопку «Посмотреть ответ», чтобы убедиться, что вы правы.


Уравнение закона Ома часто исследуется в физических лабораториях с использованием резистора, аккумуляторной батареи, амперметра и вольтметра.Амперметр — это устройство, используемое для измерения силы тока в заданном месте. Вольтметр — это устройство, оснащенное датчиками, которых можно прикоснуться к двум точкам цепи, чтобы определить разность электрических потенциалов в этих местах. Изменяя количество ячеек в аккумуляторной батарее, можно изменять разность электрических потенциалов во внешней цепи. Вольтметр может использоваться для определения этой разности потенциалов, а амперметр может использоваться для определения тока, связанного с этим ΔV.К батарейному блоку можно добавить батарею, и процесс можно повторить несколько раз, чтобы получить набор данных I-ΔV. График зависимости I от ΔV даст линию с крутизной, эквивалентной обратной величине сопротивления резистора. Это значение можно сравнить с заявленным производителем значением, чтобы определить точность лабораторных данных и справедливость уравнения закона Ома.

Величины, символы, уравнения и единицы!

Тенденция уделять внимание единицам — неотъемлемая черта любого хорошего студента-физика.Многие трудности, связанные с решением проблем, могут быть связаны с тем, что не уделялось внимания подразделениям. Поскольку все больше и больше электрических величин и их соответствующих метрических единиц вводится в этот раздел учебного пособия «Физический класс», становится все более важным систематизировать информацию в своей голове. В таблице ниже перечислены некоторые из введенных на данный момент количеств. Для каждой величины также указаны символ, уравнение и соответствующие метрические единицы.Было бы разумно часто обращаться к этому списку или даже делать свою копию и добавлять ее по мере развития модуля. Некоторые студенты считают полезным составить пятый столбец, в котором приводится определение каждой величины.

Кол. Акций Символ Уравнение (я) Стандартная метрическая единица Прочие единицы
Разность потенциалов

(г.к.а. напряжение)

ΔV ΔV = ΔPE / Q

ΔV = I • R

Вольт (В) J / C
Текущий я I = Q / т

I = ΔV / R

Амперы (А) Усилитель или К / с

или В / Ом

Мощность п P = ΔPE / т

(еще предстоит)

Ватт (Вт) Дж / с
Сопротивление р R = ρ • L / A

R = ΔV / I

Ом (Ом) В / А
Энергия E или ΔPE ΔPE = ΔV • Q

ΔPE = P • t

Джоуль (Дж) V • C или

Вт • с

(Обратите внимание, что символ C представляет собой кулоны.)

В следующем разделе Урока 3 мы еще раз рассмотрим количественную мощность. Новое уравнение мощности будет введено путем объединения двух (или более) уравнений в приведенной выше таблице.

Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие — это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Легко перетащите источник напряжения, резисторы и провода на рабочее место. Соедините их, и у вас будет схема. Добавьте амперметр для измерения тока и используйте датчики напряжения для определения падения напряжения. Это так просто. И не нужно беспокоиться о поражении электрическим током (если, конечно, вы не читаете это в ванной).


Проверьте свое понимание

1. Что из перечисленного ниже приведет к уменьшению тока в электрической цепи? Выберите все, что подходит.

а. уменьшить напряжение

г. уменьшить сопротивление

г. увеличить напряжение

г.увеличить сопротивление

2. Определенная электрическая цепь содержит батарею из трех элементов, провода и лампочку. Что из перечисленного может привести к тому, что лампа будет светить менее ярко? Выберите все, что подходит.

а. увеличить напряжение аккумулятора (добавить еще одну ячейку)

г. уменьшить напряжение аккумулятора (удалить элемент)

г.уменьшить сопротивление цепи

г. увеличить сопротивление цепи

3. Вероятно, вас предупредили, чтобы вы не прикасались к электроприборам или даже к электрическим розеткам, когда ваши руки мокрые. Такой контакт более опасен, когда ваши руки мокрые (а не сухие), потому что мокрые руки вызывают ____.

а.напряжение цепи должно быть выше

г. напряжение цепи должно быть ниже

г. ваше сопротивление будет выше

г. ваше сопротивление должно быть ниже

e. ток через тебя будет ниже

4. Если бы сопротивление цепи было утроено, то ток в цепи был бы ____.

а. треть от

г. втрое больше

г. без изменений

г. … бред какой то! Сделать такой прогноз невозможно.

5. Если напряжение в цепи увеличить в четыре раза, то ток в цепи будет ____.

а.четверть от

г. в четыре раза больше

г. без изменений

г. … бред какой то! Сделать такой прогноз невозможно.

6. В схему подключены блок питания, резистор и амперметр (для измерения тока). Амперметр показывает значение тока 24 мА (миллиАмпер). Определите новый ток, если напряжение источника питания было…

а. … увеличился в 2 раза, а сопротивление осталось постоянным.

г. … увеличилось в 3 раза, а сопротивление осталось постоянным.

г. … уменьшилось в 2 раза, а сопротивление осталось постоянным.

г. … оставалось постоянным, а сопротивление увеличивалось в 2 раза.

e. … оставалось постоянным, а сопротивление увеличивалось в 4 раза.

ф…. оставалось постоянным, а сопротивление уменьшалось в 2 раза.

г. … увеличилось в 2 раза, а сопротивление увеличилось в 2 раза.

ч. … увеличилось в 3 раза, а сопротивление уменьшилось в 2 раза.

и. … уменьшилось в 2 раза, а сопротивление увеличилось в 2 раза.

7.Используйте уравнение закона Ома, чтобы дать числовые ответы на следующие вопросы:

а. Электрическое устройство с сопротивлением 3,0 Ом позволит протекать через него току 4,0 А, если на устройстве наблюдается падение напряжения ________ Вольт.

г. Когда на электрический нагреватель подается напряжение 120 В, через нагреватель будет протекать ток 10,0 А, если сопротивление составляет ________ Ом.

г. Фонарик с питанием от 3 вольт и лампочкой с сопротивлением 60 Ом будет иметь ток ________ ампер.

8. Используйте уравнение закона Ома для определения недостающих значений в следующих схемах.

9. См. Вопрос 8 выше. В схемах схем A и B какой метод использовался для контроля тока в схемах? А в схемах схем C и D какой метод использовался для контроля тока в схемах?

Параллельное соединение увеличивает ток | IOPSpark

Электрическая цепь

Электричество и магнетизм

Параллельное соединение увеличивает ток

Руководство для преподавателей для 14-16

От одной до двух петель — добавление второй идентичной луковицы параллельно

Wrong Track: Когда добавляется вторая лампочка, появляется дополнительное сопротивление, ток падает, и обе лампы тускнеют.

Правые линии: Две лампы будут иметь равную нормальную яркость, потому что в каждом контуре есть одинаковый ток (такой же, как в исходном контуре), а разность потенциалов на каждой лампе равна разнице потенциалов на ячейке. .

Обучающие ответы на этот вызов

Думая об обучении

Ключевым моментом здесь является то, что, когда вторая лампочка добавляется параллельно существующей петле, эта вторая петля обеспечивает дополнительный путь, по которому заряд может быть приведен в движение, а общий ток в ячейке удваивается.

Размышляя об обучении

Предлагаем два подхода: веревочная петля; и проиллюстрируйте числами.

Вместо одной веревочной петли у нас теперь две, каждая из которых содержит ячейку и лампочку.

При одинаковом вытягивании / толчке от ячейки две веревочные петли перемещаются с одинаковой скоростью, поскольку каждая петля имеет одинаковое сопротивление.

Каждый человек, схвативший каждую веревочную петлю, ощущает одинаковый нагревательный эффект (веревка движется с одинаковой скоростью, с одинаковой приложенной силой скольжения).

Этот эффект нагрева, который ощущает каждый человек, такой же, как если бы только один человек держался за веревку.

Предположим, что элемент пропускает ток 2 ампера в исходной петле, содержащей одну лампочку.

Добавляется вторая идентичная петля, снова содержащая одну лампочку.

Элемент также будет пропускать ток 2 ампера в этом контуре.

Общий ток в ячейке теперь 4 ампера.

Цепи серии

Представьте себе электрический ток, выходящий из батареи.Если резисторы подключены в такой способ, которым часть тока может проходить через один резистор, а остальная часть ток может пройти через другой резистор, тогда цепь будет параллельна Схема .

я т — полный ток параллельной цепи. Вы бы измерили этот ток в любом месте до или после трехканального разветвителя, ведущего к трем резисторам. В между соединением и R 1 , вы бы измерили I 1 .Между перекрестком и R 2 , Вы бы измерили I 2 и т. д.

Поскольку общий ток, I T , делится на три разные группы электронов, путешествующих каждый своим путем,

я т = I 1 + I 2 + I 3 +.

В параллельных цепях все резисторы, независимо от их сопротивления, испытывают одинаковое падение напряжения или разность потенциалов, потому что все они имеют одинаковые точки входа и выхода (переходы).

V T = V 1 = V 2 = V 3 = V n

Если разделить формулу тока по соотношению напряжений получаем:

или R T = [R 1 -1 + R 2 -1 + R 3 -1 +] -1

Пример 1

а. Какое полное сопротивление цепи?

R T = [R 1 -1 + R 2 -1 + R 3 -1 ] -1

R T = [12 -1 + 12 -1 +12 -1 ] -1 = 4 Вт

г. Какой общий ток?

I T = V / R T = 12/4 = 3 A

г.Какое напряжение ( В 1 ) будет измеряется на каждом отдельном резисторе?

12 В (напряжение постоянно параллельно.)

г. Какой ток отводится каждый резистор?

I 1 = V / R 1 = 12/12 = 1 А. Остальные тоже нарисуйте по 1 А, всего 3 А.

Пример 2

The рисунок кажется запутанным, но обратите внимание, что это параллельная схема, потому что у электронов есть выбор.На стыке (показано красной точкой) электроны следуйте либо зеленому маршруту, либо оранжевому маршруту.

Используйте I

1 = 1A; I 2 = 0,5 А; R 1 = 10Вт.

  1. Найдите V 2 .

Помните, что параллельное напряжение постоянно. Итак, если мы найдем V 1 , мы узнаем V 2 .

В 1 = I 1 R 1 = 1 (10) = 10 В.

В 2 = В 1 = 10 В.

  1. Найдите R 2 .

R 2 = V / I 2 = 10 / 0,5 = 20 Вт.

  1. Используйте два метода, чтобы получить R T .

(1) R T = [R 1 -1 + R 2 -1 ] -1 = [20 -1 + 10 -1 ] -1 = 6.7 Вт.

(2) я т = I 3 = I 1 + I 2 = 1 + 0,5 = 1,5 A.

R T = V / I T = 10 / 1,5 = 6,7 Вт.

Пример 3

В параллельной цепи какой эффект дает добавление еще резисторов иметь по общему току?

Ток увеличивается !

В цепи серии добавление резисторов увеличивает общее сопротивление и, таким образом, снижает ток.Но в случае с параллельная схема, потому что добавление дополнительных резисторов параллельно создает больше вариантов а снижает общее сопротивление . Если такая же батарея подключена к резисторы, ток увеличится. Не убежден? Попробуйте:

[10 -1 + 10 -1 ] -1 = 5 Вт, но добавьте подключите резистор параллельно, и вы получите [10 -1 + 10 -1 + 10 -1 ] -1 = всего 3,3 Вт. чем меньше сопротивление, тем выше общий ток.

Еще одна интересная особенность параллельных цепей заключается в том, что если один компонент отключен, другие пути все еще жизнеспособны, так что электроны могут продолжать течь по цепи. Это причина того, что большинство светильников и розеток в доме подключены параллельно.

Закон

Ома: определение и взаимосвязь между напряжением, током и сопротивлением — видео и стенограмма урока

Закон Ома

Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома .Это уравнение, i = v / r , говорит нам, что ток, i , протекающий через цепь, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r . Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если увеличить сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.

Эта диаграмма — простой способ решать уравнения.

Как написано здесь уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление. Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры.Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.

Закон Ома в действии

Ниже представлена ​​простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения — это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи.Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r . Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математику, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.

Чтобы найти ток, разделите напряжение (20 вольт) на сопротивление (20 Ом).

Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током.Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею. Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.

Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте заменим нашу существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.

До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что нам осталось, — это выполнить некоторые вычисления.Используя нашу диаграмму, мы скрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом

Чтобы определить напряжение, умножьте силу тока (3 ампера) на сопротивление (4 Ом).

Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.

Резюме урока

Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.

Результаты обучения

По завершении этого урока вы сможете:

  • Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
  • Напишите уравнение закона Ома
  • Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вам известны две другие.
  • Рассчитайте любую из трех переменных, используя уравнение закона Ома

электронов в движении — Science World

Для создания полной цепи c вам понадобятся три вещи:

  • a проводник (e.грамм. провод)
  • a источник питания (например, розетка или аккумулятор)
  • a резистор (например, лампочка или двигатель).

Провод проходит по круговой траектории от источника питания через резистор и обратно к источнику питания. Источник питания перемещает существующие электроны в проводнике по цепи. Это называется током. Электроны движутся по проводу от отрицательного конца к положительному. Резистор использует энергию электронов вокруг провода и замедляет поток электронов.

Аккумулятор — это один из способов выработки электрического тока. Внутри батареи происходят химические реакции. Одна реакция (на отрицательном конце батареи) создает свободные электроны; другой (на положительном конце) их использует. Чтобы перезарядить аккумулятор, химические реакции должны быть обращены вспять, чтобы электроны переместились в противоположном направлении.

В этой деятельности:

  • студентов — это электроны
  • энергия, обеспечиваемая батареей, представлена ​​умными.
  • Ток — это количество заряда (электронов), движущихся в цепи за единицу времени, измеряемое в амперах.

Чтобы увеличить электрический ток, мы должны ускорить движение электронов; мы делаем это в модели, добавляя дополнительную энергию в виде дополнительных умений.

Студенты будут чувствовать себя теплее, когда они ускорятся, что имитирует то, что происходит вдоль провода в реальной цепи. Эту физическую реакцию можно использовать для создания защитного устройства в цепи: если произойдет внезапный скачок заряда и провод нагреется до определенной температуры, он может расплавиться, остановив ток.В основном так работает предохранитель.

В предохранителе

А используется металлический провод, плавящийся при определенной температуре, соответствующей предварительно определенному пределу для цепи.

Создайте электромагнит — Science NetLinks

Введение

Если вы когда-либо играли с действительно мощным магнитом, вы, вероятно, заметили одну проблему. Вы должны быть довольно сильными, чтобы снова разделить магниты! Сегодня у нас есть много применений для мощных магнитов, но они не принесли бы нам никакой пользы, если бы мы не могли заставить их высвобождать объекты, которые они притягивают.В 1820 году датский физик Ганс Кристиан Эрстед обнаружил связь между электричеством и магнетизмом. Благодаря Эрстеду и некоторым другим, используя электричество, мы теперь можем делать огромные магниты. Мы также можем заставить их освободить свои объекты.

Электричество и магнетизм тесно связаны. Движение электронов вызывает оба, и каждый электрический ток имеет собственное магнитное поле. Эта магнитная сила в электричестве может быть использована для создания мощных электромагнитов, которые можно включать и выключать одним щелчком переключателя.Но как сделать электромагнит?

Просто намотав провод, по которому проходит электрический ток, вокруг гвоздя, можно сделать электромагнит. Когда электрический ток движется по проводу, он создает магнитное поле. Если вы намотаете провод по кругу, это усилит магнитную силу, но все равно будет довольно слабой. Помещение куска железа или стали внутри катушки делает магнит достаточно сильным, чтобы притягивать предметы. Силу электромагнита можно увеличить, увеличив количество витков проволоки вокруг железного сердечника и увеличив ток или напряжение.

Вы можете сделать временный магнит, поглаживая кусок железа или стали (например, иглу) вдоль постоянного магнита. Есть еще один способ изготовления временного магнита с помощью электричества, называемый электромагнитом. Давайте построим!


Вам понадобится:

  • Стальной или железный болт
  • 24 дюйма изолированного провода
  • 2 батареи типа D с держателями
  • Зажимы «крокодил» или лента для удержания проводов вместе
  • Скрепки или другие магнитные предметы
  • Журнал или газета для заметок и ответов на вопросы

Направление:

1.Оберните проволоку плотной ровной спиралью вокруг болта. Оставьте 3 или 4 дюйма проволоки свободными с каждого конца. Продолжайте наматывать проволоку, пока не дойдете до конца болта. На всем пути вверх и вниз по болту может быть до 3 или 4 слоев проволоки. Ваш электромагнит должен выглядеть примерно так:

2. Присоедините один конец провода к положительному (+) концу одной из батарей. Присоедините другой конец провода к отрицательному концу (-) аккумуляторной батареи.

3. Попробуйте подобрать электромагнитом одну из скрепок.Что происходит? Теперь отсоедините один из проводов от аккумулятора. Подхватит ли теперь ваш электромагнит скрепку? Что нужно для протекания через проволоку, чтобы железный болт действовал как магнит?

4. Сколько скрепок вмещает ваш электромагнит? Можно ли повесить зажимы на оба конца болта? Почему?

5. Как сделать электромагнит сильнее? Попробуйте добавить в аккумуляторную батарею больше батарей. Убедитесь, что все батареи «обращены» в цепи в одном направлении. А сколько скрепок будет вмещать ваш электромагнит?

6.Как на силу электромагнита влияет увеличение количества электричества, проходящего через провод?

7. После использования электромагнита удалите железный гвоздь или болт. Может ли гвоздь подбирать вещи? Сколько скрепок или скрепок он может уловить? Попробуйте пару раз уронить гвоздь или болт на пол. Как это повлияет на то, сможете ли вы взять в руки скрепки или скобы? Сколько скрепок или скрепок может поднять гвоздь или болт после падения?

Обязательно отсоединяйте электромагнит, когда он не используется.Если оставить провода подключенными, аккумулятор разрядится.

.

0 comments on “Увеличение силы тока в цепи: Как увеличить силу тока

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *