Виды заземляющих устройств: классификация, технические характеристики и особенности монтажа

Назначение разных видов заземления и нормы по их установке

Заземление – система защитного контура, для предотвращения поражения током при замыкании фазы на корпус. Назначение, виды и способы его монтажа – это основные вопросы, стоящие перед каждым собственником жилья и производственного помещения.

Заземляющее устройство – это конструкция, оснащенная заземлителем и заземляющими проводниками.

Виды заземления в зависимости от удаления объекта от защитного контура

По этой характеристике, виды заземляющих устройств подразделяют:

  • выносное;
  • контурное устройство.

Разберем каждое из них подробнее.

Выносное устройство

При этом типе, расположение заземлителя производится за пределами помещения. Выносное (сосредоточенное) защитное устройство монтируют при невозможности оснащения контура на участке со скальным, каменистым грунтом, либо при наличии за участком наиболее подходящего для заземления качества земли.

Разброс производственного оборудования на значительном расстоянии друг от друга – это еще одна причина установки выносной системы.

К преимуществу этого типа, относят возможность выбора места установки с лучшими свойствами грунтов, с малым уровнем сопротивления. К таким грунтам относят – глинистый или песчаный влажный грунт. Но есть у способа существенный минус. Значение коэффициента касания проводника равно 1, из-за удаленности от производственных объектов.

Такой вид защиты монтируют для обслуживания объектов с малыми токами короткого замыкания (не более кВ). Потенциальное напряжение при касании поврежденного участка цепи не меньше потенциала заземлителей.

Контурное устройство

Заземляющие электроды располагаются равномерно, по границам контура обслуживаемого участка и на нем самом. Поэтому, второе название этого типа – распределенное.

При таком способе установки заземлителей, безопасность использования приборами обеспечивается понижением потенциалов на каждом заземлителе и потенциалы их выравниваются. Такой метод позволяет понижать пиковый ток КЗ. Одиночнорасположенные на территории контура заземлители позволяют решать эту проблему.

Каждый метод заземления, при долгой эксплуатации, может повысить сопротивление контура. Для раннего обнаружения неисправности, необходимо периодически осматривать контур и подтягивать гайки на креплении проводов.

Обустройство повторного заземления

Данный метод позволяет понижать опасное для человека значение тока замыкания и других повреждений проводки и электрических приборов. При этом, повторное заземление – это отдельно расположенная и независимая от основного контура система заземлителей.

Установка предусматривает срабатывание в аварийной ситуации ближайшего автомата защиты. Наиболее часто, повторным способом, обустраивается старое здание с устаревшей двухжильной алюминиевой проводкой.

Проводку ведут к каждому потребителю от места сварки концевого контакта на основании контура. На корпус щита провода закреплены с помощью болтов и гаек с гроверами.

Виды заземления в зависимости от подведения проводки

До проведения работ по электропроводке здания, необходимо сделать выбор способа подключения к внутридомовой сети провода земли и вида контура защиты. Приведем расшифровку аббревиатур, применяемых в названии видов подводки кабеля:

  • I – изолированная проводка;
  • N – обозначает подключение к нейтральному проводу;
  • Т – символ, обозначающий подключение к заземляющему проводу.

Принята мировая система заземления, в которую входят три основных вида.

IT- система

Практически неприменяемая система в жилищном строительстве. При ней используют сопротивление с большим номиналом или через воздушную прослойку. Применяется этот вид заземления в лабораторных и лечебных помещениях. Служит для обеспечения большого уровня защиты для оборудования и приборов, требующих при обслуживании значительного уровня безопасности и стабильности.

По правилам ПУЭ, для частного хозяйственного строительства, можно использовать систему с независимыми заземлителями.

Система ТТ

Провода подводят к щитовой, на вводе в здание с двумя заземлителями. Наиболее часто применяют для обслуживания систем источников напряжения в сети и на металлическом покрытии системы без изоляции. Значительные показатели работы нулевой проводки на расстоянии от трансформаторов тока до потребителя электроэнергии.

При монтаже может возникнуть сложность, связанная с подбором диаметра проводки для обеспечения безопасности самого заземления. Для этих целей в данный вид подведения провода, устанавливается система отключения.

TN-система

Это, наиболее распространенный вид проведения заземляющего проводника с заземлением нейтрального провода, позволяет подключать к нейтрали всех потребителей тока данного здания.

Подключается все оборудование к заземлению через провода ноля. Все токопроводящие корпуса оборудование и приборы в электрощитовых и других потребителей, при коротком замыкании на корпуса, выключаются от сети с помощью автоматов и предохраняют человека, находящегося в помещении от поражения электротоком.

Она подразделяется на следующие виды:

  1. Система TN – 5. Вид подведения заземления и нулевого провода двумя отдельными проводниками. Такой способ на сегодняшний день является наиболее безопасной для человека. Проводку от источника питания, при этом способе, ведут с использованием трехжильного медного провода с соответствующим сечением для данного здания и количества потребителей. Как правило, для подведения фазы используют коричневый или черный проводник, ноль подводят голубым или синим проводом, а для подведения заземления используется желто-зеленый цвет изоляции.
  2. Система TN-C-S, в ней подводятся к электрощиту два провода, а именно провод нейтрали и провод фазы. И уже в щитке производят разделение ноля на два проводника, один из которых ноль, а второй провод заземления. Для обеспечения надежной и безопасной защиты в щитке требуется устанавливать дополнительный автомат отключения после разводки проводников.

При использовании медных многожильных проводников в проводке старого здания, не оснащенного защитным контуром, появляется оснастить электросеть надежной защитой.

Такая система хорошо предохраняет проводку и бытовые приборы при попадании молнии. При установке УЗО повышается уровень безопасности человека. К минусам можно отнести — установка дополнительного оборудования и снижение безопасности при обслуживании загородного дома.

Сечение проводки и выбор конструкции заземляющих контуров – одни из основных характеристик при проведении монтажа одного из видов заземляющего контура.

Для проведения работ по изготовлению контура заземления используются различные заземлители из искусственных или натуральных металлов. Исходя из пункта 1,7,109 Правил установки, могут быть использованы железобетонный или металлический участок здания, находящиеся в земле защитные оболочки кабелей, погружаемые в скважины трубы и другие.

Нельзя подключать провода заземления к газовым трубопроводам, трубам канализации, отопительным трубопроводам. Но для выравнивания потенциалов тока, данные участки можно использовать.

При мощности электрической сети здания более кВт, его необходимо оборудовать системой заземления. Виды заземления используются для обеспечения безопасной работы сети тока, но величина сопротивления не должна превышать величины 4 Ом.

Заземлители (заземляющие колья, забиваемые в землю для создания контура заземления) обязательно выполняются из меди, оцинкованного или черного металла. Все значения размеров заземлителей и других составляющих контура, приведены в пунктах ПУЭ.

Горизонтальная перемычка контура заземления должна быть заглублена в грунт не менее полуметра, в случае легкого грунта заглублять его следует не менее метра. Горизонтальные перемычки на сопротивление контура влияют больше чем вертикальные заземлители.

При необходимости устанавливается повторный контур заземления электрической сети.

При выборе сечения необходимо ознакомится с требованиями ПУЭ, но провод заземления не может быть меньше провода фазы.

Заземление не сможет заменить автоматический разрыватель цепи и УЗО, а они не смогут выполнить работу заземления.

Виды заземляющих устройств — Студопедия

Заземляющим устройством называется совокупность заземлителей, соединенных между собой и находящихся в непосредственном соприкосновении с землей. Состоят из заземляющих проводов, соединяющих заземляемые части эл установок с заземлителем.

В зависимости от места размещения заземлителя относительно заземляющего оборудования различают два типа заземляющих устройств: а)выносное и б)контурное.

а) Выносное (сосредоточенное) характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляющее оборудование или сосредоточен на некоторой части этой площадки.

У выносного заземления отдаленность заземлителя от заземляемого оборудования возникает в следующих случаях:

1. при невозможности по каким-либо причинам разместить заземлитель на защищаемой территории.

2. при высоком сопротивлении земли на данной территории (песчаный или скалистый грунт) и наличие вне этой территории мест со значительно лучшей проводимостью земли.

3. при рассредоточенном расположении заземляемого оборудования (горные выработки).

Поэтому заземляющие устройства такого типа используются при малых токах замыкания на землю, в частности в устройствах до 1 кВ.


б) Контурные заземляющие устройства:

план

Характеризуется тем, что электроды размещаются по контуру или периметру площадки, на которой находится заземляемое устройство, а также внутри этой площадки.

Часто электроды располагаются на площадке равномерно и поэтому контурное устройство иногда называют распределенным.

7) Зануление:

Это преднамеренное электрическое соединение с многократно заземленным нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус.

Принцип действия зануления – превращение замыкания или пробоя на корпус в однофазное короткое замыкание (замыкание между фазным и нулевым проводом) с целью вызвать большой ток способный обеспечить срабатывание защиты и тем самым отключить поврежденную установку от питающей цепи.

В качестве защиты могут использоваться плавкие предохранители, магнитные пускатели, контакторы, автоматические выключатели.

Если пробило фазу ток идет на проводник на нулевой провод, далее на фазу, сгорает предохранитель и система отключается – получается петля. Величина тока замыкания определяется фазным напряжением и сопротивлением петли.

где: Zт – внутреннее сопротивление трансформатора

— активное сопротивление фазного и нулевого провода

Хф, Хн — внутреннее сопротивление фазного и нулевого провода

Х’ – внешнее индуктивное сопротивление

,

где: Jн – номинальный ток плавких ставок


Согласно ПУЭ ток однофазного короткого замыкания должен превышать не менее чем в 3 раза ток плавких вставок, а для автоматов – в 1,4 раза.

Зануление применяется в трехфазных глухо заземленных сетях напряжением до 1000В. Обычно это сети напряжением 380/220В и 220/127В

Повторное заземление нулевого провода обеспечивает напряжение корпуса относительно земли в момент короткого замыкания при обрыве нулевого провода. Повторное заземление нулевого провода — практически не влияет на отключающую способность нулевого проводника. Но при отсутствии нулевого защитного провода возникает опасность поражения электрическим током во время замыкания фазы на корпус в случае обрыва нулевого проводника.

В этом случае напряжение на корпусе:

Понятие о заземлении и заземляющих устройствах

Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством.
Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем.

Есть два вида заземлителей — естественные и искусственные.

К естественным заземлителям относятся металлические конструкции зданий, надежно соединённые с землёй.

В качестве искусственных  заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединённых друг с другом стальными  полосами  или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы.

Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусственных заземлителей.

Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.

Качество заземления определяется значением сопротивления заземляющего устройства, которое  должно  быть  значительно  меньше  сопротивления  фазных  проводников  и  которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ («Правила  устройства  электроустановок»).
В первую очередь условия работы устройства заземления  определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.
В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.
Защитные устройства  необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.
Рабочие устройства  предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях — как в нормальных, так и чрезвычайных.
Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.
Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.
При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является  паспорт заземляющего устройства  – документ, который содержит всю информацию о параметрах заземляющего  устройства  (ЗУ)  и в который впоследствии будут заноситься все изменения.
Такие изменения часто касаются результатов обслуживания, когда   осуществляется   проверка   ЗУ.
Результаты   осмотра  ЗУ   и   возможного   ремонта   заносятся   в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам  такого обследования составляется протокол заземляющего устройства.

Измерение   сопротивления   контура   заземления   проводится   нашей    электроизмериельной  лабораторией.

 

Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами:

  • тел/факс: (8212)21-30-20

 

Устройство заземления. Виды и особенности. Правила и монтаж

Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности.

Для чего нужно устройство заземления

Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств.

Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы.

Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи.

Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания.

Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода.

Правила устройство заземления

Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п.

Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей.

Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта.

По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом.

Варианты и особенности

Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки.

В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров.

Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S.

Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной.

Монтаж заземления

Устройство заземления существует двух видов, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу.

Устройство заземления приобретенное в торговой сети, имеет свои преимущества:
  • Продается комплектом, элементы набора разработаны специалистами с соблюдением всех требований правил, изготовлены на заводском оборудовании.
  • Не требуются сварочные работы, и почти не нужны земляные работы.
  • Дает возможность углубиться в землю на значительную глубину с получением малого сопротивления всего устройства заземления.

Устройство заземления заводского исполнения имеет недостаток это высокая стоимость набора.

Материалы и инструменты

Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы.

Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать.

При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится.

Наименьшие сечения проката выбираются:
  • Оцинкованный пруток – 6 мм.
  • Пруток из металла без покрытия – 10 мм.
  • Прямоугольный прокат – 48 мм2.

Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2.

Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:
  • Алюминиевый без изоляции – 6 мм.
  • Медный без изоляции – 4 мм.
  • Изолированный алюминиевый – 2,5 мм.
  • Изолированный медный – 1,5 мм.

Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика.

Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой.

Земляные работы

Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра.

Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м.

Подготовка электрода (штыря)

Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой.

Заглубление электродов

Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром.

Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины.

Соединение электродов

Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом.

Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита.

На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой.

Засыпка траншеи

Для засыпания траншеи целесообразно использовать плотную однородную почву.

Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии.

Проведение в щит

Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением.

Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре.

Похожие темы:

Виды заземлений — какие бывают? Системы и назначение конструкции

Заземление – это намеренное соединение определенной части оборудования или электрической цепи с грунтом. Чаще всего, для заземления используется один или несколько штырей из металла необходимой длины и диаметра, забитых в грунт и соединенных вместе.

Конструкцию соединяют с кабелем, подключенному к заземляемому устройству. Штыри и провод, металлическая полоса, связывающая их, место установки заземления, оговорено по правилам монтажа электрических установок.

Электроустановки подразделяются:

  1. С напряжением более 1 кВ с эффективно или глухо заземленной нейтралью.
  2. С напряжением более 1 кВ с заземленной через резистор или изолированной нейтралью.
  3. С напряжением менее 1 кВ с глухо заземленной нейтралью.
  4. С напряжением менее 1 кВ с изолированной нейтралью.

С учетом технических особенностей электросетей и электрической установки, для ее работы может быть необходима какая-либо токоотводящая конструкция. Обычно, до проектирования электрического устройства, определяют перечень требования, в которых указывают необходимую конструкцию.

Сейчас в мире используют единую систематизацию подобных устройств, в которую входят три системы:

  1. Система IT.
  2. Система TT.
  3. Система TN.

Эта аббревиатура расшифровывается так:

  • Символ I — изолированный.
  • Символ N — подключено к нейтрали.
  • Символ T — заземление.

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Для частных, хозяйственных строений, ПУЭ советуют использовать совершенно другую систему — TT.

Независимые заземлители

Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

Не стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

Горизонтальный заземлитель желательно уложить на глубину 50 см, если грунт на участке легкий, то укладку электрода желательно производить на глубине 1 м. Важно то, что у горизонтальных проводников, сопротивление больше чем у вертикальных.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

Статья была полезна?

0,00 (оценок: 0)

Назначение заземляющих устройств | Монтаж электрических установок | Архивы

Страница 22 из 83

Заземляющие устройства (заземление и зануление) выполняют для защиты людей от поражения электрическим током при повреждениях изоляции.
Электросети выполняют проводниками, изолированными друг от друга и от земли Однако в сетях всегда имеют место утечки тока через изоляцию Кроме того, электросети представляют собой протяженный конденсатор, обкладками которого являются токоведущие проводники и земля Между проводами и землей проходит емкостный ток. Таким образом, между изолированными проводниками и землей всегда существует электрическая цепь, замкнутая через сопротивление изоляции и емкость сети (рис 6 1).
Прикосновение не только к оголенным, но и к изолированным частям, находящимся под напряжением, фактически включает человека в электрическую цепь Ток, проходящий через тело человека, будет тем больше, чем выше напряжение сети, чем больше ее емкость и меньше сопротивление ее изоляции


Рис. 6 2. Защитное металлическое соединение корпусов электрооборудования в установках 380/220 В с заземленной нейтралью:
1 — заземляющие проводники; 2 — заземлитель; 3 — электродвигатель, корпус которого занулен; 4 — светильник, корпус которого занулен

Рис. 6.1. Схема электрической цепи, обусловленная наличием сопротивления изоляции Ru и емкости С проводников в сети трехфазного тока
При нормальном состоянии изоляции этот ток ничтожно мал и не представляет никакой опасности Опасность для человека представляют случаи повреждения изоляции токоведущих частей, при которых доступные для прикосновения металлические корпуса электрооборудования и конструкции, поддерживающие провода и кабели, оказываются под полным напряжением. На эти случаи для защиты людей от поражения током предусматривается преднамеренное соединение с землей металлических корпусов электрооборудования, а также других металлических частей, которые могут оказаться под напряжением при нарушении изоляции токоведущих частей, с помощью заземляющих проводников и заземлителей ([3,24] и ГОСТ 12.1.030—81*).
Ниже приведены некоторые определения терминов, относящихся к элементам заземляющих устройств в электрических установках ([3] и ГОСТ 2.1.030—81*).
Заземляющий проводник — проводник, соединяющий заземляемые части с заземлителей (рис. 6.2), ГОСТ 12.1.030—81*.
Нулевой защитный проводник в электроустановках напряжением до 1 кВ — проводник, соединяющий зануляемые части с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сети постоянного тока.
Нулевой рабочий проводник в электроустановках напряжением до 1 кВ — проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях многофазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в трехпроводных сетях постоянного тока.
В электроустановках напряжением до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевою защитного проводника.
Напряжение прикосновения Uприк — напряжение между двумя точками цепи тока замыкания на землю (на корпус) при ододновременном прикосновении к ним человека (рис. 6 3).

Рис 6 3 Кривая распределения потенциала в зависимости от расстояния до заземлителя
Е — потенциал заземлителя, Ei—Ej — разность потенциалов на расстоянии шага, 1 — зона нулевого потенциала, 11 — зона растекания
Напряжение шага Uшаг — напряжение между двумя точками земли, обусловленное растеканием тока замыкания на землю, при одновременном касании их ногами человека (рис 6 3).

В электроустановках до 1 кВ с глухозаземленной нейтралью или с глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой постоянного тока выполняется зануление с целью обеспечения надежного автоматического отключения ог электросети оборудования, имеющего поврежденную изоляцию, в минимально короткий срок. Для этого зануляемые части электрооборудования присоединяют к заземленному нулевому проводу сети (рис. 6.4, а). Как видно из рисунка, замыкание на корпус светильника является коротким замыканием в первой фазе сети (цепь замыкания показана стрелками), что вызывает перегорание предохранителя в этой фазе, отключение светильника и снятие напряжения с его корпуса. В соответствии с [2] наиболее распространенные электроустановки 380/220 В выполняются с глухозаземленной нейтралью.

Рис. 6 4 Защитное заземление:
а— в сети с глухозаземленной нейтралью; б — в сети с изолированной нейтралью: R ч — сопротивление заземляющего устройства; R4 — сопротивление тела человека; Rи — сопротивление изоляции проводов

В электроустановках до I кВ с изолированной нейтралью, а также во всех установках выше 1 кВ выполняется заземление, предназначенное для снижения тока, протекающего через тело человека, до безопасного значения. Для этого заземляемые части электрооборудования присоединяют к заземляющему устройству, сопротивление которого R3 должно быть мало по сравнению с сопротивлением тела человека (рис. 6.4,6).
Электрическое сопротивление тела человека изменяется от 800 до 100 000 Ом. Оно зависит от многих факторов: состояния здоровья, нервной системы, психического состояния, влажности кожи, состояния одежды, обуви и других причин.
Сопротивление заземляющих устройств в электроустановках до 1 кВ с изолированной нейтралью согласно [3] должно быть не более 4 Ом, а в электроустановках 220, 380 и 660 В с глухозаземленной нейтралью — соответственно не более 8, 4, 2 Ом
В электроустановках 3—35 кВ с изолированной нейтралью сопротивление заземляющих устройств должно быть 250//Р, но не более 10 Ом (/Р — расчетный ток замыкания на землю, значение которого задается энергосистемой) Если заземляющее устройство одновременно используется для установок до 1 кВ, то сопротивление его не должно превышать 125//р и должно удовлетворять требованиям, предъявляемым к заземлению (занулению) электроустановок до 1 кВ.

Что такое заземляющее устройство? | Элкомэлектро

Электролаборатория » Вопросы и ответы » Что такое заземляющее устройство?

Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством. Заземляющее устройство является неотъемлемой составляющей любой электрической установки мощностью 1 кВ и выше. Представляет собой совокупность заземляющих проводников и заземлителя. Заземлитель находится непосредственно в контакте с землей и соединяет с ней части электроустановки. Для того, чтобы обеспечить быстрое стекание на землю замыкания или тока пробоя, сопротивление заземляющего устройства необходимо как можно более низкое. Это также необходимо для быстрого срабатывания защитных реле при их наличии.

В первую очередь условия работы устройства заземления определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.

В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.

Защитные устройства необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.

Рабочие устройства предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях — как в нормальных, так и чрезвычайных.

Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.

Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.

При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является паспорт заземляющего устройства – документ, который содержит всю информацию о параметрах ЗУ и в который впоследствии будут заноситься все изменения.

Такие изменения часто касаются результатов обслуживания, когда осуществляется проверка заземляющих устройств.  

Измерение сопротивления контура заземления проводится многофункциональным прибором MRU-101.

Результаты осмотра и возможного ремонта заносятся в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам такого обследования составляется протокол заземляющего устройства.

Что такое заземление и зачем мы заземляем систему и оборудование?

Что такое заземление?

Термин «заземление» обычно используется в электротехнической промышленности для обозначения «заземления оборудования» и «заземления системы». Заземление оборудования означает соединение заземления с нетоковедущими проводящими материалами, такими как кабелепровод, кабельные лотки, распределительные коробки, кожухи и корпуса двигателей.

Что такое заземление и зачем мы заземляем систему и оборудование? (на фото: заземляющий электрод и проводник; кредит: nachi. org)

Заземление системы означает соединение заземления с нейтральными точками токоведущих проводов , такими как нейтральная точка цепи, трансформатор, вращающееся оборудование или система, либо жестко, либо с устройством ограничения тока.

На рисунке 1 показаны два типа заземления.

Рисунок 1 — Система заземления (щелкните, чтобы развернуть диаграмму)

Что такое система с заземлением?

Это система, в которой по крайней мере один провод или точка (обычно средний провод или нейтральная точка обмоток трансформатора или генератора) намеренно заземлены либо жестко, либо через полное сопротивление (Стандарт IEEE 142-2007 1.2).

Типы системного заземления, обычно используемые в промышленных и коммерческих энергосистемах: твердое заземление , заземление с низким сопротивлением, заземление с высоким сопротивлением и незаземленное .


Какова цель заземления системы?

Заземление системы или преднамеренное соединение фазного или нейтрального проводника с землей используется для цели для управления напряжением относительно земли или земли в предсказуемых пределах.Он также обеспечивает прохождение тока, что позволит обнаружить нежелательное соединение между проводниками системы и землей [замыкание на землю].


Что такое замыкание на землю?

Замыкание на землю — это нежелательное соединение между проводниками системы и землей . Неисправности заземления часто остаются незамеченными и наносят ущерб производственным процессам на предприятиях. Выключение питания и повреждение оборудования, замыкания на землю нарушают поток продукции, что приводит к часам или даже дням потери производительности.

Необнаруженные замыкания на землю представляют потенциальную угрозу здоровью и безопасности персонала. Замыкания на землю могут привести к угрозам безопасности, таким как неисправности оборудования, возгорание и поражение электрическим током.

Замыкания на землю вызывают серьезные повреждения оборудования и ваших процессов. Во время неисправности оборудование может быть повреждено, а процессы прекращены, что серьезно повлияет на вашу прибыль.

Вопросы и ответы

ВОПРОС №1 — У меня есть максимальная токовая защита. Нужна ли мне дополнительная защита от замыкания на землю?

Защита от перегрузки по току будет действовать, чтобы прервать цепь для токов, для которых она была разработана и настроена на работу. Однако некоторые замыкания на землю, особенно дуговые замыкания низкого уровня, вызовут значительные повреждения и создадут источник возгорания, даже не достигнув уровня, необходимого для активации устройства защиты от сверхтоков.

ВОПРОС № 2 — Есть ли опасность при использовании 480-вольтной незаземленной системы на старом производственном предприятии? Следует ли заземлить систему?

Основная опасность при работе незаземленной системы 480 В заключается в том, что при замыкании на землю единственным индикатором, который у вас будет, являются три лампочки.Напряжение на незаземленных фазах увеличится до 480 В относительно земли, напряжение на заземленном проводе составит 0 В относительно земли .

В этой системе единственный способ указать наличие замыкания на землю — это когда два индикатора имеют большую яркость, чем индикатор неисправной фазы. Чтобы определить место замыкания на землю, вы должны включить цикл каждого выключателя фидера, пока все три индикатора снова не загорятся с одинаковой яркостью.

Как только это будет сделано, вы продолжите работу по этому фидеру, пока не найдете неисправность .Звучит очень легко сделать, но в реальном мире оказывается очень сложно.

Установка обычно не заземляется, потому что она постоянно работает, и следует избегать изоляции из-за замыкания на землю ! К сожалению, это означает определение места замыкания на землю. Единственный способ определить место замыкания на землю — это включить и выключить выключатели фидера.

Это то, чего вы пытаетесь избежать. Таким образом, в конце концов, замыкание на землю остается в системе, потому что нет простого способа его локализовать. Это опасно, потому что любое обслуживание, выполняемое в системе в заземленном состоянии, зависит от полного линейного потенциала по отношению к земле.

Хорошая новость в том, что решение есть! Незаземленные объекты можно легко преобразовать в объекты с заземлением с высоким сопротивлением, а обнаружение и локализация замыкания на землю могут быть выполнены без прерывания подачи электроэнергии.

ВОПРОС № 3 — Какое воздействие, если таковое имеется, на движущееся оборудование, спроектированное для электростанции с плавающим заземлением или незаземленной вторичной обмоткой, оказывает на станцию, имеющую полностью заземленную систему? На мой взгляд, это не должно иметь значения, но я могу ошибаться.

В вашем случае (от незаземленной системы к глухозаземленной) нет, не имеет значения. Однако, если вы пошли другим путем (от SG к системе UNG), то да, это имело бы значение. Во время нормальной работы это, скорее всего, не имеет значения.

Однако при замыкании на землю это произойдет. В незаземленной системе напряжение поврежденной фазы падает до потенциала земли (или ~ 0 В) , а неповрежденные фазы повышаются до межфазного напряжения относительно земли.

Например, система 480V будет иметь ~ 277V фазное напряжение во время нормальной работы, поэтому она должна работать нормально. Однако при замыкании на землю на одной фазе ее напряжение повышается до 0 В , а на двух других фазах повышается с 277 В до 480 В, фаза-земля.

Так как этого не происходит в системе с глухим заземлением, все, что рассчитано только на 300 В между фазой и землей, взорвется , например TVSS, VFD, счетчики и т. Д.

ВОПРОС № 4 Какое напряжение вы бы прочитали если вы подключили провода от L1, L2 или L3 к земле 460-вольтовой трехфазной системы питания переменного тока, подключенной по схеме Y?

Если система с Y-соединением надежно заземлена , вы увидите 266В от линии к земле . Если система с Y-соединением не заземлена или заземлена с высоким сопротивлением и в системе нет замыкания на землю, вы также читаете 266V. В случае неисправности одной фазы, неисправная фаза будет показывать низкое напряжение около 0, а две другие фазы будут показывать около 460 В.

Ссылка // Заземление с сопротивлением — Вопросы и ответы отраслевым экспертам от iGard

Различные типы конструкций заземления — Узнать больше

Система заземления внешнего здания относится только к методу внешнего заземления здания.Обычно используется в сочетании с одноточечной системой заземления.

Система заземления Halo (HGS) — это философия заземления, согласно которой все неэлектрические металлические компоненты должны иметь короткие отрезки заземляющих проводов от металлических предметов, не создающих скачков напряжения, до системы заземления Halo (HGS) в целях безопасности персонала. Систему заземления Halo (HGS) иногда называют системой внутреннего заземляющего кольца. Система Halo Ground (HGS) когда-то широко использовалась в помещениях для радиоаппаратуры.

Система заземления Halo (HGS) обычно состоит из неизолированного одножильного или многожильного провода сечением минимум 2 AWG, проложенного по внутреннему периметру стен здания или комнаты. Система заземления Halo (HGS) обычно подключается в каждом углу здания или комнаты к внешней системе заземляющих электродов через отдельный провод заземляющего электрода.

Система громоотвода (LRS) — это метод размещения металлического стержня выше здания, чтобы притягивать к нему молнию и направлять ее на землю.Эта система используется вместе с системой заземления внешнего здания.

Многоточечная наземная система (MPGS) иногда называют интегрированной наземной системой (IGS). Многоточечная система заземления (MPGS) — это философия заземления, согласно которой все основные компоненты системы защиты здания должны быть спроектированы и подключены к как можно большему количеству компонентов заземления. Эти компоненты состоят из проводов заземляющих электродов, заземляющих проводов, заземленных проводов и случайных соединений.Эти заземляющие проводники и случайные соединения предназначены для создания нескольких путей сопротивления / импеданса. Это позволяет любому уровню напряжения, который будет создаваться как ток, течет или возвращается к своему источнику по этим множественным путям. Это должно снизить опасность для персонала и защитить оборудование.

Заземляющие проводники и их заземленные компоненты не требуют изоляции от любого случайного контакта с другими заземляющими проводниками или заземленными компонентами. Чем больше количество случайных точек соприкосновения между различными заземляющими проводниками и компонентами в системе многоточечного заземления (MPGS), тем лучше, потому что таким образом создаются контуры заземления.

Система одноточечного заземления Система одноточечного заземления (SPGS) — это философия заземления, которая требует, чтобы все основные компоненты системы защиты здания были спроектированы и подключены к единой контрольной точке заземления. Эти компоненты состоят из заземляющих электродов, проводов заземляющих электродов, заземленных проводов и заземляющих проводов. Эти проводники предназначены для создания пути наименьшего сопротивления / импеданса. Это позволяет любому напряжению, создаваемому как ток, течь или возвращаться к своему источнику по надлежащему обозначенному пути.

Реализация философии единой точки заземления (SPGS) проста, но очень сложна. Обозначенные заземляющие проводники методично подключаются по всей системе защиты здания в пределах обозначенных зон к единой контрольной точке заземления, главной шине заземления (MGB).

Заземляющие проводники и их заземленные компоненты должны быть изолированы от любого непреднамеренного контакта с другими заземляющими проводниками и заземленными компонентами, за исключением единственной контрольной точки заземления, главной шины заземления (MGB).Любые непреднамеренные точки соприкосновения между различными заземляющими проводниками и компонентами создают контуры заземления в системе одноточечного заземления (SPGS) и являются нарушением системы одноточечного заземления (SPGS).

Система одноточечного заземления (SPGS) идентифицирует каждый проводник на шине заземления по типу проводника или типу работы, для которой он предназначен. Система называется системой PANI . Шина разделена на секции, и только один тип проводов помещается в эту секцию шины заземления.Ниже приведены некоторые описания проводников. Затем каждый проводник будет помещен в соответствующую часть шины заземления слева направо. Примеры: P, A, N, а затем все I.

Радиокадры
Шина заземления входа телефонного кабеля (CEGB)
Экраны входа телефонного кабеля
Рама трансформатора внутри здания

Вход питания переменного тока Многозаземленная нейтраль (MGN)
Система заземления здания (BEGS)
Строительные конструкции Сталь (BSS)
Изолированное заземление оборудования переменного тока (ACEG)
Система металлических кабелепроводов
Обсадная труба

Внутриофисная кабельная экранирующая планка (IOCSB)
Внутриофисная кабельная экранировка
Главная распределительная рама (MDF)
(-) Ссылка в постоянном токе Электростанция с отрицательным заземлением
(+) Опорный сигнал в электростанции постоянного тока с положительным заземлением
Шкафы для хранения
Передаточные рамы
Рабочие столы

(I) — Изолированное заземление (IGP) Заземление оборудования

Изолированное заземляющее оборудование переменного тока Заземление (ACEG)
Изолированные кабельные трассы на заземляющей плоскости
Изолированная шина заземления рамы (IGP-FRB)
Изолированный журнал заземления Возвратная шина ic (IGP-LRB)
Изолированная заземляющая пластина с металлическими кабелями
Изолированная заземляющая шина (IGPB) должна иметь четкую трафаретную или маркировку и изолирована от ее опоры в изолированной заземляющей пластине (IGP)

Эта изолированная заземляющая шина (IGPB) становится «окном» к фактической основной планке заземления (MGB).Изолированная заземляющая шина (IGPB) ДОЛЖНА иметь правильно проложенный, соединенный заземляющий провод соответствующего размера, подключенный непосредственно к главной заземляющей шине (MGB).

Зоны изолированной поверхности земли (IGP) должны быть четко и постоянно обозначены на полу или другим легко узнаваемым способом. Уместна краска или лента отличительного цвета, например, оранжевого.

Назначение изолированной заземляющей плоскости (IGP) — изолировать все чувствительное к напряжению оборудование внутри изолированной заземляющей пластины (IGP) от любого события напряжения, происходящего за пределами изолированной заземляющей плоскости (IGP).Это предотвратит любое событие за пределами изолированной заземляющей плоскости (IGP), которое не вызовет любой формы перебоя в обслуживании чувствительного к напряжению оборудования внутри изолированной заземляющей плоскости (IGP).

В большинстве зданий используется изолированный слой заземления (IGP) для изоляции чувствительного к напряжению оборудования, такого как цифровой коммутатор, от остального оборудования в здании.

Ufer Ground System — это философия заземления, используемая Национальным электрическим кодексом (NEC) для системы заземляющих электродов.Все заземляющие электроды, окружающие обслуживаемое здание или сооружение, должны быть соединены вместе, образуя систему заземляющих электродов.

Провод заземляющего электрода можно подключить к любому подходящему заземляющему электроду, имеющемуся в системе заземляющих электродов. Основной провод заземляющего электрода должен быть рассчитан на самый большой проводник заземляющего электрода среди всех имеющихся заземляющих электродов.

Этот провод заземляющего электрода может быть соединен либо необратимыми соединителями компрессионного типа, перечисленными для этой цели, либо процессом экзотермической сварки.

Типы систем заземления в соответствии со стандартом IEEE

Заземление (заземление) — это система электрических цепей, подключенных к земле, которая работает, когда ток утечки может разрядить электричество в землю.

Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:

  1. Ограничьте величину напряжения на землю в допустимых пределах
  2. Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей.Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.

В соответствии со стандартами IEEE система заземления делится на:

  1. TN-S (Terre Neutral — отдельный)
  2. TN-C-S (Terre Neutral — комбинированный — раздельный)
  3. ТТ (Дабл Терре)
  4. TN-C (Neutral Terre — комбинированный)
  5. IT (Изолированная земля)

Терре происходит от французского языка и означает земля.

Первая буква обозначает соединение между землей и источником питания, а вторая буква обозначает соединение между землей и электронным оборудованием, на которое подается электричество. Значение каждой буквы следующее:

  • T (Terra) = Прямое соединение с землей.
  • I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
  • N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
  1. TN-S (Terre Neutral — отдельный)

В системе TN-S нейтральная часть источника электроэнергии подключена к земле в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд и если установка / оборудование находится рядом с источником энергии (трансформаторы).

  1. TN-C-S (Terre Neutral — комбинированный — отдельный)

Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземленный на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.

  1. TT (Дабл Терре)

В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное подключение к земле, а именно путем установки заземляющего электрода, подходящего для данной установки.

  1. TN-C (Neutral Terre — комбинированный)

В системе TN-C нейтральный канал основного распределительного оборудования (источника питания) подключен непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.

В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рам оборудования известна как проводник PEN (защитное заземление и нейтраль).

Эта система не предназначена для проводов диаметром менее 10 мм. 2 или переносного оборудования. Это связано с тем, что при возникновении короткого замыкания по PEN-проводнику одновременно проходит ток дисбаланса фаз, гармонический ток третьего уровня и его кратные.

Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.

  1. IT (Изолированная земля)

Из первой буквы (I) видно, что в этой системе IT нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.

В своем применении нейтральная точка системы IT на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.

TT IT TN-S TN-C TN-C-S
Полное сопротивление контура замыкания на землю Высокая Самый высокий Низкий Низкий Низкий
Предпочтительно УЗО Есть НЕТ Дополнительно Дополнительно
Требуется заземляющий электрод на объекте Есть Есть Дополнительно
PE проводник стоимость Низкий Низкий Самый высокий Минимум Высокая
Риск выхода из нейтрального положения Высокая Самый высокий Высокая
Безопасность Сейф Менее безопасный Самый безопасный Наименее безопасный Сейф
Электромагнитные помехи Минимум Минимум Низкий Высокая Низкий
Риски безопасности Высокое сопротивление контура (ступенчатое напряжение) Двойная неисправность, перенапряжение Нейтраль оборвана Нейтраль оборвана Нейтраль оборвана
Преимущества Безопасность и надежность Беспрерывность работы, стоимость Самый безопасный Стоимость Безопасность и стоимость

Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact.com.sg, чтобы узнать больше!

Все о системах электрического заземления

В этом блоге мы рассмотрим необходимость системы электрического заземления, ее важность, типы заземленной системы, общие методы и факторы, влияющие на установку системы с заземлением, советы по безопасности и т. Д. Проще говоря, этот блог посвящен системе электрического заземления.

Земля — ​​это обычная точка возврата электрического потока. Система заземления — это резервный путь, по которому электрический ток может протекать на землю по альтернативному пути из-за любого риска в электрической системе до того, как произойдет пожар или удар.

Проще говоря, «заземление» означает, что для прохождения электричества в землю был проложен путь с низким сопротивлением. «Заземленное» соединение включает соединение между электрическим оборудованием и землей через провод. После правильного подключения это обеспечивает вашим устройствам и приборам безопасное место для разряда избыточного электрического тока. Это потенциально предотвратит ряд рисков для электрического оборудования. Провод заземления в розетке — это, по сути, предохранительный клапан.

Мы только что запустили нашу серию Power Systems Engineering Vlog , и в этой серии мы собираемся поговорить о всевозможных различных исследованиях и комментариях по проектированию энергосистем.Мы рассмотрим различные блоги, написанные AllumiaX. Это весело, это весело, по сути, это видеоблог, и мы надеемся, что вы, , присоединитесь к нам и получите от этого пользу.

Национальный электротехнический кодекс определяет заземление как «проводящее соединение, намеренное или случайное, между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли». NEC также заявляет, что «земля не должна использоваться в качестве единственного заземляющего проводника оборудования». (NEC) ограничивает напряжение от молнии, скачков напряжения в сети и контакта с линией более высокого напряжения с помощью заземляющих проводов оборудования.

Заземление электрической системы — это разумный и самый простой способ сделать всю систему более безопасной и обеспечить защиту от колебаний в электропитании. Система должна быть идеально заземлена, если вы хотите иметь безопасную и надежную сеть и избегать рисков для жизни людей.

Необходимость заземленной системы в электрической сети:

Некоторые люди, особенно в крупных жилых или коммерческих проектах, думают, что установка системы заземления и любых дополнительных конструкций из электрических материалов будет сложной и трудоемкой, если будет выполнено своевременное техническое обслуживание.Это чрезвычайно опасная практика, которая может привести к поражению электрическим током в случае короткого замыкания внутренней проводки в приборе.

По словам Джона Гриззи Грзивача, почетного профессора Национального учебного института OSHA, «большинство несчастных случаев и смертельных случаев в связи с линейным контактом являются результатом отсутствия соответствующих средств индивидуальной защиты, изолированного покрытия линии или отсутствия соответствующего заземления. »

Общие риски незаземленной электрической системы — это поражение электрическим током и возгорание, поскольку электрический ток всегда проходит через путь с низким сопротивлением.Рабочие на рабочем месте подвергаются более высокому риску, когда незаземленное устройство разряжает избыточное электричество. В результате электричество передается человеку, причинившему травму или ведущему к смерти. Вероятность неисправности в незаземленной системе очень высока. Чтобы обеспечить максимальную защиту человека и электрического оборудования, убедитесь, что ваша система заземлена.

Обычно силовые системы подключаются к земле через емкость между линиями и землей, и нет прямого физического соединения между любыми линиями электропередач и землей.

Типы заземленных систем:

Ниже перечислены три важных типа систем заземления.

  • Незаземленные системы
  • Системы с заземлением через сопротивление
  • Системы с глухим заземлением

Когда система электроснабжения работает и нет преднамеренного подключения к земле, это называется незаземленной системой. Хотя эти системы были нормальными в 40-х и 50-х годах, они все еще используются сегодня.

В незаземленной системе ток замыкания на землю незначителен, поэтому его можно использовать для снижения риска поражения людей электрическим током. При возникновении неисправности два провода должны пропускать ток, который был назначен для трех проводов: повышение тока и напряжения вызовет нагрев и приведет к ненужному повреждению электрической системы.

Поскольку ток замыкания на землю незначителен, поиск любой неисправности становится очень трудным и трудоемким процессом. Альтернативные издержки отказа в незаземленной системе чрезвычайно высоки.

Системы с заземлением через сопротивление:

Заземление через сопротивление — это когда в системе электроснабжения имеется соединение между нейтралью и землей через резистор. Здесь резистор используется для ограничения тока короткого замыкания через нейтраль.

Существует два типа резистивного заземления: заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением: Ограничьте ток замыкания на землю до <10 ампер.

Заземление с низким сопротивлением: Ограничивает ток замыкания на землю в пределах от 100 до 1000 ампер.

Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где текущая работа процессов вмешивается в случае неисправности.

С другой стороны, системы заземления с низким сопротивлением (LRG) используются в системах среднего напряжения 15 кВ или менее и срабатывают защитные устройства при возникновении неисправности.

Системы с глухим заземлением:

Твердое заземление означает, что система электроснабжения напрямую подключена к земле, и в цепи нет преднамеренного добавления импеданса.Эти системы могут иметь большой ток замыкания на землю, поэтому повреждения легко обнаруживаются.

Обычно используется в промышленных и коммерческих энергосистемах. Есть резервные генераторы на случай, если в результате неисправности производственный процесс остановится.

Общие методы для систем электрического заземления:

Заземляющие пластины изготовлены из меди или оцинкованного железа (GI) и помещаются вертикально в землю в яме (заполненной слоями древесного угля и соли) глубиной более 10 футов.Для более мощной системы электрического заземления необходимо поддерживать влажность земли вокруг системы заземляющих пластин.

Национальный электротехнический кодекс требует, чтобы плиты заземления имели площадь поверхности не менее 2 футов, контактирующую с окружающей почвой. Черные металлы должны иметь толщину не менее 0,20 дюйма, а цветные материалы (медь) должны быть толщиной не менее 0,060 дюйма.

Трубки и стержни заземления:

Стальная оцинкованная труба (смесь соли и древесного угля) укладывается вертикально в почву путем просверливания для подключения заземляющих проводов.Длина и диаметр трубы в основном зависит от типа почвы и электроустановки (силы тока). Влажность почвы будет определять длину трубы для укладки в землю.

Медный стержень с оцинкованной стальной трубой вставляется вертикально в землю. Это очень похоже на заземление трубы. Здесь стержни имеют форму электродов, поэтому сопротивление земли снижается до определенного значения. Национальный электротехнический кодекс (NEC) требует, чтобы длина приводных штанг была не менее 8 футов, а длина 8 футов должна находиться в непосредственном контакте с почвой.

Фактор, влияющий на установку системы заземления:

Ниже перечислены факторы, влияющие на работу любого заземляющего электрода:

  • Материал, используемый в системе заземления
  • Заземляющий электрод (длина или глубина, диаметр, количество заземляющих электродов)
  • Почва (тип, влажность, температура, удельное сопротивление, количество соли)
  • Проектирование наземной системы
  • Местоположение котлована

Важность заземления электрических токов:

Защита от перегрузки:

На электрическом рабочем месте, когда по какой-либо причине происходит чрезмерный скачок напряжения, в системе вырабатывается электричество высокого напряжения, вызывающее поражение электрическим током и пожар.В этом сценарии существенно помогает заземленная система, вся эта избыточная электроэнергия уходит в землю. Эта простая форма защиты от перенапряжения потенциально может спасти рабочих, электрические приборы, данные и устройства, а не повредить все, что подключено к электрической системе.

Стабилизация напряжения:

Заземленная система гарантирует, что цепи не будут перегружены и не будут работать за счет распределения нужного количества мощности между источниками напряжения. Земля обеспечивает общую точку отсчета для стабилизации напряжения.

Защита от поражения электрическим током:

Общие риски незаземленной электрической системы — серьезное поражение электрическим током или возгорание. В худшем случае незаземленная система вызывает возгорание, повреждение оборудования, потерю данных и травмы или смерть персонала. Система с заземлением обеспечивает бесчисленные преимущества, устраняет опасность поражения электрическим током, защищает оборудование от напряжения, предотвращает электрические пожары, снижает затраты на ремонт и время простоя оборудования, снижает уровень электрического шума (колебания электрического сигнала).

В электрической системе поддержание заземления должно быть первоочередной задачей с точки зрения безопасности. Чтобы обеспечить безопасность сотрудников и рабочих мест, повсюду соблюдаются меры предосторожности. Некоторые советы по безопасности упомянуты ниже:

  • Перед тем, как начать, ознакомьтесь с правилами электробезопасности (см. OSHA 29 CFR 1910.269 (a) (3) и .269 (c))
  • Соединение с заземлением следует устанавливать первым и снимать последним при удалении заземления (OSHA 29CFR 1910.269 (n) (6)).
  • Убедитесь, что рабочее место электрооборудования оборудовано датчиками напряжения, токоизмерительными клещами и тестерами розеток.
  • Используйте устройство защиты от перенапряжения для отключения электропитания на рабочем месте при возникновении неисправности, устройства защиты кабеля для пола для предотвращения срабатывания электрического рабочего места и прерыватели цепи замыкания на землю для всех розеток для предотвращения поражения электрическим током.
  • Выберите правильное оборудование при заземлении электрической системы. Помните, что ваше оборудование настолько сильное, насколько самое слабое в системе.
  • Убедитесь, что рабочие знают, как правильно использовать каждый инструмент, особенно при работе с постоянным электрическим током.
  • Используйте автоматический выключатель или предохранитель с соответствующим номинальным током.
  • Регулярная чистка наземных комплектов продлевает срок их службы и продлевает их безопасность.
  • Никогда не используйте оборудование с изношенными шнурами, поврежденной изоляцией или сломанными вилками.
  • Осматривайте, обслуживайте и организуйте ремонт проводов в местах, где они входят в металлическую трубу, в прибор или в местах, где кабели в стене входят в электрическую коробку.

ВЫВОД:

Система электрического заземления обеспечивает безопасность персонала и оборудования при работе на линии. Помните, что обесточенная линия просто активируется в мгновение ока, поэтому электрическая система должна быть надежно заземлена в любое время.

Проверенный опыт нашей команды сертифицированных профессиональных инженеров поможет в оценке вашей системы и предоставит самые современные решения по заземлению для защиты вашей энергосистемы.Мы тесно сотрудничаем с нашими клиентами в сборе данных, моделировании системы, моделировании наихудших условий и отклонений, построении ступенчатого и контактного потенциалов и предоставлении рекомендаций в соответствии с последними промышленными стандартами.

Если у вас остались вопросы о системах заземления или наших услугах, оставьте их в комментариях ниже, и мы поможем вам ответить.

Основы систем заземления

Следует ли устанавливать систему заземления: незаземленную, сплошную или с высоким сопротивлением? Этот вопрос задают многие дизайнеры и установщики.Ответ на этот вопрос зависит от многих факторов. Чтобы принять правильное решение, вы должны полностью понимать плюсы и минусы каждого типа системы. Но сначала вы также должны понимать различные типы неисправностей, которые могут возникать в вашей системе, и с какой частотой они могут появляться.

Неисправности и отказы. Неисправности могут привести к повреждению оборудования и сооружений, увеличить затраты из-за потери производственного времени и привести к травмам сотрудников и даже к смертельному исходу. К четырем типам неисправностей относятся:

  • КЗ на землю, которые составляют около 98% всех отказов.

  • Междуфазные замыкания, на которые приходится около 1,5% всех сбоев.

  • Трехфазные неисправности, составляющие менее 0,5% всех неисправностей и часто вызываемые человеческим фактором. Невозможность удаления прерывателя заземления, оставление кластеров заземления в системах и подъем кузова грузовика в систему с разомкнутыми проводами могут вызвать этот тип неисправности.

  • Дуговые замыкания — это периодические отказы между фазами или фазой на землю. Это прерывистые токи, которые попеременно ударяют, гаснут и снова ударяют.

Теперь, когда мы рассмотрели различные типы неисправностей, которые могут появляться в электрической системе, пришло время сделать обзор трех основных типов систем заземления, с которыми вы можете столкнуться в полевых условиях.

Системы заземления.

1. Незаземлен. Электроэнергетические системы, которые работают без намеренного заземления, называются незаземленными. Хотя эти системы были стандартными в 40-х и 50-х годах, они используются до сих пор.Основное преимущество этого типа системы заземления заключается в том, что она обеспечивает низкое значение протекающего тока и надежность во время повреждения. К сожалению, этот тип системы также имеет ряд серьезных недостатков. Одним из основных недостатков незаземленной системы является сложность обнаружения замыкания на землю. Поиск неисправности — это трудоемкий процесс. По этой причине это часто делается по выходным, чтобы компании не приходилось прекращать нормальные производственные процессы. Кроме того, неисправность должна быть обнаружена и быстро устранена, потому что, если возникает вторая неисправность, неисправность действует как межфазное замыкание, расширяя процесс ремонта.

Преимущества

  • Предлагает низкое значение тока, протекающего при межфазном замыкании на землю (5 А или меньше).

  • Не представляет опасности вспышки для персонала в случае случайного замыкания линии на землю.

  • Обеспечивает непрерывную работу процессов при первом возникновении замыкания на землю.

  • Низкая вероятность перерастания дугового замыкания линия-земля в междуфазное или трехфазное замыкание.

Недостатки

  • Трудно обнаружить замыкание на землю.
  • Не контролирует переходные перенапряжения.

  • Стоимость обслуживания системы выше из-за трудозатрат на обнаружение замыканий на землю.

  • Второе замыкание на землю в другой фазе приведет к межфазному короткому замыканию.

2. С глухим заземлением. Этот тип системы заземления чаще всего используется в промышленных и коммерческих энергосистемах, где заземляющие проводники подключаются к заземлению без намеренного добавления импеданса в цепи.Главный вторичный автоматический выключатель — жизненно важный компонент, необходимый в этой системе, хотя он не имеет отношения к другим системам заземления. Этот компонент имеет большие размеры, потому что он должен выдерживать полный ток нагрузки трансформатора. В системах заземления этого типа часто используются резервные генераторы на случай, если из-за неисправности производственный процесс остановится. Когда это происходит, генераторы надежно заземляются. Однако важно отметить, что генераторы не рассчитаны на больший ток короткого замыкания, связанный с глухозаземленными системами.

Система с глухим заземлением имеет высокие значения тока в диапазоне от 10 кА до 20 кА. Этот ток протекает через заземляющие провода, строительную сталь, кабелепровод и водопроводные трубы, что может привести к серьезным повреждениям оборудования и остановке производственных процессов. Когда происходит замыкание на землю, искрение может вызвать вспышки — обычно в оконечной коробке. В этом замкнутом пространстве вода превращается в пар, вызывая оконечную коробку. Чтобы найти неисправность, все, что вам нужно сделать, это проследить за дымом.

Преимущества

  • Хороший контроль переходных перенапряжений между нейтралью и землей.

  • Позволяет пользователю легко находить неисправности.

  • Может питать нагрузку с нейтралью.

Недостатки

  • Создает серьезную опасность вспышки дуги.

  • Требуется покупка и установка дорогостоящего главного выключателя.

  • Незапланированная остановка производственного процесса.

  • Возможность серьезного повреждения оборудования во время неисправности.

  • Высокие значения тока короткого замыкания.

  • Вероятное перерастание однофазного короткого замыкания в трехфазное.

  • Создает проблемы в основной системе.

3. Высокоомное заземление. Системы заземления с высоким сопротивлением (HRG) обычно используются на заводах и фабриках, где непрерывная работа процессов имеет первостепенное значение в случае неисправности. Заземление с высоким сопротивлением обычно выполняется путем подключения стороны высокого напряжения однофазного распределительного трансформатора между нейтралью системы и землей и подключения резистора через вторичную обмотку низкого напряжения для обеспечения желаемого более низкого значения тока заземления на стороне высокого напряжения.В системе HRG обслуживание поддерживается даже при замыкании на землю. Если неисправность все-таки происходит, сигнальные индикаторы и световые индикаторы помогают пользователю быстро найти и исправить проблему или позволяют упорядоченно остановить процесс. Система HRG ограничивает ток замыкания на землю в пределах от 1 до 10 А.

Преимущества

  • Ограничивает ток замыкания на землю до низкого уровня.

  • Снижает опасность поражения электрическим током.

  • Управляет переходными перенапряжениями.

  • Снижает механические нагрузки в цепях и оборудовании.

  • Поддерживает непрерывность обслуживания.

  • Снижает падение напряжения в сети, вызванное возникновением и устранением замыкания на землю.

Недостатки

Заземление электрической системы — решение, с которым многие из нас сталкиваются ежедневно. Как мы видели, существует несколько методов для выполнения этой задачи, каждый из которых имеет свои преимущества и недостатки.Как проектировщик или специалист по установке, вы должны принять окончательное решение о том, когда лучше всего установить наиболее подходящую систему.

Джек Вудхэм, ИП, старший инженер-электрик в Jedson Engineering, Inc.

Примечание редактора: Информация, представленная в этой статье, основана на презентации, сделанной на симпозиуме по заземлению в октябре 2002 года и организованной Post Glover Resistors.

Электрическое заземление — методы и типы заземления

Электрическое заземление — компоненты, методы и типы заземления — Установка электрического заземления

Электрическое заземление, заземление, методы заземления, типы заземления, компоненты заземления и Его технические характеристики в отношении электрического заземления для электрических установок.

Что такое электрическое заземление или заземление?


Для соединения металлических (проводящих) частей электрического прибора или установок с землей (землей) называется Заземление или Заземление .

Другими словами, соединение металлических частей электрических машин и устройств с пластиной заземления или заземляющим электродом (который находится во влажной земле) через толстый проводящий провод (который имеет очень низкое сопротивление) в целях безопасности известен как Заземление .

«Заземление» или «заземление», скорее, означает подключение части электрического оборудования, такой как металлическое покрытие, клемма заземления розеточных кабелей, опорные провода, которые не проводят ток на землю. Заземление можно назвать соединением нейтральной точки системы электроснабжения с землей, чтобы избежать или минимизировать опасность при разряде электрической энергии.

Полезно знать

Разница между заземлением, заземлением и соединением

Позвольте мне устранить путаницу между заземлением, заземлением и соединением.

Заземление и Заземление — это те же термины, которые используются для заземления. Заземление — это обычно слово , используемое для заземления в стандартах Северной Америки , таких как IEEE, NEC, ANSI и UL и т. Д., В то время как заземление используется в европейских стандартах , странах Содружества и Великобритании, таких как IS и IEC и т. Д.

Слово Bonding используется для соединения двух проводов (а также проводов, труб или приборов вместе.Соединение известно как соединение металлических частей различных машин, которые не считаются проводящими электрический ток во время нормальной работы машин, чтобы привести их к одинаковому уровню электрического потенциала.

Почему важно заземление?

Основная цель заземления состоит в том, чтобы избежать или свести к минимуму опасность поражения электрическим током, пожара из-за утечки тока на землю по нежелательному пути и гарантировать, что потенциал токоведущего проводника не поднимется относительно земли, чем это предусмотрено. изоляция.

Когда металлическая часть электроприборов (части, которые могут проводить или пропускать электрический ток) вступает в контакт с токоведущим проводом, возможно, из-за неисправности установки или повреждения изоляции кабеля, металл становится заряженным, и на нем накапливается статический заряд. это . Если человек прикоснется к такому заряженному металлу , получится сильный шок.

Чтобы избежать таких случаев, системы электропитания и части приборов должны быть заземлены, чтобы переносить заряд непосредственно на землю. Вот почему нам необходимо электрическое заземление или заземление в электрических установках.

Ниже приведены основные потребности заземления.

  • Для защиты жизни людей, а также для обеспечения безопасности электрических устройств и приборов от тока утечки.
  • Для поддержания постоянного напряжения в исправной фазе (при отказе какой-либо одной фазы).
  • Для защиты электрических систем и зданий от освещения.
  • Служить обратным проводом в системе электрической тяги и связи.
  • Во избежание риска возгорания в электрических установках.
Различные термины, используемые в электрическом заземлении
  • Земля: Надлежащее соединение между электрическими системами установки через проводник с заглубленной в землю пластиной известно как Земля.
  • Заземленный: Когда электрическое устройство, прибор или системы проводки подключены к земле через заземляющий электрод, это называется заземленным устройством или просто «заземленным».
  • С твердым заземлением: Когда электрическое устройство, прибор или электрическая установка подключены к заземляющему электроду без предохранителя, прерывателя цепи или сопротивления / сопротивления, это называется «глухозаземленным».
  • Электрод заземления: Когда проводник (или токопроводящая пластина) закопан в землю для системы электрического заземления. Известно, что это электрод земли. Заземляющие электроды бывают различной формы, например, токопроводящая пластина, токопроводящий стержень, металлическая водопроводная труба или любой другой проводник с низким сопротивлением.
  • Провод заземления : Провод заземления или проводящая полоса, подключенная между электродом заземления и системой электрооборудования и устройствами в так называемом заземляющем проводе.
  • Провод заземления: Проводник, который подключается между различными электрическими устройствами и приборами, такими как распределительный щит, различные вилки и приборы и т. Д. Другими словами, провод между заземляющим проводом и электрическим устройством или прибором называется непрерывностью заземления. дирижер.Он может иметь форму металлической трубы (полностью или частично), металлической оболочки кабеля или гибкого провода.
  • Дополнительный основной заземляющий провод : Провод, подключенный между распределительным щитом и распределительным щитом, то есть этот провод относится к вспомогательным основным цепям.
  • Сопротивление заземления: Это полное сопротивление между заземляющим электродом и землей в Ом (Ом). Сопротивление заземления — это алгебраическая сумма сопротивлений проводника заземления, провода заземления, заземляющего электрода и земли.
Точки для заземления

Заземление в любом случае не выполняется. Согласно правилам IE и нормам IEE (Института инженеров-электриков),

  • Штырь заземления 3-контактных розеток осветительных вилок и 4-контактных вилок питания должен быть надежно и постоянно заземлен.
  • Все металлические кожухи или металлические покрытия, содержащие или защищающие любые линии электропитания или устройства, такие как трубы GI и кабелепроводы, закрывающие кабели VIR или ПВХ, выключатели в железной оболочке, распределительные щиты с предохранителями и т. Д., Должны быть заземлены (заземлены).
  • Рама каждого генератора, стационарных двигателей и металлических частей всех трансформаторов, используемых для управления энергией, должна быть заземлена двумя отдельными, но разными соединениями с землей.
  • В трехпроводной системе постоянного тока средние проводники должны быть заземлены на электростанции.
  • Фиксирующие провода, предназначенные для воздушных линий, должны быть заземлены путем подсоединения хотя бы одной жилы к заземляющим проводам.

Связанная статья: Тестирование электрических и электронных компонентов и устройств с помощью мультиметра

Компоненты системы заземления

Полная система электрического заземления состоит из следующих основных компонентов.

  • Провод заземления
  • Провод заземления
  • Электрод заземления
Компоненты системы электрического заземления
Заземление Проводник заземления 94 888 который соединяет металлические части электроустановки в целом, например кабелепровод, каналы, коробки, металлические корпуса переключателей, распределительных щитов, переключателей, предохранителей, регулирующие и управляющие устройства, металлические части электрических машин, такие как двигатели, генераторы, трансформаторы и металлический каркас, на котором установлены электрические устройства и компоненты. как заземляющий провод или провод заземления, как показано на рис.

Сопротивление заземляющего проводника очень низкое. Согласно правилам IEEE, сопротивление между клеммой заземления потребителя и проводом непрерывности заземления (на конце) не должно превышать 1 Ом. Проще говоря, сопротивление заземляющего провода должно быть меньше 1 Ом .

Размер заземляющего проводника или провода заземления зависит от размера кабеля , используемого в электрической цепи .

Размер заземляющего проводника

Площадь поперечного сечения непрерывного заземляющего проводника не должна быть меньше половины площади поперечного сечения самого толстого провода, используемого в установке электропроводки .

Обычно размер неизолированного медного провода, используемого в качестве проводника заземления, составляет 3SWG. Но имейте в виду, что не используйте менее 14SWG в качестве заземляющего провода. Медная полоса также может использоваться в качестве заземляющего проводника вместо неизолированного медного провода, но не используйте ее, пока производитель не порекомендует ее.

Провод заземления или заземляющее соединение

Проводник, соединяющий провод заземления и заземляющий электрод или пластину заземления, называется заземляющим стыком или «заземляющим проводом».Точка, где встречаются проводник непрерывного заземления и заземляющий электрод, известна как «точка соединения», как показано на рисунке выше.

Провод заземления — это завершающая часть системы заземления, которая подключается к заземляющему электроду (который находится под землей) через точку заземления.

В заземляющем проводе должно быть минимальное количество стыков, они должны быть меньше по размеру и прямые по направлению.

Как правило, медный провод можно использовать в качестве заземляющего провода, но медная полоса также используется для установки на больших площадях, и она может выдерживать высокий ток короткого замыкания из-за большей площади, чем медный провод.

Жестко вытянутый неизолированный медный провод также используется в качестве заземляющего провода. В этом методе все заземляющие проводники подключаются к общим (одной или нескольким) точкам подключения, а затем заземляющий провод используется для подключения заземляющего электрода (заземляющей пластины) к точке подключения.

Для увеличения запаса прочности при установке в качестве заземляющего провода используются два медных провода для соединения металлического корпуса устройства с заземляющим электродом или пластиной заземления. Т.е. если мы используем два заземляющих электрода или заземляющие пластины, то будет четыре заземляющих провода.Не следует учитывать, что два заземляющих провода используются как параллельные пути для протекания токов короткого замыкания, но оба пути должны работать должным образом, чтобы пропускать ток замыкания, поскольку это важно для большей безопасности.

Размер провода заземления

Размер или площадь провода заземления не должны быть меньше половины самого толстого провода, используемого в установке.

Наибольший размер провода заземления — 3SWG , минимальный — не менее 8SWG .Если используется провод 37 / .083 или ток нагрузки составляет 200A от напряжения питания, то рекомендуется использовать медную ленту вместо двойного заземляющего провода. Способы подключения заземляющего провода показаны на рис.

Примечание: мы опубликуем дополнительную статью о размере Земной плиты с простыми вычислениями… Следите за новостями.

Электрод заземления или пластина заземления

Металлический электрод или пластина, закапываемая в землю (под землей) и являющаяся последней частью системы электрического заземления.Проще говоря, последняя подземная металлическая (пластинчатая) часть системы заземления, которая связана с заземляющим проводом, называется заземляющей пластиной или заземляющим электродом.

В качестве заземляющего электрода можно использовать металлическую пластину, трубу или стержень, который имеет очень низкое сопротивление и безопасно переносит ток короткого замыкания на землю.

Размер заземляющего электрода

В качестве заземляющего электрода можно использовать как медь, так и железо.

Размер заземляющего электрода (в случае меди)

2 × 2 (два фута шириной и длиной) и толщиной 1/8 дюйма.. Т.е. 2 ‘x 2’ x 1/8 дюйма . ( 600x600x300 мм )

В случае железа

2 ′ x2 ′ x ¼ ” = 600x600x6 мм

Рекомендуется закапывать заземляющий электрод во влажную землю. Если это невозможно, налейте воду в трубу GI (оцинкованное железо), чтобы обеспечить влажность.

В системе заземления установите заземляющий электрод в вертикальное положение (под землей), как показано на рис. Кроме того, нанесите слой порошкообразного угля и извести толщиной футов (около 30 см) вокруг пластины заземления (не путайте с электродом заземления и пластиной заземления, поскольку они оба являются одним и тем же).

Это действие позволяет увеличить размер заземляющего электрода, что обеспечивает лучшую целостность заземления (система заземления), а также помогает поддерживать влажность вокруг пластины заземления.

P.S: Мы опубликуем пример расчета размеров заземляющих электродов… Оставайтесь на связи.

Полезно знать:

Не используйте кокс (после сжигания угля в печи для выделения всех газов и других компонентов оставшиеся 88% углерода называют коксом) или каменный уголь вместо древесного угля (древесный уголь), потому что это вызывает коррозию пластины заземления.

Т.к. уровень воды в разных районах разный; поэтому глубина установки заземляющего электрода также различается в разных областях. Но глубина для установки заземляющего электрода не должна быть меньше 10 футов (3 метра) и должна быть ниже 1 фут ( 304,8 мм ) от постоянного уровня воды.

Двигатели , Генератор , Трансформаторы и т. Д. Должны быть подключены к заземляющему электроду в двух разных местах.

Размер заземляющей пластины или электрода заземления для небольшой установки

При небольшой установке используйте металлический стержень (диаметр = 25 мм (1 дюйм) и длина = 2 м (6 футов) вместо пластины заземления для системы заземления. На 2 метра ниже поверхности земли. Для поддержания влажности поместите 25 мм (1 дюйм) смесь угля и извести вокруг пластины заземления.

Для эффективности и удобства вы можете использовать медные стержни от 12,5 мм (0,5 дюйма) до 25 мм. (1 дюйм) в диаметре и 4 м (12 футов) в длину.Обсудим способ установки стержневого заземления.

Методы и типы электрического заземления

Заземление можно выполнить разными способами. Ниже описаны различные методы, используемые для заземления (в домашней проводке или на заводе и другом подключенном электрическом оборудовании и машинах).

Пластинчатое заземление:

В системе пластинчатого заземления пластина из меди с размерами 60 см x 60 см x 3,18 мм (т. Е. 2 фута x 2 фута x 1/8 дюйма ) или оцинкованного железа (GI) размером 60 см x 60 см x 6,35 мм (2 фута x 2 фута x дюйма) закапывают вертикально в землю (земляная яма), высота которой не должна быть меньше 3 м. (10 футов) от уровня земли.

Для правильной системы заземления выполните шаги, указанные выше в (Введение в заземляющую пластину), чтобы поддерживать влажность вокруг заземляющего электрода или пластины заземления.

Заземление трубы:

Гальванизированная сталь и перфорированная труба утвержденной длины и диаметра помещаются вертикально во влажную почву в такой системе заземления.Это самая распространенная система заземления.

Размер используемой трубы зависит от силы тока и типа почвы. Размер трубы обычно составляет 40 мм (1,5 дюйма) в диаметре и 2,75 м (9 футов) в длину для обычной почвы или больше для сухой и каменистой почвы. Влажность почвы будет определять длину трубы, которую предстоит заглубить, но обычно она должна составлять 4,75 м (15,5 фута).

Стержневое заземление

это тот же метод, что и заземление труб. Медный стержень 12.Диаметр 5 мм (1/2 дюйма) или 16 мм (0,6 дюйма) из оцинкованной стали или полого сечения 25 мм (1 дюйм) трубы GI длиной более 2,5 м (8,2 фута) закапывают в землю в вертикальном положении вручную или с помощью пневматический молот. Длина электродов, встроенных в почву, снижает сопротивление земли до желаемого значения.

Система заземления с медным стержневым электродом
Заземление через Waterman

В этом методе заземления трубы водяного (оцинкованного GI) используются для заземления.Обязательно проверьте сопротивление труб GI и используйте зажимы заземления, чтобы минимизировать сопротивление для правильного заземления.

Если в качестве заземляющего провода используется многожильный провод, очистите концы жил провода и убедитесь, что он находится в прямом и параллельном положении, которое затем можно плотно подсоединить к трубе водяного коллектора.

Заземление из ленты или проволоки:

При этом способе заземления используйте зачистные электроды сечением не менее 25 мм x 1.6 мм (1 дюйм x 0,06 дюйма) закапывают в горизонтальные траншеи минимальной глубиной 0,5 м. Если используется медь с поперечным сечением 25 мм x 4 мм (1 дюйм x 0,15 дюйма) и размером 3,0 мм, 2 , если это оцинкованное железо или сталь.

Если используются круглые проводники, их поперечное сечение не должно быть слишком маленьким, скажем, менее 6,0 мм. 2 , если это оцинкованный чугун или сталь. Длина проводника, закопанного в землю, обеспечит достаточное сопротивление заземления, и эта длина не должна быть менее 15 м.

Общий метод установки электрического заземления (шаг за шагом)

Обычный метод заземления электрического оборудования, устройств и приборов следующий:

  1. Прежде всего, выройте яму размером 5×5 футов (1,5 × 1,5 м) около 20-30 футов (6-9 метров) в земле. (Обратите внимание, что глубина и ширина зависят от природы и структуры грунта)
  2. Закопайте подходящую медную пластину (обычно 2 x 2 x 1/8 дюйма (600 x 600 x 300 мм) в этой яме в вертикальном положении.
  3. Надежный заземляющий провод через гайки с двух разных мест на пластине заземления.
  4. Используйте два провода заземления с каждой пластиной заземления (в случае двух пластин заземления) и затяните их.
  5. Для защиты стыков от коррозии нанесите смазку вокруг них.
  6. Соберите все провода в металлическую трубу от заземляющего электрода (ов). Убедитесь, что труба находится на высоте 1 фута (30 см) над поверхностью земли.
  7. Чтобы поддерживать влажность вокруг земной плиты, поместите 30-сантиметровый слой порошкообразного древесного угля (порошкообразного древесного угля) и смеси извести вокруг земной плиты вокруг земной плиты.
  8. Используйте болты с наконечником и гайкой, чтобы плотно подсоединить провода к опорным плитам машин. Каждая машина должна быть заземлена в двух разных местах. Минимальное расстояние между двумя заземляющими электродами должно составлять 10 футов (3 м).
  9. Провод заземления, который соединен с корпусом и металлическими частями всей установки, должен быть плотно подсоединен к заземляющему проводу. Обязательно используйте непрерывность, используя тест на непрерывность.
  10. Наконец (но не в последнюю очередь) проверьте всю систему заземления с помощью тестера заземления.Если все идет по планировке, то яму засыпьте землей. Максимально допустимое сопротивление заземления составляет 1 Ом. Если оно больше 1 Ом, увеличьте размер (не длину) заземляющего провода и проводов заземления. Держите внешние концы труб открытыми и время от времени поливайте водой, чтобы поддерживать влажность вокруг заземляющего электрода, что важно для лучшей системы заземления.
Спецификация SI для заземления

Ниже приведены различные спецификации относительно заземления, рекомендованные индийскими стандартами.Вот несколько;

  • Заземляющий электрод не должен располагаться (устанавливаться) близко к зданию, система заземления которого заземляется, на расстоянии не менее 1,5 м.
  • Сопротивление заземления должно быть достаточно низким, чтобы протекание тока было достаточным для срабатывания защитных реле или срабатывания предохранителей. Это значение непостоянно, так как оно меняется в зависимости от погоды, потому что оно зависит от влажности (но не должно быть меньше 1 Ом).
  • Заземляющий провод и заземляющий электрод будут из одного материала.
  • Заземляющий электрод всегда следует размещать в вертикальном положении внутри земли или ямы, чтобы он мог контактировать со всеми различными слоями земли.

Связанные сообщения:

Опасности незаземления системы питания

Как подчеркивалось ранее, заземление предоставляется в порядке

  • Во избежание поражения электрическим током
  • Во избежание риска возгорания в результате тока утечки на землю через нежелательный путь и
  • Чтобы гарантировать, что ни один токопроводящий проводник не поднимется до потенциала по отношению к общей массе земли, чем его проектная изоляция.

Однако, если чрезмерный ток не заземлен, приборы будут повреждены без помощи предохранителя. Обратите внимание, что на их генерирующих станциях происходит заземление чрезмерного тока, поэтому заземляющие провода несут очень небольшой ток или совсем не пропускают ток. Следовательно, это означает, что нет необходимости заземлять какой-либо из проводов (токоведущих, заземляющих и нулевых), содержащихся в ПВХ. Заземлить провод под напряжением — катастрофа.

Я видел человека, убитого просто потому, что провод под напряжением был отрезан от верхней опоры и упал на землю, пока земля была влажной.Чрезмерный ток заземляется на генерирующих станциях, и если заземление вообще неэффективно из-за короткого замыкания, на помощь придут прерыватели замыкания на землю. Предохранитель помогает только тогда, когда передаваемая мощность превышает номинальную мощность наших приборов, он блокирует ток от достижения наших приборов, сгорая и защищая наши приборы в процессе.

В наших электроприборах, если чрезмерные токи не заземлены, мы испытаем сильный ток. Заземление в электроприборах происходит только тогда, когда возникает проблема, и оно должно спасти нас от опасности.Если в электронной установке металлическая часть электроприбора вступает в прямой контакт с проводом под напряжением, что может быть вызвано, возможно, неисправностью установки или иным образом, металл будет заряжен и на нем будет накапливаться статический заряд.

Если в этот момент вы прикоснетесь к металлической части, вас поразит удар. Но если металлическая часть прибора заземлена, заряд будет передаваться на землю, а не накапливаться на металлической части прибора. Ток не течет через заземляющие провода в электроприборах, он протекает только тогда, когда есть проблема, и только для того, чтобы направить нежелательный ток на землю, чтобы защитить нас от сильного удара.

Кроме того, если токоведущий провод случайно (в неисправной системе) касается металлической части машины. Теперь, если человек коснется этой металлической части машины, то через его тело будет протекать ток на землю, следовательно, он получит удар током (удар током), что может привести к серьезным травмам, вплоть до смерти. Вот почему так важно заземление?

Электрическое заземление и заземление… .. Продолжение следует…

Пожалуйста, подпишитесь ниже, если вы хотите получить следующий пост о Заземление / заземление , например:

  • Рассчитайте размер заземляющего проводника, заземления Свинцовые и заземляющие электроды для различных электрических устройств и оборудования, таких как двигатели, трансформаторы, домашняя электропроводка и т. Д., Путем простых расчетов
  • Цепь заземления и ток замыкания на землю
  • Защита системы заземления и дополнительных устройств, используемых в системе заземления / заземления
  • Пункты, которые следует запомнить при обеспечении заземления
  • Важные инструкции по правильной системе заземления
  • Правила электроснабжения относительно заземления
  • Как проверить сопротивление заземления с помощью тестера заземления
  • Как проверить сопротивление контура заземления с помощью амперметра и вольтметра
  • Многократное защитное заземление
  • И многое другое….

Похожие сообщения:

▷ 10 самых известных систем заземления для промышленных секторов

В прошлый раз мы поделились статьей о 10 лучших способах повышения энергоэффективности и производительности насосных систем.

А вот еще один пересекающийся топ-10 самых известных систем заземления для промышленных секторов…

… Но перед этим давайте сначала разберемся, что такое заземление / земля.

Заземление

Заземление, также называемое землей или нулевым потенциалом, представляет собой процедуру, которая включает в себя заземление проводника на землю (нулевой потенциал) от сети, чтобы позволить избытку электричества течь в него во время внезапных скачков напряжения.

Виды источников питания

В зависимости от переходных процессов напряжения, рабочих нагрузок и типа нагрузки, каждая электрическая система может требовать различных методов заземления.

Типы источников Техника заземления
Коммунальные службы Зависит от конфигурации вторичной проводки подстанции Трансформатор
Генератор Зависит от конфигурации обмотки статора
Трансформатор Зависит от конфигурации вторичной обмотки
Статический преобразователь мощности Зависит от конфигурации вторичной обмотки

Крупномасштабные электрические системы, работающие в промышленности, относятся к вышеупомянутым четырем категориям.

А теперь давайте взглянем на самые известные системы заземления для промышленного сектора:

1. Заземлен

Эта процедура включает нормальное заземление от сети к земле с использованием эффективного проводника, в этом случае для этой цели будет использоваться обычный медный провод.

Этот тип системы заземления отлично работает с электрооборудованием, работающим при нормальных нагрузках и в обычных условиях эксплуатации, то есть расположенным на равнинах, то есть не на холмах, где электрическое оборудование подвержено ударам молнии.

2. с эффективным заземлением

Для этого типа системы заземления требуются заземляющие соединения с удовлетворительным низким уровнем импеданса. Подходит для нагрузок, работающих примерно от 120 В до 240 В.

Необходимо следить за тем, чтобы допустимая токовая нагрузка заземляющего провода была достаточной для выдерживания этого типа нагрузки, чтобы предотвратить любые электрические опасности.

3. Заземленный провод

Эта процедура включает в себя заземление шины заземления с помощью проводника заземляющего электрода, как показано на рисунке.

Этот тип заземления подходит как для электрических систем, так и для электрических цепей, работающих при средних нагрузках.

4. Прочно заземленный

Здесь процедура заземления такая же, как и выше, за исключением того, что сопротивление заземления отсутствует.

Также нет устройства импеданса. Это потому что; Заземляющее соединение в системе заземления этого типа является прочным и глубоко уложено в землю в месте, где удельное сопротивление земли для проведения электричества минимально.

5. Заземляющий провод

В этом случае и электрооборудование, и цепь заземления заземляются с помощью проводов.

Этот тип заземления необходим, когда существует высокий риск изменения разности потенциалов в рабочей электрической цепи.

6. Провод заземления оборудования

Этот тип заземления включает использование заземляющих электродов, которые подключаются к нетоковедущим клеммам (металлам) электрической системы, дорожкам качения и другим металлическим частям оборудования для эффективного прохождения переходных процессов напряжения через электроды для эффективной защиты.

Этот метод часто применяется для заземления дорогостоящего электрооборудования и отдельных электрических систем.

7. Эффективный путь тока замыкания на землю

Для реализации такого типа системы заземления необходимо построить электрически постоянный токопроводящий путь с низким уровнем импеданса, способный проводить ток в случае замыкания на землю.

Этот путь передает ток от точки, где произошло замыкание на землю, к источнику электропитания, предотвращая любые повреждения оборудования и персонала, работающего с ним.

8. Провод заземляющего электрода

В этом методе проводники электродов подключаются к заземляющему электроду оборудования и, в свою очередь, снова подключаются к системе заземления всей электрической системы. Это необходимо для гарантии того, что в случае выхода из строя одной системы заземления другая заменит ее.

Кроме того, это поможет большим перепадам напряжения в цепи проходить быстрее, чем в одноэлектродной системе. Как правило, этот метод используется для заземления электрических систем, работающих с более высокими нагрузками, которые подвержены большим скачкам напряжения.

9. Защита оборудования от замыканий на землю

Эта система заземления предназначена для обеспечения безопасности электрооборудования от сильно повреждающих «токов замыкания на землю».

Эта система работает путем размыкания всех незаземленных проводов оборудования в цепи, в которой протекают токи короткого замыкания.

10. Прерыватель цепи замыкания на землю

Это специальное устройство, специально сконструированное для заземления электрических систем, работающих при критических нагрузках.Его основная цель — защитить персонал, работающий в помещениях с электрической системой, от нежелательных происшествий, таких как поражение электрическим током.

Хотя это дорогостоящий способ заземления электрической системы, крайне важно, чтобы промышленность использовала этот вид заземления в критических электрических соединениях, где присутствие персонала требуется регулярно.

0 comments on “Виды заземляющих устройств: классификация, технические характеристики и особенности монтажа

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *