Всеобщие свойства живых систем – 5. Основные свойства живых систем

2. Признаки и свойства живого

Живые системы имеют общие признаки:
1. единство химического состава свидетельствует о единстве и связи живой и неживой материи.

Пример:

в состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в других количественных соотношениях (т. е. живые организмы обладают способностью избирательного накопления и поглощения элементов). Более \(90\) % химического состава приходится на четыре элемента: С, O, N, H, которые участвуют в образовании сложных органических молекул (белков, нуклеиновых кислот, углеводов, липидов).

2. Клеточное строение (Единство структурной организации). Все существующие на Земле организмы состоят из клеток. Вне клетки жизни нет.
3. Обмен веществ (Открытость живых систем). Все живые организмы представляют собой «открытые системы».

Открытость системы — свойство всех живых систем, связанное с постоянным поступлением энергии извне и удалением продуктов жизнедеятельности (организм жив, пока в нём происходит обмен веществами и энергией с окружающей средой).

Обмен веществ — совокупность биохимических превращений, происходящих в организме и других биосистемах.

Обмен веществ состоит из двух взаимосвязанных процессов: синтеза органических веществ (ассимиляции) в организме (за счёт внешних источников энергии — света и пищи) и процесса распада сложных органических веществ (диссимиляции) с выделением энергии, которая затем расходуется организмом. Обмен веществ обеспечивает постоянство химического состава в непрерывно меняющихся условиях окружающей среды.
4. Самовоспроизведение (Репродукция) — способность живых систем воспроизводить себе подобных.  Способность к самовоспроизведению является важнейшим свойством всех живых организмов. В её основе лежит процесс удвоения молекул ДНК с последующим делением клеток.
5. Саморегуляция (Гомеостаз) — поддержание постоянства внутренней среды организма в непрерывно меняющихся условиях окружающей среды. Любой живой организм обеспечивает поддержание гомеостаза (постоянства внутренней среды организма). Стойкое нарушение гомеостаза ведёт к гибели организма.

6. Развитие и рост. Развитие живого представлено индивидуальным развитием организма (онтогенезом) и историческим развитием живой природы (филогенезом).

  • В процессе индивидуального развития постепенно и последовательно проявляются индивидуальные свойства организма и осуществляется его рост (все живые организмы растут в течение своей жизни).
  • Результатом исторического развития является общее прогрессивное усложнение жизни и всё многообразие живых организмов на Земле. Под развитием понимают как индивидуальное развитие, так и историческое развитие.

7. Раздражимость — способность организма избирательно реагировать на внешние и внутренние раздражители (рефлексы у животных; тропизмы, таксисы и настии у растений).

8. Наследственность и изменчивость представляют собой факторы эволюции, так как благодаря им возникает материал для отбора.

  • Изменчивость — способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и/или изменений наследственного аппарата (молекул ДНК).
  • Наследственность — способность организма передавать свои признаки последующим поколениям.

9. Способность к адаптациям — в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
10. Целостность (непрерывность) и дискретность (прерывность). Жизнь целостна и в то же время дискретна. Эта закономерность присуща как структуре, так и функции.

Любой организм представляет собой целостную систему, которая в то же время состоит из дискретных единиц — клеточных структур, клеток, тканей, органов, систем органов. Органический мир целостен, поскольку все организмы и происходящие в нём процессы взаимосвязаны. В то же время он дискретен, так как складывается из отдельных организмов.

Отдельные свойства, перечисленные выше, могут быть присущи и неживой природе.

Пример:

для живых организмов характерен рост, но ведь и кристаллы растут! Хотя этот рост не имеет тех качественных и количественных параметров, которые присущи росту живого.

Пример:

для горящей свечи характерны процессы обмена и превращения энергии, но она не способна к саморегуляции и самовоспроизведению.

 

Следовательно, все перечисленные выше свойства характерны для живых организмов только в своей совокупности.
0003-002-Priznaki-zhivogo.png

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://900igr.net/kartinki/geografija/Krugovoroty-v-biosfere/005-Priznaki-zhivogo.html

www.yaklass.ru

Биология для студентов — 06. Основные свойства живых систем

Жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии.

Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты не живой природы. Однако соотношение элементов в живом и неживом не одинаково. В живых организмах 98% химического состава приходится на четыре элемента:

  • углерод,
  • кислород,
  • азот ,
  • водород.

Обмен веществ и энергии. Важный признак живых систем – использование внешних источников энергии в виде пищи, света и др. Через живые системы проходят потоки веществ и энергии, вот почему они открытые. Основу обмена веществ составляют взаимосвязанные и сбалансированные процессы ассимиляции, т.е. процессы синтеза веществ в организме, и диссимиляции, в результате которых сложные вещества и соединения распадаются на простые и выделяется энергия, необходимая для реакций биосинтеза. Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма.

Самовоспроизведение. Существование каждой отдельно взятой биологической системы ограничено временем; подержание жизни связано с самовоспроизведением. Любой вид состоит из особей, каждая из которых рано или поздно перестаёт существовать, но благодаря самовоспроизведению жизнь вида не прекращается. В основе само воспроизведения лежит образование новых молекул и структур, которое обусловлено информацией, заложенной в нуклеиновой кислоте ДНК. Самовоспроизведение тесно связано с явлением наследственности:

любое живое существо рождает себе подобных. Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Она обусловлена относительной стабильностью, т.е. постоянством строение ДНК. 

Изменчивость – свойство, противоположное наследственности. Оно связано с приобретением организмами новых признаков и свойств. В основе наследственной изменчивости лежат изменения биологических матриц – молекул ДНК. Изменчивость создает разнообразный материал для отбора наиболее приспособленных к конкретным условиям существования, что, в свою очередь приводит к появлению новых форм жизни, новых видов живых организмов. 

Способность к росту и развитию. – свойство, присущее любому живому организму. Расти – значит увеличиваться в размерах и массе с сохранением общих черт строения. Рост сопровождается развитием. В результате развития возникает новое качественное состояние объекта. Развитие живой формы материи представлено индивидуальным и историческим развитием. На протяжении индивидуального развития постепенно и последовательно проявляются все свойства организмов. Историческое развитие сопровождается образованием новых видов и прогрессивным усложнением жизни. В результате исторического развития возникло все многообразие жизни на Земле.

Раздражимость – неотъемлемая черта, присущая всему живому; она является выражением одного из свойств всех тел природы – свойства отражения. Оно связано с передачей информации из внешней среды любой биологической системе. Это свойство выражается реакциями живых организмов на внешнее воздействие. Благодаря раздражимости организмы избирательно реагируют на условия окружающей среды.

Дискретность – всеобщее свойство материи. Любая биологическая система состоит из отдельных, но тем не менее взаимодействующих частей, образующих структурно-функциональное единство.

Специфика живого заключается в том, что ни один из перечисленных признаков (а их число составляет по данным разных ученых до 20-30) не является самым главным, определяющим для того, чтобы систему можно было назвать целостной живой системой. Только наличие всех этих признаков, вместе взятых позволяет провести границу между живым и неживым в природе. Единственный способ дать определение живому – перечислить основные свойства живых систем.

Одной из важнейших концепций, специфичной для биологии XX в., стала концепция структурных уровней организации живой природы, находящихся между собой в отношениях иерархического соподчинения. Эта точка зрения – результат применения системного подхода, родившегося в XX веке.

vseobiology.ru

2. Живая система-определение и свойства. Уровни организации живых систем.

Живая система — единство, состоящее из самоорганизующихся, самовоспроизводящихся элементов, активно взаимодействующих с окружающей средой, имеющее специфические признаки присущие живым существам.

Свойства:

  1. Целостность и Дискретность (Живая система дискретна, так как состоит из отдельных, но взаимодействующих между собой частей, которые в свою очередь также являются живыми системами.)

  2. Структурированность

  3. Противоэнтропийная направленность

  4. Открытость живых систем. (Используют внешние источники энергии в виде пищи, света и т.д)

  5. Единство химического состава (В живых организмах – 98% химического состава приходится на шесть элементов: кислород (–62%), углерод (–20%), водород (–10%), азот (–3%), кальций (–2,5%), фосфор (–1,0%))

  6. Саморегуляция и самоорганизация (Саморегуляция – свойство живых систем устанавливать и поддерживать на определённом уровне те или иные физиологические показатели системы. Самоорганизация – свойство живой системы приспособляться к изменяющимся условиям за счет изменения структуры своей системы управления.)

  7. Самовоспроизведение

  8. Изменчивость

  9. Способность к росту и развитию

  10. Раздражимость

Уровни организации:

  1. Макромолекулярный (Например: Биополимеры)

  2. Субклеточный (Клеточные компоненты)

  3. Клеточный

  4. Тканевой

  5. Организменный (организм, органы)

  6. Популяционно-видовой

  7. Биогеоценотический (экосистемный)

3.Отличия про- и эукариотической клеточной организации. Особенности экспрессии ге­нов у про- и эукариот.

Структурно-функциональная организация про- и эукариотических клеток.

Клетки прокариотического типа имеют особенно малые размеры ( не более 0,5-3,0мкм в диаметре) . у них нет морфологически обособленного ядра, т.к. ядерный материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат образован единственной кольцевой хромосомой, которая лишена основных белков- гистонов. У прокариот отсутствует клеточный центр. Для них не типичны внутриклеточные перемещения цитоплазмы и амебоидное движение. Время , необходимое для образования двух дочерних клеток ( время генерации), сравнительно мало и исчисляется десятками минут. Прокариотические клетки не делятся митозом. К этому типу клеток относятся бактерии и сине-зеленые водоросли. Эукариоты Особенностью организмов простейших является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма. Таковы (например, у инфузорий) цитостом, цитофарингс и порошица, аналогичные пищеварительной системе, и сократительные вакуоли, аналогичные выделительной системе. Клетки многоклеточных организмов имеют оболочку. Плазмолемма ( клеточная оболочка) образована мембраной покрытой снаружи слоем гликокаликса. В клетке выделяют ядро и цитоплазму. В ядре есть оболочка, ядерный сок, ядрышко , хроматин. Цитоплазма представлена основным веществом( матрикс, гиалоплазма), в котором распределены включения и органеллы( шероховатая и гладкая эпс, пластинчатый комплекс, митохондрии, рибосомы, полисомы, лизосомы, пероксисомы, микрофибриллы, микротрубочки, центриоли клеточного центра. В растительных клетках выделяют еще и хлоропласты. Экспрессия генов- это совокупность процессов в клетке обеспечивающих реализацию информации гена в признак.

а. Этапы экспрессии генов у эукариот. В сформированном организме эукариот экспрессия структурных генов несущих информацию о структуре белка состоит из нескольких этапов: транскрипции – процессинга – трансляции – фолдинга – биохимического процесса, участником которого является белок-фермент – физиологической реакции и признака.

Транскрипция — процесс синтеза РНК с использованием ДНКв качестве матрицы,

Процессинг-процесс формирования зрелых молекул РНК из их предшественников.

Трансляция — процесс синтезабелкаизаминокислотна матрицеинформационной (матричной) РНК(иРНК, мРНК), осуществляемыйрибосомой.

Фолдинг-процесс спонтанного сворачивания полипептидной цепи в уникальную нативную пространственную структуру (так называемая третичная структура).

Но для некоторых структурных генов, кодирующих ферменты, этапы экспрессии могут быть другие. Например, может отсутствовать фолдинг, может отсутствовать физиологический процесс и биохимический цикл может сразу реализоваться в какой-либо признак и т.д.

б. Особенности экспрессии генов у прокариот сходны с таковыми для эукариот. Однако есть отличия

· В реализации генетической информации у прокариот отсутствует этап называемый процессинг.

· Поскольку в прокариотической клетке отсутствует пространственное разграничение ядра и цитоплазмы, а так же по ряду других причин у прокариот процессы транскрипции иРНК и трансляции с этой иРНК информации происходят одновременно.

· Цепочка реализации гена в признак у прокариот короче т.к. упрощён (или отсутствует) громоздкий аппарат физиологических реакций.

studfile.net

1.2. Признаки и свойства живого

1.2. Признаки и свойства живого

Биологическая система

– целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации: биологические макромолекулы, субклеточные органеллы, клетки, органы, организмы, популяции.

Признаки биологических систем

– критерии, отличающие биологические системы от объектов неживой природы:

1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. В неживой природе самыми распространенными элементами являются кремний, железо, магний, алюминий, кислород. В живых же организмах 98% элементарного (атомного) состава приходится на долю всего четырех элементов: углерода, кислорода, азота и водорода.

2. Обмен веществ. К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: например, смыв почвы, превращение воды в пар или лед и др. У живых же организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция – см. дальше), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ.
Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.

3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных. Процесс самовоспроизведения осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.

4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Наследственность обеспечивается стабильностью ДНК и воспроизведением ее химического строения с высокой точностью. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются хромосомы и гены.

5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней. Изменчивость поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.

6. Рост и развитие. Способность к развитию – всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, изменяется его состав или структура. Развитие живой формы материи представлено индивидуальным развитием (онтогенезом) и историческим развитием (филогенезом). Филогенез всего органического мира называют эволюцией.
На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. В основе этого лежит поэтапная реализация наследственных программ. Индивидуальное развитие часто сопровождается ростом – увеличением линейных размеров и массы всей особи и ее отдельных органов за счет увеличения размеров и количества клеток.
Историческое развитие сопровождается образование новых видов и прогрессивным усложнением жизни. В результате эволюции возникло все многообразие живых организмов на Земле.

7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить.
Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой, называются рефлексами. Организмы, не имеющие нервной системы, лишены рефлексов, и их реакции выражаются в изменении характера движения (таксисы) или роста (тропизмы).

8. Дискретность (от лат. discretus – разделенный). Любая биологическая система состоит из отдельных изолированных, то есть обособленных или отграниченных в пространстве, но тем не менее, тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.
Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.

9. Саморегуляция (авторегуляция) – способность живых организмов поддерживать постоянство своего химического состава и интенсивность физиологических процессов (гомеостаз). Саморегуляция осуществляется благодаря деятельности нервной, эндокринной и некоторых других регуляторных систем. Сигналом для включения той или иной регуляторной системы может быть изменение концентрации какого-либо вещества или состояния какой-либо системы.

10. Ритмичность – свойство, присущее как живой, так и неживой природе. Оно обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.
Ритмичность проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Хорошо известны суточные ритмы сна и бодрствования у человека, сезонные ритмы активности и спячки у некоторых млекопитающих и многие другие. Ритмичность направлена на согласование функций организма с периодически меняющимися условиями жизни.

11. Энергозависимость. Биологические системы являются «открытыми» для поступления энергии. Под «открытыми» понимают динамические, т.е. не находящиеся в состоянии покоя системы, устойчивые лишь при условии непрерывного доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи. В большинстве случаев организмы используют энергию Солнца: одни непосредственно – это фотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).

biology100.ru

Живые системы и их особенности

Свойства живых систем

Живые системы обладают рядом свойств, которые отличают их от систем неживой природы. Такими особенностями являются:

  • обмен веществ
  • единство химического состава
  • наследственность
  • репродукция
  • развитие и рост
  • изменчивость
  • ритмичность
  • дискретность
  • раздражимость
  • гомеостаз
  • энергозависимость.

Характеристика особенностей

Единство химического состава означает, что в составе всех живых организмов находятся те же химические элементы, что и в объектах неживой природы. Но соотношение этих элементов в живых и неживых объектах отличается. Состав объектов неживой природы представлен, кроме кислорода, алюминием, магнием, железом, кремнием и т.д. А живые организмы на 98% состоят из четырех элементов – кислорода, углерода, водорода и азота.

К обмену веществ с окружающей средой способны все живые организмы. Они поглощают из окружающей среды элементы, которые необходимы для питания, и выделяют продукты жизнедеятельности. Однако, в случае с небиологическом круговоротом веществ они лишь перемещаются с места на место либо меняется их агрегатное состояние, тоу живых организмов обмен веществ происходит на качественно другом уровне, включая процессы распада и синтеза. В процессе целого ряда разных сложных химических превращений поглощенные из окружающей среды вещества трансформируются в вещества, из которых строится тело живого организма. Эти процессы называются ассимиляцией. В результате обратных процессов – диссимиляции, происходит распад сложных соединений на простые. В этом случае выделяется энергия, которая необходима для реакции биосинтеза. Поэтому процесс диссимиляции называется энергетическим обменом. Благодаря обмену веществ обеспечивается постоянство химического состава, а также структуры всех составляющих частей организма, тем самым обеспечивается постоянство их функционирования.

Еще одной особенностью живых систем является способность к самовоспроизведению. Самовоспроизведение, размножение, репродукция – это способность организмов производить себе подобных. Процесс репродукции осуществляется на всех уровнях организации живой материи.

Такое свойство живых систем, как наследственность, состоит в способности живых организмов к передаче своих свойств, особенностей развития, признаков из поколения в поколение. Свойство наследственности обусловливается стабильностью, которая основана на постоянстве строения ДНК.

Противоположным наследственности, но тесно с ней связанным свойством является изменчивость. Под изменчивостью понимается способность организмов приобретать новые свойства и признаки. Изменчивость является основой для естественного отбора, что приводит к возникновению новых видов живых организмов и появлению новых форм жизни.

Следующей особенностью живых систем является рост и развитие. Развитие означает необратимое направленное изменение структуры объектов или их состава. Развитие живых форм представлено онтогенезом и филогенезом, то есть индивидуальным и историческим развитием. В ходе развития проявляется специфическая структурная организация индивидуальной особи, а репродукция макромолекул, клеток и их элементарных структур вызывает увеличение биомассы. Результатом филогенеза является многообразие живого на Земле.

Раздражимость – еще одно свойство живых систем. Любой организм связан с окружающей средой, он получает из нее питательные вещества, взаимодействует с другими организмами, подвергается влиянию факторов окружающей среды и т.д. В ходе эволюции у организмов выработалось и укрепилось свойство реагировать избирательно на воздействия извне. Такое свойство называется раздражимостью. Любое изменение условий окружающей среды является раздражением для организма, реакция организма на раздражители показывает его чувствительность. Реакция многоклеточных организмов на внешний раздражитель называется рефлексом, и происходит посредством нервной системы.

Определение 1

Под словом дискретность понимается свойство живых систем проявляться в виде разделенных, дискретных форм.

Отдельно взятый организм либо какая-то другая биологическая система состоит из отдельных, обособленных либо ограниченных в пространстве, но при этом тесно взаимодействующих частей, которые образуют структурно-функциональное единство. Каждый вид включает отдельные особи. Каждая особь состоит из органов, которые состоят из клеток. Свойство дискретности живой системы выступает в качестве основы структурной упорядоченности и способности самообновления. Дискретность вида обусловливает возможность его эволюции посредством устранения от размножения либо гибели неприспособленных особей и сохранение организмов с признаками, полезными для выживания.

Определение 2

Ритмичность живых систем означает периодические изменения интенсивности физиологических функций.

Период колебаний может быть разным, от секунд до столетий. Например, известны суточные ритмы бодрствования и сна; сезонные ритмы активности у ряда животных и т.д. Ритмичность обеспечивает согласование функций организма со средой его обитания. Другими словами, ритмичность – приспособление организма к постоянно изменяющимся условиям окружающей среды.

Живые системы являются относительно энергозависимыми. Все живые организмы представляют собой открытые системы, которые устойчивы только при условии непрерывного доступа энергии и материи из окружающей среды. В отличие от неживых объектов, живые организмы от окружающей среды ограничены оболочками – у многоклеточных организмов это покровная ткань, а у одноклеточных — клеточная мембрана. Оболочки сводят к минимуму потерю веществ и обеспечивают поддержание пространственного единства живой системы.

Определение 3

Под гомеостазом понимается совокупность приспособительных реакций организма, которые направлены на сохранение динамического состояния его внутренне среды – кровяного давления, температуры и т.д.

Принцип отрицательной обратной связи является основой гомеостаза. Саморегуляция позволяет живым системам сохранят стационарное состояние в непрерывно меняющейся окружающей среде, и обеспечивает их выживание.

spravochnick.ru

Таблица к уроку «Основные свойства живых систем»

Таблица «Основные свойства живых систем»

Свойство

Проявление свойства

ЕДИНСТВО

ХИМИЧЕСКОГО

СОСТАВА

Все живые организмы состоят из тех же химических элементов, что и объекты неживой природы, но соотношение элементов в неживом и живом неодинаково. В живых организмах 98% химического состава приходится на четыре элемента: углерод, кислород, азот и водород

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

Все живые системы поглощают необходимые им вещества из внешней среды и выделяют в нее продукты жизнедеятельности; через них проходят потоки веществ и энергии. Обмен веществ обеспечивает относительное постоянство химического состава организмов

САМОВОСПРОИЗВЕДЕНИЕ,

ИЛИ РАЗМНОЖЕНИЕ

Самовоспроизведение обеспечивает поддержание жизни любого вида и жизни вообще; в его основе лежит образование новых молекул и структур, обусловленное информацией, заложенной в ДНК

НАСЛЕДСТВЕННОСТЬ

Проявляется в способности организмов обеспечивать передачу признаков, свойств, особенностей развития из поколения в поколение

ИЗМЕНЧИВОСТЬ

Способность организмов приобретать новые признаки и свойства

РОСТ И РАЗВИТИЕ

Рост выражается в увеличении размеров и массы с сохранением общих черт строения и сопровождается развитием — возникновением нового качественного образования

РАЗДРАЖИМОСТЬ

Проявляется в реакциях живых организмов на внешние воздействия; организмы избирательно реагируют на условия окружающей среды

ДИСКРЕТНОСТЬ

Любая биологическая система (клетка, организм, популяция и пр.) состоит из отдельных, но взаимодействующих между собой частей, образующих структурно-функциональное единство

САМОРЕГУЛЯЦИЯ

Выражается в способности живых организмов, обитающих в непрерывно меняющихся условиях окружающей среды, поддерживать постоянство своего химического состава и интенсивность физиологических процессов

А) Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты не живой природы. Однако соотношение элементов в живом и неживом не одинаково. В живых организмах 98% химическо-го состава приходится на четыре элемента: углерод, кислород, азот и водород.

Б) Обмен веществ и энергии. Важный признак живых систем – использование внешних источников энергии в виде пищи, света и др. Через живые системы проходят потоки веществ и энергии, вот почему они открытые. Основу обмена веществ составляют взаимосвязанные и сбалансированные процессы ассимиляции, т.е. процессы синтеза веществ в организме, и диссимиляции, в результате которых сложные вещества и соединения распадаются на простые и выделяется энергия, необходимая для реакций биосинтеза. Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма.

В) Самовоспроизведение. Существование каждой отдельно взятой биологической системы ограничено временем; подержание жизни связано с самовоспроизведением. Любой вид состоит из особей, каждая из которых рано или поздно перестаёт существовать, но благодаря самовоспроизведению жизнь вида не прекращается. В основе само воспроизведения лежит образование новых молекул и структур, которое обусловлено информацией, заложенной в нуклеиновой кислоте ДНК. Самовоспроизведение тесно связано с явлением наследственности: любое живое существо рождает себе подобных. Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Она обусловлена относительной стабильностью, т.е. постоянством строение ДНК.

Г) Изменчивость. – свойство, противоположное наследственности. Оно связано с приобретением организмами новых признаков и свойств. В основе наследственной изменчивости лежат изменения биологических матриц – молекул ДНК. Изменчивость создает разнообразный материал для отбора наиболее приспособленных к конкретным условиям существования, что, в свою очередь приводит к появлению новых форм жизни, новых видов живых организмов.

Д) Способность к росту и развитию. – свойство, присущее любому живому организму. Расти – значит увеличиваться в размерах и массе с сохранением общих черт строения. Рост сопровождается развитием. В результате развития возникает новое качественное состояние объекта.
Развитие живой формы материи представлено индивидуальным и историческим развитием. На протяжении индивидуального развития постепен-но и последовательно проявляются все свойства организмов. Историческое развитие сопровожда-ется образованием новых видов и прогрессивным усложнением жизни. В результате исторического развития возникло все многообразие жизни на Земле.

Е) Раздражимость. – неотъемлемая черта, присущая всему живому; она является выражением одного из свойств всех тел природы – свойства отражения. Оно связано с передачей информации из внешней среды любой биологической системе. Это свойство выражается реакциями живых организмов на внешнее воздействие. Благодаря раздражимости организмы избирательно реаги-руют на условия окружающей среды.

Ж) Дискретность. – всеобщее свойство материи. Любая биологическая система состоит из отдельных, но тем не менее взаимодействующих частей, образу-ющих структурно-функциональное единство.

infourok.ru

Общие свойства живых систем

Реферат

Общие свойства живых систем

1. Основные особенности и внутрисистемные связи живых систем

При всем своем многоплановом разнообразии живые системы имеют некоторые, хотя и немногочисленные, но неотъемлемые общие особенности, определяемые фундаментальными общими свойствами живого. Таких особенностей три: 1) наличие собственной программы развития системы, развертываемой на основе активно регулируемых информационных взаимосвязей ее с внешней средой, 2) иерархическая функционально-структурная организация и 3) высокая функционально-структурная сложность.

Наличие собственной программы развития — основополагающее свойство всех живых систем, поскольку оно определяет их главную общую черту — иерархическую функционально-структурную организацию, которая представляет собою высшую форму упорядоченности системы и служит источником ее антиэнтропичности. Именно иерархическая организация живых систем позволяет им достигать той характерной для них высокой функционально-структурной сложности, особенно на молекулярном уровне, которая и создает специфику живого на основе развития функционально необходимых внутренних информационных, материальных и энергетических связей живой системы и ее разносторонних контактов с внешней средой. Поэтому любое усложнение живой системы в итоге ведет к более разветвленной иерархии в ее целостной функционально-структурной организации. Оба эти процесса — общее усложнение системы и прогрессивное развитие иерархического характера ее организации — происходит на основе соответствующего усложнения собственной программы развития системы. В схематическом виде основные связи живой системы показаны на рис. 1.



Рис 1

2. Наличие собственной программы развития системы и способность к активному оперированию информацией

Всем живым системам любого уровня сложности, как организменным„ так и надорганизменным, совершенно независимо от их функционально-структурных особенностей, элементарной основы и всех других качеств, свойственно наличие определенной собственной программы развития, реализация которой обеспечивает сохранение системы в меняющихся условиях внешней среды.

Наличие собственной программы развития — важнейшая особенность живых систем,определяющая все их другие специфические свойства.

В зависимости от уровня функциональной организации живой системы собственная программа ее развития существенно изменяется по своей структуре, сложности и степени централизации. В связи с этим значительные различия существуют между собственными программами развития организменных и надорганизменных систем.

У организмов собственная программа развития имеет в своей основе генетическую программу, материализованную на молекулярном уровне в виде генома. Генетическая программа содержит конкретную генетическую информацию, необходимую для обеспечения онтогенетического развития организменной системы и ее самовоспроизведения в цикле развития вида. Эта программа в своей основе имеет: 1) закономерности кодирования, транскрипции и трансляции генетической информации; 2) закономерности репликации и сегрегации генетического материала; 3) закономерности самосборки первичных биологических структур, т. е. совокупности сложных биополимеров — нуклеиновых кислот и белков, взаимодействие между которыми обеспечивает возможность саморегуляции живых систем организменного уровня.

Собственная программа развития организма всегда является централизованной, однако формы и степень этой централизации различны в зависимости от уровня структурной агрегации организменной системы. Монобионтная программа развития всегда централизована на генетическом уровне, т.е.построена по принципу генетического моноцентризма; метабионтная программа лишена генетического моноцентризма и централизована уже на уровне межклеточных взаимодействий; а централизация ценометабионтной программы осуществляется на уровне взаимодействий многоклеточных суборганизменных структурных блоков, имеющих ранг метабионтов. Таким образом, с повышением уровня структурной агрегации организменной системы уровень централизации ее собственной программы развития закономерно удаляется от молекулярного уровня материализации генетической программы. Только у монобионтов эти уровни совпадают и генетическая программа представляет собою единственный элемент собственной программы развития организма, которая вследствие этого является генетически моноцентричной. В метабионтных и ценометабионтных организменных системах этот моноцентризм генетической программы сохраняется только на своем прежнем, монобионтном уровне, т.е. на уровне клетки.

Централизация собственной программы развития— важнейшая особенность информационной структуры организменных живых систем. Эта особенность, связанная с функционально-структурной целостностью и неделимостью организма, принципиально отличает любые организменные системы от надорганизменных.

В надорганизменных живых системах подобная централизованная программа развития отсутствует. Собственная программа развития надорганизменной системы формируется как интегральный результат взаимодействия некоторого множества ее централизованных подпрограмм, т.е. собственных программ развития тех организмов, которые образуют данную надорганизменную систему. Этот интегральный генофонд надорганиз-менной системы в конечном итоге образует столь же определенную программу ее развития на основе тех же принципов самовоспроизведения и саморегуляции, что и в случае отдельных организмов.

Способность к активному оперированию информациейстоль же специфична для живых систем, как и само наличие собственной программы развития. Все биологические процессы связаны с той или иной формой активного оперирования с информацией и могут осуществляться лишь на основе постоянного поддержания в живой системе строго определенных параметров информационных потоков.

Говоря об активном оперировании информацией, мы хотели бы обратить внимание на тот факт, что неживые системы способны только к пассивному информационному обмену с окружающей их средой, который не включает в себя регулирование информационных потоков и специальную обработку поступающей в систему информации. Для живых систем характерно, напротив, 1) постоянное активное регулирование параметров двусторонних информационных потоков, связывающих систему с внешней средой, и 2) постоянная обработка, накопление и хранение поступающей в систему информации, что составляет необходимое условие реализации собственной программы развития живой системы.

Таким образом, развертывание собственной программы развития живой системы состоит в постоянном оперировании информацией,без чего эта программа не может быть реализована. Как некоторый конечный по объему комплекс информации собственная программа развития сама по себе еще не является достаточной для управления всей совокупностью жизненных процессов, осуществляемых живой системой. Информационный комплекс программы может быть приведен в действие лишь на основе постоянного притока информации извне, т. е. во взаимодействии с информационным полем окружающей среды, что представляет собою один из аспектов взаимосвязи живой системы с окружающей средой.

Информационный баланс живой системы всегда является положительным.Это правило не имеет исключений и составляет основу понимания жизни как процесса, связанного с уменьшением энтропии в живых системах при одновременном возрастании ее в окружающей их среде. Антиэнтропичность живых систем выражается, в частности, в их роли как концентраторов информации, своеобразных «информационных сгустков».

Способность живых систем к концентрированию информацииобусловлена их иерархической структурой и их высокой функционально-структурной сложностью.

Наличие собственной программы развития — изначальное свойство живых систем.Именно возникновение программы развития, представляющей собою необходимое условие самоповторения системы, привело к появлению организмов как относительно стабильных в качественном отношении дискретных единиц живого и явилось исходным пунктом собственно биологической эволюции. В этом смысле эволюция организмов есть эволюция их собственных программ развития.

Пространственно-временная дискретность живого, находящая свое выражение в существовании организмов, предъявляет весьма жесткие требования к структуре и качеству информационного потока как в рамках онтогенеза, где этот поток определяет все элементы функционально-структурной специфики развивающейся организменной системы и порядок выражения отдельных морфопоэтических факторов, так и в филогенетическом, эволюционном плане, где от упорядоченности информационного потока зависит точность передачи всех свойств живой системы в чреде поколений и, соответственно, мера преемственности результатов эволюционного процесса. Эти строго определенные параметры информационного потока, создающего достаточную основу для управления процессами онтогенеза и филогенеза, и обеспечиваются конкретной пограммой развития, содержащейся в материализованной форме в живых системах организмен-ного уровня. Естественно поэтому, что без собственной программы развития были бы невозможны ни самовоспроизводство живых систем, ни их эволюция.

В необозримом многообразии живых систем можно различать разные уровни сложности собственной программы развития системы и различные формы записи ее элементов, но это — уже второстепенные детали. Главное и общее состоит в том, что собственная программа развития свойственна всем живым системам и всегда функционирует во взаимосвязи с информационным полем окружающей среды, причем живая система непрерывно потребляет информацию извне и активно оперирует ею. Заметим, что под оперированием информацией следует понимать не только традиционно включаемые в это понятие действия органов чувств или обмен химическими сигналами внутри организма, но также и усвоение различных веществ в процессе питания или акцептора электронов впроцессе дыхания. Действительно, в этом смысле вряд ли можно видеть принципиальную разницу между усвоением молекул любого вещества в кишечнике и восприятием мышечной клеткой медиатора, выделяемого аксоном в синаптическую щель. В обоих случаях происходит усвоение информации, содержащейся в структуре конкретной молекулы, только в первом случае эта информация подвергается организмом длительной переработке, тогда как во втором — анализ ее совершается в доли секунды.

mirznanii.com

0 comments on “Всеобщие свойства живых систем – 5. Основные свойства живых систем

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *