Вычисление сопротивления: Электрическое сопротивление, Закон Ома | Формулы и расчеты онлайн

Формула электрического сопротивления от А до Я

В моей практике много случаев, когда электрик тратит лишнее время на правильный подбор деталей при ремонте оборудования. А решить эту проблему довольно просто: достаточно представлять принцип его работы.

Формула электрического сопротивления, выраженная разными способами для цепей постоянного или переменного тока, позволяет правильно выполнить расчет под исходные данные действующей схемы.

При этом соотношение проходящей через нее мощности, создающей нагрев, должно соответствовать условиям теплоотвода. Выполняя эти требования, вы будете работать быстрее, повысите свой авторитет в глазах окружающих.

Для начинающих электриков я подготовил небольшой теоретический материал про физические процессы, происходящие с электричеством.

Вы же можете сразу перейти к вычислениям, щелкнув по второму подзаголовку из содержания по формулам или третьему через онлайн калькулятор удельного сопротивления.

Содержание статьи

Что надо знать про электрические процессы

Если говорить простым языком, то под сопротивлением принято понимать свойство среды, по которой протекает электрический ток, снижающее его величину.

Так работают провода и изоляторы высоковольтной линии электропередач, показанные на верхней картинке, да и любое вещество.

Изоляторы обладают очень высокими диэлектрическими свойствами, изолируют высоковольтное напряжение, присутствующее на токоведущих шинах от контура земли. Это их основное назначение.

Провода же должны максимально эффективно передавать транслируемые по ним мощности. Их создают так, чтобы они обладали минимальным электрическим сопротивлением, работали с наименьшими потерями энергии на нагрев.

В этом случае передача электричества от источника напряжения к потребителю на любое расстояние будет проходить эффективно.

Приведу для примера картинку из предыдущей моей статьи.

Ее, как и верхнюю, можно представить таким обобщенным видом.

На внешнем участке цепи токоведущие жилы отделены друг от друга воздушной средой и слоем изоляции с высокими диэлектрическими свойствами.

Хорошей проводимостью обладают токоведущие жилы. Подключенный к ним электрический прибор функционирует оптимально.

Как работает резистор

Ток в металлах проходит под действием приложенного напряжения за счет направленного движения электронов. При этом они соударяются, встречаются с положительно и отрицательно заряженными ионами.

Такие столкновения повышают температуру среды, уменьшают силу тока.

За направление электрического тока в электротехнике принято движение заряженных частиц от плюса к минусу. Электроны же движутся от катода к аноду.

Электрическое сопротивление металла зависит от его структуры и геометрических размеров.

Аналогичные процессы протекают в любой другой токопроводящей среде, включая газы или жидкости.

Какие существуют виды сопротивлений

В домашних электрических приборах используется большое разнообразие резисторов с постоянной или регулируемой величиной.

Они ограничивают величину тока всех бытовых устройств, а в наиболее сложных модулях их количество может достигать тысячи или более. Резисторы работают практически во всех схемах.

При использовании в цепях переменного тока они обладают активным сопротивлением, а конденсаторы и дроссели — реактивным.

Причем, на конденсаторах создается емкостное сопротивление, а у дросселей — индуктивное.

Реактивная составляющая на конденсаторах и дросселях сильно зависит от частоты электромагнитного колебания.

2 Шутки электриков о токах через конденсатор и дроссель

Их я привожу потому, что они позволяют запомнить характер прохождения тока через реактивные элементы.

Шутка №1 о емкости

В домашней сети и внутри многих приборов работают переменный и постоянный токи. Они по-разному ведут себя, если встречают на своем пути конденсатор.

Поскольку он состоит из двух токопроводящих пластин, разделенных слоем диэлектрика, то его обозначают на схемах двумя жирными черточками, расположенными параллельно. К их серединам подключены провода, нарисованные перпендикулярными линиями.

Переменный ток имеет форму гармоничной синусоиды, состоящей из двух симметричных половинок.

Такая гармоника движется от начала координат, встречает на своем пути обкладки, переваливается через них и, скатившись, начинает обгонять приложенное напряжение.

Постоянный ток таким свойством не обладает. Его тупой конец просто упирается в обкладку и останавливается. Пройти через конденсатор он не может. Это для него непреодолимое препятствие.

Шутка №2 о дросселе

Индуктивность выполнена витками изолированного провода. Любой ток проходит по нему. Но синусоида своими волнами путается в витках катушки, начинает отставать от напряжения.

Постоянка же спокойно перемещается внутри провода дросселя без ощущения какого-либо значительного противодействия. Поэтому постоянное напряжение может своим током спалить дроссель, созданный для работы на переменке.

Что же это за зверь: сверхпроводимость

Сто лет назад выявлена способность определенных металлов полностью терять свое сопротивление электрическому току при сверхнизких температурах. Выглядит этот процесс следующим образом.

Со сверхпроводниками домашний мастер не работает. Но на верхнюю часть приведенного графика рекомендую обратить внимание: нагрев металла повышает его электрическое сопротивление.

При электротехнических расчетах, требующих получения точного результата, необходимо учитывать температурный коэффициент, взятый из справочников.

Как просто вычислить сопротивление по закону Ома из электрических величин

Шутки и их разъяснения закончились, хотя они приведены для объяснения поведения токов внутри индуктивностей и емкостей. Пора переходить к расчетам.

Его позволяет выполнить одна из формул, приведенных в шпаргалке электрика. Для этого достаточно знать два из трех электрических параметров: ток I, мощность P или напряжение U.

Если же вам лениво вычислять цифры, то можете спокойно использовать онлайн калькулятор закона Ома. Он избавит вас от сложных арифметических действий.

Формула электрического сопротивления по свойствам среды: научный подход

Электротехника давно использует термин: удельное сопротивление. Он учитывает свойства материала токопроводящей среды с ее размерами: длиной и поперечным сечением, через которое протекает электрический ток.

Все данные для него получены в результате многочисленных исследований и сведены в таблицы. Для бытовых вычислений достаточно следующих сведений.

Таблица характеристик металлов, используемых в быту

Металл проводаУдельное сопротивление (Ом∙мм.кв/м)
Медь техническая0,017
Алюминий0,028
Стальные сплавы0,11
Свинец0,21
Сплавы нихрома1,11

На основе этих данных удобно подбирать провода, детали, вычислять их сопротивление R либо определять другие параметры.

Например, нас интересует сопротивление проволоки нихрома диаметром 1 мм, при температуре 20 градусов.

Определяем площадь поперечного сечения через площадь круга.

S = 3.14 x 1 x 1 / 4 = 0,785 мм кв.

Делаем расчет на основе приведенной формулы.

R = 1,1 х 5 / 0,785 = 7 Ом

Простой онлайн калькулятор сопротивления проводов

Его назначение — облегчить работу с формулами и арифметическими действиями. Он позволяет решать одну из двух часто встречающихся задач:

  • Определение сопротивления провода.
  • Расчет его длины.

Достаточно заполнить исходные данные в соответствующей размерности и нажать кнопку “Рассчитать”.

Формулы расчета электрического сопротивления для переменного тока простыми словами

Переменное напряжение наводится вращением рамки (ротора генератора) в магнитном поле (создается обмоткой или магнитами статора).

Ток потребителя, подключенного к выводам генератора, по-разному ведет себя на резисторе, индуктивности и конденсаторе.

Формула активного сопротивления

Резисторы изготавливают из металлов с повышенными удельными характеристиками для ограничения силы тока без изменения его направления.

Синусоиды токов и напряжений на резисторе совпадают по времени. В векторном выражении они обладают одинаковым направлением.

Активное сопротивление переменному току вычисляется по закону Ома так же, как и при постоянной форме напряжения.

Формула индуктивного сопротивления

В обмотках катушек электромагнитов, дросселей, трансформаторов наводится электродвижущая сила индукции. Она взаимодействует с приложенным переменным напряжением. В результате происходит сдвиг фазы тока относительно направления вращения электромагнитного поля (ротора генератора).

Формула индуктивного сопротивления XL сильно зависит от частоты тока f и индуктивности L.

Ток в такой цепи сдвигается от напряжения и отстает от него на 90 угловых градусов.

Число ∏ в формуле отображает отношение длины окружности к ее диаметру (3,14).

Формула емкостного сопротивления ХС

Конденсатор состоит из двух токопроводящих пластин, отделенных слоем диэлектрика. При появлении на них напряжения они накапливают электрический заряд.

Его энергия постоянно взаимодействует с приложенным переменным напряжением. Поэтому в цепи создается ток, зависящий от частоты электромагнитного сигнала и емкости конденсатора.

Он сдвигается вперед от вектора напряжения по направлению вращения поля.

Формула полного сопротивления

Электротехника, как и сама жизнь, описывает явления, переплетенные между собой, а не в чистом виде.

Электрическая энергия, поступающая к нам в квартиру по проводам и кабелям от трансформаторной подстанции, преодолевает:

  1. активное сопротивление токоведущих шин;
  2. емкость кабельных линий;
  3. индуктивное противодействие обмоток трансформаторов.

Поэтому для расчетов применяют метод полного сопротивления, выражаемый законом прямоугольного треугольника.

Каждая его сторона отображает определенную характеристику сопротивления:

  • гипотенуза — суммарную, полную величину Z:
  • прилегающий катет — активную составляющую R;
  • противолежащий — реактивную X, представленную геометрической суммой емкостного XL и индуктивного сопротивления XC.

Точно так же каждая сторона этого треугольника создает определенную величину затраченной мощности электрической энергии.

На активном участке создается мощность, совершающая полезную для нас работу, обеспечивающую вращение роторов электродвигателей, свечение осветительных приборов, нагрев обогревателей и другие нужные действия.

Полная мощность, расходуемая всеми видами потребителей, состоит из полезной активной и потерь, создающих индуктивными и емкостными составляющими. Они снижают эффективность работы электрической системы. Поэтому с ними борются.

Запомнить роль реактивной мощности помогает простая и наглядная картинка, естественно, выраженная в шутливой форме.

Однако стоит понимать, что угол φ, образованный между гипотенузой и прилегающим к нему катетом, характеризует величину реактивной части, создающей бесполезные потери энергии. Ее всегда стремятся снизить.

Что такое вольтамперная характеристика

Металлы в обычном состоянии формируют электрический ток строго по прямолинейной характеристике в зависимости от величины приложенного напряжения.

У других сложных веществ и индуктивностей этот принцип не соблюдается. Зависимость выражается кривыми линиями и называется вольтамперной характеристикой.

ВАХ индуктивностей

Характер протекания тока зависит от величины индуктивности. Если в рабочей обмотке возникает пробой изоляции, приводящий к образованию короткозамкнутого витка, то вольтамперная характеристика резко изменяет свой вид: падает.

За счет уменьшения индуктивного сопротивления при меньшем значении величины приложенного напряжения в обмотке начинают протекать бОльшие токи.

Они свидетельствуют о возникновении неисправности, требующей немедленного устранения. Поэтому снятие ВАХ является обязательным элементом проверки исправности обмоток всех видов трансформаторов или дросселей.

Она выполняется различными методами с определением состояния точки перегиба характеристики.

ВАХ полупроводникового прибора

На правой картинке показан один из примеров работы нелинейного элемента — диода.

В первой четверти квадранта проходит прямой участок характеристики, а у третьей — обратный.

На прямом участке повышение напряжения выше точки перегиба ведет к открытию переходного полупроводникового слоя и пропусканию через него тока практически по прямой линейной характеристике.

Такие же действия на обратном участке ведут к потере диодом своих свойств.

Закон Шварцнегера или как надо обеспечивать надежную работу резистора под нагрузкой

Знаменитый на весь мир атлет Арнольд постоянно тренировался по методике нашего советского силача Юрия Власова. Он брал его опыт за основу и даже приезжал в Россию погостить к своему кумиру.

В основе метода постоянных результативных тренировок положен принцип не столько полноценного питания и отдыха, сколько подбор правильных нагрузок, которые должен преодолевать организм.

Все это полностью соответствует законам электротехники, применяется в работе любого электрического сопротивления. Рассмотрим его на примере резистора: так проще для понимания.

Его металл не только пропускает электрический ток, но и нагревается, выделяя тепло. Нагрев увеличивается с повышением тока. При этом температура может снижаться за счет теплоотвода в окружающую среду или увеличиваться в герметичном, не теплопроводящем объеме.

Так работает электропроводка, выполненная одним и тем же кабелем, проложенным открыто по стенам или спрятанным в штробах.

В первом случае от нагревающегося током кабеля тепло отводится в окружающий воздух за счет его естественной циркуляции, а во втором нагрев идет более интенсивно.

Однако повышать температуру жил можно только до определенной величины. За ее рабочим диапазоном вначале происходит разрушение слоя изоляции, а потом — простое перегорание металла, когда проводка сгорает.

На этом примере я попытался показать, что любой резистор обладает запасом тепловой мощности, за который его нельзя переводить.

Для облегчения работы электриков всем видам резисторов введен термин мощности теплового рассеивания. Она указывается в технической документации или прямо на корпусе, измеряется ваттами. Ее же показывают на электрических схемах.

Как выбрать резистор по тепловой нагрузке за 2 шага

Действуют по следующему алгоритму:

  1. Вначале определяют мощность, которая будет проходить через искомый резистор. Достаточно перемножить величину номинального тока на напряжение, выразить полученное значение в ваттах.
  2. Под эту величину из всего многообразия элементов подбирают тот, который соответствует по значению сопротивления и обладает мощностью теплового рассеивания не меньшего номинала.

Желательно брать его с небольшим резервом. Он не будет лишним для работы в критических ситуациях электрической схемы, но повлияет на габариты устройства.

Полезные примеры из жизни

Как продлить ресурс лампы накаливания

В пожарном депо Ливермоля (Калифорния) зарегистрирован рекорд рабочего режима осветительной лампы: 117 лет. Она практически непрерывно выполняет свою задачу с 1901 года по настоящее время.

Такой ресурс обеспечен за счет:

  • правильного выбора сопротивления, ограничивающего ток через нить накала и создания экономного режима освещения;
  • беспрерывной работы, исключающей переходные процессы при включениях/выключениях, сопровождаемые бросками токов;
  • надежной конструкции.

Как регулировать токи от 100 ампер в силовой цепи

Этот случай я привожу не для повторения, а с целью расширения кругозора и лучшего уяснения процессов, происходящих в электричестве.

Ни один обычный резистор не способен длительно выдерживать токи такой величины. Он просто сгорит. Однако при наладке промышленных генераторов требуется иметь устройство, справляющееся с подобными мощностями.

Это водяной реостат, состоящий из металлического корпуса — ведра прямоугольной формы, служащего одним из контактов для подключения провода от нагрузки.

Второй контакт составляет металлический нож, подключаемый через изоляторы.

Внутрь ведра наливают воду и засыпают соль: создают электролит, хорошо проводящий большие токи.

Перемещение ножа в электролите меняет сопротивление среды и обеспечивает регулировку высоких токов. Проводимость можно изменять концентрацией соли в растворе.

Напоминаю: подобное устройство нельзя использовать в бытовых цепях: оно не отвечает требованиям безопасности.

Таким образом, под каждый конкретный случай расчета используется своя формула электрического сопротивления, которой следует внимательно пользоваться. Исключить ошибки в расчетах помогает специализированный онлайн калькулятор.

По этой теме рекомендую посмотреть видеоролик Владимира Романова.

Если хотите задать вопрос или дополнить информацию, то воспользуйтесь разделом комментариев.

Удельное сопротивление. Реостаты — урок. Физика, 8 класс.

Соберём цепь, изображённую на рисунке. Силу тока в цепи измеряют амперметром, напряжение — вольтметром. Зная напряжение на концах проводника и силу тока в нём, по закону Ома можно определить сопротивление каждого из проводников.

 

pic8_74.jpg

 

В цепь источника тока по очереди будем включать различные проводники, например, никелиновые проволоки одинаковой толщины, но разной длины. Выполнив указанные опыты, мы установим, что из двух никелиновых проволок одинаковой толщины более длинная проволока имеет большее сопротивление.
В следующем эксперименте по очереди будем включать никелиновые проволоки одинаковой длины, но разной толщины (разной площади поперечного сечения). Установим, что из двух никелиновых проволок одинаковой длины большее сопротивление имеет проволока, поперечное сечение которой меньше.
В третьем эксперименте по очереди будем включать никелиновую и нихромовую проволоки одинаковой длины и толщины. Установим, что никелиновая и нихромовая проволоки одинаковых размеров имеют разное сопротивление.
Зависимость сопротивления проводника от его размеров и вещества, из которого изготовлен проводник, впервые на опытах изучил Ом. Он установил:

Сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

 

Обрати внимание!

Сопротивление проводника прямо пропорционально его длине, т.е. чем длиннее проводник, тем больше его электрическое сопротивление.
Сопротивление проводника обратно пропорционально площади его поперечного сечения, т.е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причём у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход её в другой сосуд по толстой трубке произойдёт гораздо быстрее, чем по тонкой, т.е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т.е. первый оказывает ему меньшее сопротивление, чем второй.

Причиной наличия сопротивления у проводника является взаимодействие движущихся электронов с ионами кристаллической решётки проводника. Из-за различия в строении кристаллической решётки у проводников, выполненных из различных веществ, сопротивления их отличаются друг от друга. Для характеристики материала вводят величину, которую называют удельным сопротивлением.

Удельное сопротивление — это физическая величина, которая определяет сопротивление проводника из данного вещества длиной \(1\) м и площадью поперечного сечения \(1\) м².

Введём буквенные обозначения: \(ρ\) — удельное сопротивление проводника, \(l\) — длина проводника, \(S\) — площадь его поперечного сечения. Тогда сопротивление проводника \(R\) выразится формулой:


R=ρ⋅lS.

 

Из этой формулы можно выразить и другие величины:

 

l=R⋅Sρ, S=ρ⋅lR, ρ=R⋅Sl.

 

Из последней формулы можно определить единицу удельного сопротивления. Так как единицей сопротивления является \(1\) Ом, единицей площади поперечного сечения — \(1\) м², а единицей длины — \(1\) м, то единицей удельного сопротивления будет:

 

1 Ом ⋅1м21 м=1 Ом ⋅1 м, т.е. Ом⋅м.

 

Удобнее выражать площадь поперечного сечения проводника в квадратных миллиметрах, так как она чаще всего бывает небольшой. Тогда единицей удельного сопротивления будет:

 

1 Ом ⋅1мм21 м, т.е. Ом⋅мм2м.

 

В таблице приведены значения удельного сопротивления некоторых веществ при \(20\) °С.

 

 

Обрати внимание!

Удельное сопротивление с изменением температуры меняется.

Опытным путём было установлено, что у металлов, например, удельное сопротивление с повышением температуры увеличивается.

 

Обрати внимание!

Из всех металлов наименьшим удельным сопротивлением обладают серебро и медь. Следовательно, серебро и медь — лучшие проводники электричества.

При проводке электрических цепей используют алюминиевые, медные и железные провода.
Во многих случаях нужны приборы, имеющие большое сопротивление. Их изготавливают из специально созданных сплавов — веществ с большим удельным сопротивлением. Например, как видно из таблицы, сплав нихром имеет удельное сопротивление почти в \(40\) раз большее, чем алюминий.

 

Обрати внимание!

Стекло и дерево имеют такое большое удельное сопротивление, что почти совсем не проводят электрический ток и являются изоляторами.

 

На практике часто приходится менять силу тока в цепи, делая её то больше, то меньше. Так, изменяя силу тока в динамике радиоприёмника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

 

Для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включённого в цепь участка АС. При этом будет меняться сопротивление цепи, а следовательно, и сила тока в ней, это покажет амперметр.


key.gif

 

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением. Один из реостатов (ползунковый реостат) изображён на рисунке.

 

Reostat.gif

 

В этом реостате никелиновая проволока намотана на керамический цилиндр. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки. От трения ползунка о витки слой окалины под его контактами стирается, и электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим \(1\). С помощью этого зажима и зажима \(2\), соединённого с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь. Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включённого в цепь.
Условное обозначение реостата в схемах показано на рисунке:


Image399.jpg

 

Каждый реостат рассчитан на определённое сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на нём.

 

Обрати внимание!

Реостат нельзя полностью выводить, так как сопротивление его при этом становится равным нулю, и если в цепи нет других приёмников тока, то сила тока может оказаться очень большой и амперметр испортится.

На рисунке изображён реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками, т.к. каждая спираль реостата имеет определённое сопротивление.

 

pic8_77.jpg

Источники:

Пёрышкин А.В. Физика. 8 класс// ДРОФА, 2013.

http://class-fizika.narod.ru/8_31.htm
http://electricalschool.info/main/osnovy/394-jelektricheskojj-soprotivlenie.html

http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%81%D0%BE%D0%BF%D1%80%D0%BE%D1%82%D0%B8%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5/
http://xn--h2adlho.xn--g1ababalj7azb.xn--p1ai/%D1%83%D1%80%D0%BE%D0%BA-38-%D1%80%D0%B5%D0%BE%D1%81%D1%82%D0%B0%D1%82%D1%8B/
http://mugo.narod.ru/Fiziks/15.html

 

Расчет сопротивления электрической цепи: резисторов

Многие люди, которые изучают электрику, сталкиваются с таким понятием, как расчет сопротивления. Что собой представляет эта величина, в каких единицах измеряется сопротивление проводника, от чего зависит и как его вычислить — далее.

Описание явления

Электрическим сопротивлением называется физическая величина, которая характеризует проводниковое свойство препятствовать электротоку. Она равна напряжению, поделенному на силу тока, которое проходит по проводниковому элементу.

Расчет сопротивляемости

Электросопротивление бывает активным, реактивным и удельным. Активным является часть полного, находящегося в электроцепи. В нем энергия целиком преобразовывается во все энергетические виды. Бывает тепловой, механической и химической. Отличительным свойством является процесс полного потребления всей электрической энергии.

Обратите внимание! Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.

Определение из учебного пособия

Зачем нужно рассчитывать сопротивление

Рассчитывать сопротивление нужно, чтобы избежать появления короткого замыкания. Резисторы, образующие его, преобразовывают ток в напряжение, ограничивают протекающий электроток и получают заданную величину. Они создают делители напряжения в измерительном оборудовании и решают другие специальные задачи, к примеру, уменьшают радиопомехи.

Рассчитывать сопротивление нужно, чтобы сохранялась работоспособность резисторов и их нормальная регулировочная функция. Если будут находиться в целости резисторы, в которых преобразовывается энергия, то будут работать все электрические приборы.

Защита от короткого замыкания

Факторы влияния

Сопротивляемость зависит от температуры. Она увеличивается, когда повышается столбик термометра. Это поясняется физиками так, что при росте температуры атомные колебания в кристаллической проводниковой решетке повышаются. Это препятствует тому, чтобы свободные электроны двигались. Что касается полупроводников и диэлектриков, то там величина понижается из-за того, что увеличивается структура концентрации зарядных носителей.

Сопротивление у металлических монокристаллов с металлами и сплавами разные. Их вычисления, соответственно, неодинаковые. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства. Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью. Под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в антикоррозийном и легком составе, как правило, равна не больше 0,1 %.

Зависимость от температуры

Электрические величины

Электрическое сопротивление является физической величиной, которая равна напряжению, поделенному на силу тока. Сила тока в участке цепи является прямо пропорциональной величиной напряжению на окончаниях данного участка и обратно пропорциональной его сопротивляемости. Последнее значение имеет прямую пропорциональность проводниковой длине и обратную пропорциональность площади его сечения. Оно зависит от проводникового вещества.

Обратите внимание! Все представленные свойства сопротивляемости выражены в соответствующих формулах, которые даны ниже.

Формулы нахождения единицы

Тип и геометрические параметры

Бывают резисторы постоянными, переменными, подстрочными по типу сопротивляемости и термическими. Имеют свои геометрические обозначения и параметры. Как правило, первые цифры обозначают материал, вторые — стержневую, дисковую или микромодульную конструкцию, а третьи — порядковый разработочный номер.

Температурные показатели

Каждый резистор, полупроводник и проводник, образующий сопротивляемость, имеет свой температурный коэффициент. Он равен удельной сопротивляемости вещества на единицу времени. Температурный коэффициент проводимости — тот коэффициент, который идет с обратным знаком.

Расчет сопротивления электрической цепи резисторов

Перед тем как рассчитать общее сопротивление электрической цепи, нужно изучить формулу ниже. Также это можно сделать при помощи специального измерительного прибора под названием омметр или мультиметр.

Формулы для расчета

Сопротивление — важный параметр, без которого работа электрооборудования невозможна. Его нужно научиться рассчитывать, чтобы правильно составлять электросхему и не допускать короткого замыкания. Зависит оно, прежде всего, от температуры, что и выражается в формулах измерения.

Резистор и сопротивление [База знаний]

Резистор и сопротивление

Теория

КОМПОНЕНТЫ
ARDUINO
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Резистор — искусственное «препятствие» для тока. Сопротивление в чистом виде. Резистор ограничивает силу тока, переводя часть электроэнергии в тепло. Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Обозначения резисторов

Сопротивление резистора — его основная характеристика. Основной единицей электрического сопротивления является Ом. На практике используются также производные единицы — килоом (кОм), мегаом (МОм), гигаом (ГОм), которые связаны с основной единицей следующими соотношениями:

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Ниже на рисунке видна маркировка резисторов на схемах:

Маркировка резисторов на схемах

Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

 

Для соединения резисторов в схемах используются три разных способа подключения: параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

 


Последовательное соединение резисторов

Маркировка резисторов на схемах Последовательное соединение резисторов применяется для увеличения сопротивления. Т.е. когда резисторы соединены последовательно, общее сопротивление равняется сумме сопротивлений каждого резистора. Например, если резисторы R1 и R2 соединены последовательно, их общее сопротивление высчитывается по формуле: Rобщ = R1 + R2

Это справедливо и для большего количества соединённых последовательно резисторов:

Rобщ = R1 + R2 + R3 + … + Rn

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

При соединении резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200 + 100 + 51 + 39 = 390 Ом

Маркировка резисторов на схемах

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I2 x R = 0,2562 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

 


Параллельное соединение резисторов

Маркировка резисторов на схемах Параллельное соединение резисторов необходимо для уменьшения общего сопротивления и, как вариант, для увеличения мощности нескольких резисторов по сравнению с одним.

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Rобщ = (R1 × R2) / (R1 + R2)

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

1 / Rобщ = 1 / R1 + 1 / R2 + … + 1 / Rn

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же. 1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Маркировка резисторов на схемах

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I2 x R = 6,0242 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

I1 = U/R1 = 100/200 = 0,5 A;
I2 = U/R2 = 100/100 = 1 A;
I3 = U/R3 = 100/51 = 1,96 A;
I4 = U/R4 = 100/39 = 2,56 A

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U2/R1 = 1002/200 = 50 Вт;
P2 = U2/R2 = 1002/100 = 100 Вт;
P3 = U22/R3 = 1002/51 = 195,9 Вт;
P4 = U22/R4 = 1002/39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

 


Калькулятор


Цветовая маркировка резисторов

Наносить номинал резистора на корпус числами — дорого и непрактично: они получаются очень мелкими. Поэтому номинал и допуск кодируют цветными полосками. Разные серии резисторов содержат разное количество полос, но принцип расшифровки одинаков. Цвет корпуса резистора может быть бежевым, голубым, белым. Это не играет роли. Если не уверены в том, что правильно прочитали полосы, можете проверить себя с помощью мультиметра или калькулятора цветовой маркировки.

Цветовая маркировка резисторов
Калькулятор цветовой маркировки резисторов

Основные характеристики

Сопротивление (номинал)RОм
Точность (допуск)±%
МощностьPВатт

Переменный резистор

Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом. Переменные резисторы (их также называют реостатами или потенциометрами) предназначены для постепенного регулирования силы тока и напряжения. Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. Выглядят переменные резисторы так:

Переменные резисторы

На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

Сравнение потенциометра с делителем напряжения

Регулировать величину сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами.

Подстроечные резисторы

Термисторы, варисторы и фоторезисторы

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

Термисторы

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения.

Варисторы

На схемах варисторы обозначаются так:

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Фоторезистор

А на схемах изображаются так:


Онлайн калькулятор закона Ома для участка цепи

Рад приветствовать тебя, дорогой читатель, в этой первой статье моего блога! Ее я посвятил самому основному закону, который должен хорошо понимать современный человек, работающий с электричеством.

Мой онлайн калькулятор закона Ома создан для участка цепи. Он значительно облегчает электротехнические расчеты в домашней проводке, подходит для цепей переменного и постоянного тока.

Им просто пользоваться: прочти правила ввода данных и работай!

Содержание статьи

Правила работы на калькуляторе

В быту нас интересуют, как правило, четыре взаимосвязанных характеристики электричества:

  1. напряжение;
  2. ток;
  3. сопротивление;
  4. или мощность.

Если тебе известны две величины, входящие в закон Ома (U, R, I), то вводи их в соответствующие строки, а оставшийся параметр и мощность будут вычислены автоматически.

Будь внимательным, чтобы не допустить ошибки.

Все значения надо заполнять в одной размерности: амперы, вольты, омы, ватты без использования обозначений дольности или кратности.

Осуществить переход к ним тебе поможет наглядная таблица.

Онлайн калькулятор закона Ома

Простые примеры расчета

Бытовая сеть переменного тока

Пример №1. Проверка ТЭНа.

В стиральную машину встроен трубчатый электронагреватель 1,25 кВт на 220 вольт. Требуется проверить его исправность замером сопротивления.
По мощности рассчитываем ток и сопротивление.

I = 1250 / 220 = 5,68 А; R = 220 / 5,68 = 38,7 Ом.

Проверяем расчет сопротивления калькулятором по току и напряжению. Данные совпали. Можно приступать к электрическим замерам.

Пример №2. Проверка сопротивления двигателя

Допустим, что мы купили моющий пылесос на 1,6 киловатта для уборки помещений. Нас интересует ток его потребления и сопротивление электрического двигателя в рабочем состоянии. Считаем ток:

I = 1600 / 220 = 7,3 А.

Вводим в графы калькулятора напряжение 220 вольт и ток 7,3 ампера. Запускаем расчет. Автоматически получим данные:

  • сопротивление двигателя — 30,1 Ома;
  • мощность 1600 ватт.

Цепи постоянного тока

Рассчитаем сопротивление нити накала галогенной лампочки на 55 ватт, установленной в фаре автомобиля на 12 вольт.

Считаем ток:

I = 55 / 12 = 4,6 А.

Вводим в калькулятор 12 вольт и 4,6 ампера. Он вычисляет:

  • сопротивление 2,6 ома.
  • мощность 5 ватт.

Здесь обращаю внимание на то, что если замерить сопротивление в холодном состоянии мультиметром, то оно будет значительно ниже.

Это свойство металлов позволяет создавать простые и относительно дешевые лампы накаливания без сложной пускорегулирующей аппаратуры, необходимой для светодиодных и люминесцентных светильников.

Другими словами: изменение сопротивления вольфрама при нагреве до раскаленного состояния ограничивает возрастание тока через него. Но в холодном состоянии металла происходит бросок тока. От него нить может перегореть.

Для продления ресурса работы подобных лампочек используют схему постепенной, плавной подачи напряжения от нуля до номинальной величины.

В качестве простых, но надежных устройств для автомобиля часто используется релейная схема ограничения тока, работающая ступенчато.

При включении выключателя SA сопротивление резистора R ограничивает бросок тока через холодную нить накала. Когда же она разогреется, то за счет изменения падения напряжения на лампе HL1 электромагнит с обмоткой реле KL1 поставит свой контакт на удержание.

Он зашунтирует резистор, чем выведет его из работы. Через нить накала станет протекать номинальный ток схемы.

Полезная информация для начинающего электрика

Как использовать закон Ома на практике

Почти два столетия назад в далеком 1827 году своими экспериментами Георг Ом выявил закономерность между основными характеристиками электричества.

Он изучил и опубликовал влияние сопротивления участка цепи на величину тока, возникающего под действием напряжения. Ее удобно представлять наглядной картинкой.

Любую работу всегда создает трудяга электрический ток. Он вращает ротор электрического двигателя, вызывает свечение электрической лампочки, сваривает или режет металлы, выполняет другие действия.

Поэтому ему необходимо создать оптимальные условия: величина электрического тока должна поддерживаться на номинальном уровне. Она зависит от:

  1. значения приложенного к цепи напряжения;
  2. сопротивления среды, по которой движется ток.

Здесь напряжение, как разность потенциалов приложенной энергии, является той силой, которая создает электрический ток.

Если напряжения не будет, то никакой полезной работы от подключённой электрической схемы не произойдёт из-за отсутствия тока. Эта ситуация часто встречается при обрыве, обломе или отгорании питающего провода.

Сопротивление же решает обратную для напряжения задачу. При очень большой величине оно так ограничивает ток, что он не способен совершить никакой работы. Этот режим применяется у хороших диэлектриков.

Примеры из жизни

№1: выключатель освещения разрывает цепь электрических проводов, по которым напряжение добирается до лампочки.

Между контактами образуется воздушный зазор. Он отличный изолятор, исключающий движение тока по осветительному прибору.

№2: клеммы розетки, как источника напряжения, замкнули между собой без сопротивления короткой проволокой. В этой ситуации создается короткое замыкание.

Ток КЗ способен сжечь электропроводку, вызвать пожар в квартире. Поэтому от таких ситуаций существует только одно спасение: использование защит, способных максимально быстро отключить питающее напряжение.

Для бытовой сети это функция автоматических выключателей или предохранителей, о работе которых я буду рассказывать в других статьях.

Используя сопротивление, следует понимать, что оно, само по себе, не вечно: обладая резервом противостояния приложенной энергии, оно может его израсходовать, не справиться со своей задачей и сгореть.

Поэтому для сопротивления вводится понятие мощности рассеивания, которая надежно отводится во внешнюю среду. Если тепловая энергия, развиваемая прохождением тока, превышает эту величину, то сопротивление сгорает.

Напряжение и сопротивление в комплексе формируют электрические процессы. Онлайн калькулятор закона Ома позволяет оптимально рассчитать величину тока, необходимую для совершения полезной работы.

Что такое участок цепи

Рассмотрим самую простую электрическую схему, состоящую из батарейки, лампочки и проводов. В ней циркулирует электрический ток.

Представленная схема или полная цепь состоит из двух контуров:

  1. Внутреннего источника напряжения.
  2. Внешнего участка: лампочки с подключенными проводами.

Те процессы, которые происходят внутри батарейки, нас интересуют в основном как познавательные. Их мы можем только ухудшить при неправильной эксплуатации.

Например, приходящая в квартиру электрическая энергия от трансформаторной подстанции нам не подвластна. Мы ей просто пользуемся. От неисправностей и аварийных режимов нас защищают автоматические выключатели, УЗО, реле РКН, ограничители перенапряжения или УЗИП, другие современные модули защит.

Внешний же, подключенный к источнику напряжения контур, является участком цепи, в котором мы, используя закон Ома, совершаем полезную для себя работу.

Как использовать треугольник закона Ома

Простое мнемоническое правило представлено тремя составляющими в виде частей треугольника. Оно позволяет легко запомнить взаимосвязи между током, сопротивлением и напряжением.

Вверху всегда стоит напряжение. Ток и сопротивление снизу. Когда вычисляем какую-то одну величину по двум другим, то ее изымаем из треугольника и выполняем арифметическое действие: деление или умножение.

Шпаргалка электрика для новичков

Треугольник закона Ома легко запоминается, но он не позволяет учитывать мощность потребления электроприбора. Этот четвертый параметр, важный для любого домашнего электрика, всегда надо учитывать. .

На всех бытовых электрических приборах указывают мощность потребления электрической энергии в ваттах или киловаттах. Ее формулы, совместно с предыдущими величинами, можно брать со следующей картинки.

Такая шпаргалка электрика позволяет делать простые вычисления в уме или на бумаге. Формулы из нее заложены в алгоритм, по которому работает мой онлайн калькулятор закона Ома.

Предлагаю провести одинаковые вычисления обоими методами и сравнить полученные результаты. Если вдруг найдете расхождения, то укажите в комментариях. Это будет ваша помощь моему проекту.

Я постарался кратко и просто рассказать о принципах работы закона Ома применительно к задачам, решаемым домашним мастером. Считаю, что это достаточно и не рассматриваю закон Ома для полной цепи в обычной форме, комплексных числах, или ином виде.

Если же вы хотите просмотреть видеоурок по этой теме, то воспользуйтесь материалами владельца Физика-Закон Ома.

Возможно, у вас остались вопросы о работе калькулятора? Задавайте. Я на них отвечу. Воспользуйтесь разделом комментариев.

Напоследок напоминаю, что у вас сейчас самое благоприятное время поделиться этим материалом с друзьями в соц сетях и подписаться на рассылку сайта. Тогда вы сможете своевременно получать информацию о новых публикуемых статьях.

Как рассчитать сопротивление резистора для светодиода: формула, онлайн калькулятор

Светодиоды пришли на смену традиционным системам освещения – лампам накаливания и энергосберегающим лампам. Чтобы диод работал правильно и не перегорел, его нельзя подключать напрямую в питающую сеть. Дело в том, что он имеет низкое внутреннее сопротивление, потому если подключить его напрямую, то сила тока окажется высокой, и он перегорит. Ограничить силу тока можно резисторами. Но нужно подобрать правильный резистор для светодиода. Для этого проводятся специальные расчеты.

Резистор

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Схема

Исходя из закона Ома, рассчитываем по такой формуле:

Формула

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

Формула

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Формула

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

График

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Формула

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Формула

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

 

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Читайте также: Основные способы определения полярности у светодиода.

В каких случаях допускается подключение светодиода через резистор

Никакие диоды, в том числе светодиоды, нельзя включать без ограничения проходящего тока. Резисторы в таком случае просто необходимы. Даже небольшое изменения напряжения вызывают очень сильное изменение тока и, следовательно, перегрев диода.

Если вы планируете подключать несколько диодов, рекомендуем выбирать модели одной фирмы. Одинаковые образцы лучше работают вместе.

Параллельное соединение

Схема

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Читайте также: Схема для плавного включения ламп накаливания 220 В.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Объясняется достаточно просто: если перегорит один светодиод, то на другой (-ие) может попасть больший ток и начнется перегрев. Потому при параллельной схеме подключения каждому диоду нужен отдельный резистор.

Неправильно:

Схема

 

Правильно:

Схема

 

Последовательное соединение светодиодов

Схема

Именно такое соединение пользуется популярностью. Объясняется такой частый выбор простым примером. Представьте, что в елочной гирлянде для каждого светодиода подобран резистор. А в гирлянде этих лампочек бывает более сотни! Параллельное соединение в данном случае невыгодно и трудоемко.

Только в самодельных гирляндах можно встретить параллельное соединение. В заводских моделях всегда последовательное.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Читайте также: Как сделать блок питания из энергосберегающей лампы своими руками.

Сегодня можно подобрать драйвер под любое количество светодиодов. Но рекомендуем не брать китайские аналоги! Кроме того, что они быстрей изнашиваются, ещё могут выдавать не те характеристики в работе, которые заявлены на упаковке.

Резистор

Если светодиодов не так много, подойдут и резисторы вместо достаточно высокого по цене драйвера.

Интересное видео по теме:

В заключение

Пишите комментарии и делитесь статьей в социальных сетях! Если возникли вопросы, можно найти в интернете дополнительные видео для расчета сопротивления резистора и на другие близкие темы.

Закон Ома — онлайн калькулятор

Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Онлайн калькулятор

Найти силу тока

Сила тока
Формула

I = U/R

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12/2= 6 А

Найти напряжение

Напряжение
Формула

U = I ⋅ R

Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Сопротивление
Формула

R = U/I

Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12/6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Онлайн калькулятор

Найти силу тока

Формула

I = ε/R+r

Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12/4+2 = 2 А

Найти ЭДС

Формула

ε = I ⋅ (R+r)

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Формула

r = ε/I — R

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Формула

R = ε/I — r

Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом

См. также

параллельного резисторного калькулятора R1 + R2 = эквивалентный резистор R сопротивление цепи в эквиваленте суммарный резистор искатель легко сделать контрейлер = параллельный Параллельный резисторный калькулятор R1 + R2 = эквивалентный резистор R сопротивление цепи в эквиваленте суммарный резистор искатель легко сделать контрейлер = параллель — sengpielaudio Sengpiel Berlin


R всего Формула:
R всего = R1 × R2 / (R1 + R2)

Пожалуйста, введите два значения резистора , будет рассчитано третье значение параллельной цепи.
Вы даже можете ввести общее сопротивление R всего и одно известное сопротивление R 1 или R 2 .

Формула (уравнение) для расчета двух сопротивлений R 1 и R 2 , соединенных параллельно:

Расчет необходимого параллельного резистора R 2 , когда R 1 и полное сопротивление R всего дается:

Решение по формуле R всего = ( R 1 × R 2 ) / ( R 1 + R 2 ) для R 1 :
Первый шаг — очистить все дроби, умножив на самое низкое значение
. общий знаменатель, то есть R т × R 1 × R 2 … так мы получаем:
1/ R всего = 1/ R 1 + 1/ R 2
R всего × R 1 × R 2 [1/ R всего = 1/ R 1 + 1/ R 2 ]
R 1 × R 2 = R всего × R 2 + R всего × R 1 , затем соберите члены с R 1 и решить
R 1 × R 2 R всего × R 1 = R всего × R 2
R 1 ( R 2 R всего ) = R 2 × R всего
Последний шаг:
R 1 = R 2 × R всего / ( R 2 R всего )
или:
R 2 = R 1 × R всего / ( R 1 R всего )

Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно составляет
точно так же, как расчеты, необходимые для параллельных индукторов или последовательно соединенных конденсаторов.

Два резистора параллельно и полученное суммарное сопротивление: два одинаковых значения,
также покажите уравнение, что результаты всегда наполовину. Это облегчает, когда
проектирование схем или прототипирование. С заглавными буквами он всегда двойной, потом опять заглавные буквы просто
просто сложить параллельно.

• Поисковые сопротивления R 1 и R 2 , когда известно целевое сопротивление (эквивалентное сопротивление) •

Расчет: резисторные пары — обратный инженерный калькулятор
Поиск R 1 и R 2 с известным сопротивлением цели

● Рассчитать много резисторов параллельно ●

Этот калькулятор определяет сопротивление от до 10 резисторов параллельно .
Введите сопротивления в поля ниже и, когда все значения были введены,
нажмите на кнопку «Рассчитать», и результат появится в поле под этой кнопкой.
В качестве теста, если мы введем сопротивления 4, 6 и 12 Ом, ответ должен быть 2 Ом.
Примечание: очистка полей вручную не сбрасывает сохраненные значения. Используйте «сброс».

закон Ома — калькулятор и формулы

Два резистора параллельно и полученное суммарное сопротивление
Сопротивление в диапазоне от 1 Ом до 100 Ом

R2 R1
1 1.5 2,2 3,3 4,7 6,8 10 15 22 33 47 68
1 0,5 0,6 0.69 0,77 0,83 0,87 0,91 0,93 0,95 0,97 0,98 0,99
1,5 0,6 0,75 0,89 1,03 1,14 1,22 1,30 1,36 1,40 1.43 1,45 1,46
2,2 0,69 0,89 1,1 1,32 1,50 1,66 1,82 1,92 2,0 2,06 2,10 2,13
3,3 0,77 1.03 1,32 1,65 1,94 2,22 2,48 2,70 2,87 3,00 3,08 3,14
4,7 0,83 1,14 1,50 1,94 2,35 2,78 3,20 3,58 3.87 4,12 4,27 4,39
6,8 0,87 1,22 1,66 2,22 2,78 3,40 4,05 4,68 5,19 5,64 5,94 6,18
10 0.91 1,30 1,82 2,48 3,20 4,05 5,0 6,0 6,9 7,7 8,3 8,7
15 0,93 1,36 1,92 2,70 3,58 4,68 6,0 7.50 8,9 10,3 11,4 12,2
22 0,95 1,40 2,00 2,87 3,87 5,19 6,9 8,9 11,0 13,2 15.0 16,6
33 0.97 1,43 2,06 3,0 4,12 5,64 7,7 10,3 13,2 16,5 19,4 22,2
47 0,98 1,45 2,1 3,08 4,27 5,94 8,3 11.4 15,0 19,4 23,5 27,8
68 0,99 1,46 2,13 3,14 4,39 6,18 8,7 12,2 16,6 22,2 27,8 34,0

Примечание: Этот калькулятор также может решать другие математические задачи.Расчет резисторов параллельно составляет
точно так же, как расчеты, необходимые для параллельных индукторов или последовательно соединенных конденсаторов.

Мощность, рассеиваемая в резисторе: P = В × I , P = В 2 / R , P = I 2 × R .

Примечание: Для последовательно включенных резисторов ток для каждого резистора равен ,
и для параллельных резисторов напряжение одинаково для каждого резистора.


,Резистор

Калькулятор

Ниже приведены инструменты для расчета значения и допуска в омах на основе цветовых кодов резисторов, общего сопротивления группы резисторов, включенных параллельно или последовательно, а также сопротивления проводника на основе размера и проводимости.

Резистор калькулятор кодов цвета

Используйте этот калькулятор, чтобы узнать значение ома и допуск на основе цветовых кодов резистора.

Параллельный резисторный калькулятор

Укажите все значения сопротивления параллельно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Резисторы в последовательном калькуляторе

Укажите все значения сопротивления последовательно, разделенные запятой «,» и нажмите кнопку «Рассчитать», чтобы определить общее сопротивление.


Сопротивление проводника

Используйте следующее для расчета сопротивления проводника. Этот калькулятор предполагает, что проводник круглый.

Законодательный калькулятор
Резистор

Цветовой код

Электронный цветовой код — это код, который используется для указания номинальных характеристик определенных электрических компонентов, таких как сопротивление в омах резистора.Электронные цветовые коды также используются для оценки конденсаторов, катушек индуктивности, диодов и других электронных компонентов, но чаще всего используются для резисторов. Только резисторы адресованы этим калькулятором.

Как работает цветовое кодирование:

Цветовое кодирование для резисторов является международным стандартом, который определен в МЭК 60062. Цветовой код резистора, показанный в таблице ниже, включает различные цвета, которые представляют значащие цифры, множитель, допуск, надежность и температурный коэффициент.К какому из этих цветов относится цвет, зависит от положения цветовой полосы на резисторе. В типичном четырехполосном резисторе имеется промежуток между третьей и четвертой полосой, чтобы указать, как должен считываться резистор (слева направо, с одиночной полосой после интервала, являющейся самой правой полосой). В приведенном ниже объяснении будет использоваться четырехполосный резистор (тот, который конкретно показан ниже). Другие возможные варианты резисторов будут описаны позже.

Значимая составляющая фигуры:

В типичном четырехполосном резисторе первая и вторая полосы представляют значимые цифры.Для этого примера обратитесь к рисунку выше с зеленой, красной, синей и золотой полосой. Используя приведенную ниже таблицу, зеленая полоса представляет число 5, а красная полоса — 2.

Множитель:

Третья синяя полоса — множитель. Таким образом, используя таблицу, множитель составляет 1 000 000. Этот множитель умножается на значащие цифры, определенные из предыдущих полос, в данном случае 52, что приводит к значению 52 000 000 Ом или 52 МОм.

Допуск:

Четвертая полоса присутствует не всегда, но когда она есть, представляет собой допуск.Это процент, на который значение резистора может меняться. Золотая полоса в этом примере показывает допуск ± 5%, который можно обозначить буквой J. Это означает, что значение 52 МОм может изменяться на 5% в любом направлении, поэтому значение резистора составляет 49,4 МОм. 54,6 МОм.

Надежность, температурный коэффициент и другие вариации:

Кодированные компоненты имеют как минимум три полосы: две значимые полосы цифр и множитель, но возможны и другие варианты.Например, компоненты, изготовленные по военным спецификациям, обычно представляют собой четырехполосные резисторы, которые могут иметь пятую полосу, которая указывает на надежность резистора с точки зрения процента отказов на 1000 часов работы. Также возможно иметь диапазон 5 th , который является температурным коэффициентом, который указывает на изменение сопротивления компонента в зависимости от температуры окружающей среды в пересчете на ppm / K.

Чаще всего существуют пятиполосные резисторы, более точные из-за третьего значащего диапазона цифр.Это смещает положение множителя и диапазона допусков в положение 4 th и 5 th по сравнению с типичным четырехполосным резистором.

На самых точных резисторах может присутствовать полоса 6 тыс. . Первые три полосы будут значимыми полосами цифр, 4 — множителем, 5 — допуском, а 6 — либо надежностью, либо температурным коэффициентом. Есть и другие возможные варианты, но это некоторые из наиболее распространенных конфигураций.

Цвет 1 st , 2 и , 3 и
Значимые цифры диапазона
Множитель Допуск Температурный коэффициент

Черный
0 × 1 250 ppm / K (U)

Коричневый
1 × 10 ± 1% (F) 100 ppm / K (S)

Красный
2 × 100 ± 2% (G) 50 ppm / K (R)

Оранжевый
3 × 1K ± 0.05% (Ш) 15 ppm / K (P)

Желтый
4 × 10К ± 0,02% (P) 25 ppm / K (Q)

Зеленый
5 × 100К ± 0,5% (D) 20 ppm / K (Z)

Синий
6 × 1M ± 0.25% (С) 10 ppm / K (Z)

Фиолетовый
7 × 10М ± 0,1% (В) 5 промилле / К (М)

Серый
8 × 100М ± 0,01% (л) 1 ppm / K (K)

Белый
9 × 1G

Золото
× 0.1 ± 5% (Дж)

Серебро
× 0,01 ± 10% (К)

Нет
± 20% (М)

Резисторы — это элементы схемы, которые придают электрическое сопротивление.Хотя схемы могут быть очень сложными, и существует множество различных способов, которыми резисторы могут быть расположены в цепи, резисторы в сложных цепях обычно могут быть разбиты и классифицированы как соединенные последовательно или параллельно.

Резистор параллельно:

Общее сопротивление параллельных резисторов равно обратной величине суммы обратных величин каждого отдельного резистора. Обратитесь к уравнению ниже для уточнения:

R всего =
1
+ ++… +

Резистор в серии:

Общее сопротивление параллельных резисторов — это просто сумма сопротивлений каждого резистора. Обратитесь к уравнению ниже для уточнения:

R всего = R 1 + R 2 + R 3 … + R n


Сопротивление проводника:

Где:
L — длина проводника
А — площадь поперечного сечения проводника
С — проводимость материала

,Сопротивление
листов и расчет удельного сопротивления или толщины в зависимости от применения в полупроводниках

Приборы на основе четырехточечного зонда используют давно установленную методику для измерения среднего сопротивления тонкого слоя или листа путем пропускания тока через две внешние точки зонда и измерения напряжение на внутренней стороне двух точек.

Если интервал между точками зонда постоянен, а толщина проводящей пленки составляет менее 40% от расстояния, а края пленки более чем в 4 раза превышают расстояние от точки измерения, среднее сопротивление пленки или сопротивление листа определяется как:

рупий = 4.53 х V / I

Толщина пленки (в см) и ее удельное сопротивление (в Ом см) связаны с Rs:

Rs = удельное сопротивление / толщина

Следовательно, можно рассчитать удельное сопротивление, если известна толщина пленки, или можно рассчитать толщину, если известно удельное сопротивление.

Глоссарий терминов

Ом на квадрат: Единица измерения при измерении сопротивления тонкой пленки материала с использованием метода четырехточечного зонда.Он равен сопротивлению между двумя электродами на противоположных сторонах теоретического квадрата. Размер квадрата не важен.

Узнайте больше здесь, в Википедии: http://en.wikipedia.org/wiki/Sheet_resistance

Ом-сантиметр (Ом-см): Единица измерения при измерении объемного или объемного удельного сопротивления толстых или однородных материалов, таких как неизолированные кремниевые пластины или кремниевые слитки, с использованием метода четырехточечного зонда.

В. Является ли сопротивление листа «свойственным» свойством материала или оно зависит от толщины?

УСТОЙЧИВОСТЬ является неотъемлемым свойством материала, который придает ему электрическое сопротивление.Иногда его называют удельным сопротивлением. Сопротивление листа — это сопротивление тонкого листа материала, которое при умножении на толщину (в см) дает значение удельного сопротивления.

В. Как перевести из Ом на квадрат в Ом-сантиметр?

Термин Ом-см (Ом-сантиметр) относится к измерению «объемного» или «объемного» удельного сопротивления полупроводящего материала. Ом-см используется для измерения проводимости трехмерного материала, такого как слиток кремния или толстый слой материала.Термин «Ом на квадрат» используется при измерении сопротивления листа, то есть значения сопротивления тонкого слоя полупроводящего материала.

Чтобы рассчитать Ом-см с использованием четырехточечного зонда, необходимо знать толщину пластины (если это однородная пластина) или толщину измеряемого верхнего слоя, чтобы можно было рассчитать Ом-см. Метод четырехточечного зонда используется для измерения одного слоя или одного однородного материала. Если измерять образец с двумя или более проводящими слоями, результатом будет некоторый тип бессмысленного среднего значения всех подключенных проводников.

Как упомянуто выше, поскольку метод четырехточечного зонда не измеряет толщину тонких пленок напрямую, если известны две из трех следующих характеристик для данного образца, четырехточечный зонд может использоваться для определения третьей характеристики: 1) объемное удельное сопротивление в Омах-см, 2) сопротивление листа в Омах на квадрат, 3) толщина образца. Подробнее об этом можно узнать здесь: http://www.fourpointprobes.com/understanding-volume-resistivity-measurements/

Уравнения для расчета объемного удельного сопротивления отличаются от тех, которые используются для расчета сопротивления листа, однако, если уже известно сопротивление листа, объемное сопротивление можно рассчитать путем умножения сопротивления листа в Ом / квадрат на толщину материала в сантиметров.

В. В какой момент вы перестаете умножать сопротивление листа на толщину в сантиметрах, чтобы получить Ом-см?

Когда толщина превышает 0,1 промежутка между двумя иглами — после которого сопротивление листа не применяется. Так, 0,1 мм для головки зонда с расстоянием между иглами 1 мм. Тем не менее, из-за исправлений, до 0,3 мм будет в порядке.

Если толщина равна или превышает пятикратное расстояние между зондами, поправочный коэффициент, который должен применяться к удельному сопротивлению формулы (rho) = 2 x pi x s x V / I, меньше 0.1%. С точки зрения удельного сопротивления листа, таблицы поправочных коэффициентов, которые мы имеем, начинаются с отношения толщины к расстоянию между датчиками 0,3, где поправочный коэффициент равен единице, к отношению 2, где поправочный коэффициент равен 0,6337.

Я ожидаю, что эти таблицы могут быть расширены до большего соотношения, но очевидно, что от толщины в 2 раза больше, чем до 5 раз, это немного бесполезная земля, но если предположить, что ситуация «большая», то есть поправочные коэффициенты, охватывающие отношение толщины к расстоянию от 10 до 0.4, где поправочный коэффициент равен 0,288.

Читать о: Соотношение между сопротивлением листа (Ом на квадрат), толщиной пленки и удельным объемным сопротивлением (Ом-см)

Узнайте больше здесь, в Википедии: http://en.wikipedia.org/wiki/Resistivity


Four-Point-Probes является подразделением Bridge Technology. Чтобы запросить дополнительную информацию, позвоните в Bridge Technology по телефону (480) 988-2256 или отправьте электронное письмо Ларри Бриджу по адресу: [email protected]

,
Round Wire AC Калькулятор сопротивления переменного тока Round Wire AC Калькулятор сопротивления Логотип Chemandy Electronics Логотип Chemandy Electronics CHEMANDY ELECTRONICS Поставщики необычного Показать навигацию Скрыть навигацию

Вычисляет сопротивление переменного тока круглой прямой проволоки для обычных проводящих материалов, используя уравнение и данные, указанные ниже, или введенные вручную данные материала.

Примечание. Чтобы использовать разные значения для удельного сопротивления и относительной проницаемости, выберите «Ввести данные» в текстовом поле «Выбор материала проводника», а затем введите соответствующие значения в поля, выделенные желтым цветом.

Этот калькулятор использует JavaScript и будет работать в большинстве современных браузеров. Для получения дополнительной информации см. О наших калькуляторах

.

г.в. Сопротивление для длины круглого прямого провода рассчитывается с использованием удельного сопротивления проводника, длины проводника и эффективной площади поперечного сечения, используемой скин-эффектом.

где ρ — удельное сопротивление проводника в Ом.м

л — Длина проводника в мм

A eff — эффективная площадь поперечного сечения, используемая в мм

Площадь поперечного сечения, используемая скин-эффектом, определяется путем первого расчета номинальной глубины проникновения для проводника.

Из линий электропередачи и сетей Уолтер С. Джонсон, McGraw-Hill 1963 p58.

Где ρ — удельное сопротивление проводника в Ом.м

f — частота в герцах

μ — абсолютная магнитная проницаемость проводника

Абсолютная магнитная проницаемость (μ) = μ o x μ r

µ o = 4π x 10 -7 H / m

Значения µ r взяты из Справочника по проектированию линий электропередачи , автор Brian C Wadell, Artech House 1991 Таблица 9.3.2. 446.

Значения для ρ взяты из Справочника по химии и физике CRC, 1-е издание для студентов, , 1998, стр. F-88, и предназначены для элементов высокой чистоты при 20 ° C.

Фактическая площадь поперечного сечения, используемая из-за скин-эффекта, может быть рассчитана несколькими методами с различной степенью точности. Самый простой способ — умножить глубину оболочки на окружность проводника.

Где d — диаметр проводника

Этот метод делает используемую площадь поперечного сечения слишком большой от высоких частот вплоть до точки, где глубина обшивки становится примерно половиной радиуса проводника, и в этот момент неточности увеличиваются, и в конечном итоге расчетная используемая площадь становится больше, чем фактический проводник.Делая метод расчета только приближенным, а затем применимым только при r >> δ.

Второй простой метод состоит в том, чтобы вычислить общую площадь проводника и затем вычесть область круга, представляющую центральную область, в которой не используется скин-эффект.

где r — радиус проводника

Этот метод более точен в первом методе, когда r >> δ, но становится очень неточным ниже точки, где d / δ = π, и может иметь огромные положительные или отрицательные колебания в значении.

Гораздо более точный метод описан Дэвидом Найтом в очень подробной статье под названием Zint.pdf, которую можно найти по адресу http://www.g3ynh.info/zdocs/comps/part_1.html. В этом методе используется метод усеченного экспоненциального убывания. устранить ошибки, вызванные тем, что фактическая площадь проводника становится меньше расчетной площади глубины скин-слоя в простом способе, описанном выше, и модифицированную коррекцию Лоренца, которая устраняет ошибку, возникающую при приближении расчетной площади глубины скин-слоя к фактической площади проводника.Автор называет это уравнение Rac — TED — ML и указывает максимальную ошибку 0,09%.

Метод расчета предполагает наличие одиночного изолированного проводника и не учитывает путь возврата. Это делает довольно сложным измерение сквозных измерений, и поэтому результаты этого калькулятора сравнивались с данными, приведенными в оригинальной статье, чтобы доказать точность.

W J Highton 30/9/2011

Этот калькулятор предоставляется компанией Chemandy Electronics для продвижения FLEXI-BOX

Вернуться к индексу калькулятора


,

0 comments on “Вычисление сопротивления: Электрическое сопротивление, Закон Ома | Формулы и расчеты онлайн

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *