Высоковольтный регулируемый стабилизатор — Меандр — занимательная электроника
Плавающий режим работы регулируемых трехвыводных стабилизаторов, например, семейства LM117, делает их идеальными для работы на высоких напряжениях . Стабилизатор не имеет земляного вывода; вместо этого весь потребляемый ток (примерно 5 мА) протекает через выходной вывод. Так как стабилизатор видит только разницу напряжений между входом и выходом, максимально допустимое напряжение 40 В для стандартной серии LM117 и 60 В для высоковольтной серии LM117HV может не достигаться для выходных напряжений в сотни вольт. Однако микросхема может быть повреждена при коротком замыкании выхода, если не принять специальных мер для защиты от этой ситуации.
На рис. 1 показано, как это можно сделать. Стабилитрон D1 обеспечивает, что LM317H видит разницу между входом и выходом всего 5 В в диапазоне выходных напряжений от 1.2 В до 160 В. Поскольку высоковольтные транзисторы неизбежно имеют низкое β, применен транзистор Дарлингтона. Стабилитрон имеет достаточно низкий импеданс, поэтому прямо на входе LM317 блокировочный конденсатор не требуется (очевидно, что конденсатор

Рис. 1. Базовая схема высоковольтного стабилизатора.
Так как Q2 может рассеивать до 5 Вт в нормальном режиме и 10 Вт при коротком замыкании, он должен быть установлен на радиатор. Для больших выходных токов следует заменить проходной транзистор в корпусе TO-3 или TO-220 на TO-202 NSD134 и уменьшить R3. Естественно, если требуется выходной ток менее 25 мА, то R3 можно увеличить, чтобы уменьшить требуемый размер радиатора.
Усовершенствованный вариант стабилизатора показан на рис. 2. Здесь стабилитрон LM329B на 6.9 В соединен последовательно с внутренним опорным источником LM317. Это улучшает температурную стабильность, так как LM329B имеет гарантированный температурный коэффициент ±20 ppm/°C, а также улучшает качество стабилизации, так как LM317 может иметь большее петлевое усиление.
Рис. 2. Прецизионная схема высоковольтного стабилизатора.
Эта же технология может быть использована для больших напряжений или токов при использовании лучших высоковольтных транзисторов или при каскадировании или параллельном соединении (с соответствующими уравнивающими эмиттерными резисторами ) нескольких транзисторов. Выходной ток короткого замыкания, определяемый R3, должен лежать в области безопасной работы Q2, чтобы исключить возможность вторичного пробоя.
Возможно, вам это будет интересно:
meandr.org
Высоковольтный стабилизатор постоянного напряжения — Radio это просто
Высоковольтный стабилизатор постоянного напряжения при построении высококачественных высоковольтных стабилизаторов напряжения, например, для питания ламповых каскадов, приходиться применять специальные схемы включения регулировочных элементов, что усложняет схемотехнику таких стабилизаторов [1]. Между тем, существуют интегральные микросхемы, применяя которые можно создавать простые высоковольтные стабилизаторы напряжения компенсационного типа на выходное напряжение от 70 до 140 В. Это микросхемы типов SE070N, SE080N, SE090N, SE105N, SE110N, SE120N, SE125N, SE130N, SE135N, SE140N. Эти микросхемы предназначены для контроля и регулировки напряжения постоянного тока. Как нетрудно догадаться, цифровое обозначение в маркировке микросхемы будет соответствовать рабочему напряжению микросхемы в вольтах.
Высоковольтный стабилизатор постоянного напряжения на рис.
показан один из возможных вариантов линейного стабилизатора на выходное напряжение 115 В постоянного тока. Источником напряжения для стабилизатора служит сеть переменного тока 220 В. В других конструкциях источником напряжения может быть, например, вторичная обмотка силового трансформатора, выход выпрямителя преобразователя напряжения. Стабилизатор выполнен на интегральной микросхеме SE115N, представляющей собой детектор напряжения на 115 В.
Контролируемое напряжение с выхода стабилизатора поступает на вход DA1 — вывод 1. Если напряжение на выходе стабилизатора стремится увеличиться свыше рабочего напряжения DA1, то открывается выходной п-р-п транзистор микросхемы, коллектор которого выведен на вывод 2 DA1. Это приводит к тому, что понижается напряжение затвор-исток VT1, что приводит к понижению выходного напряжения стабилизатора. На мощном высоковольтном полевом n-канальном транзисторе VT1 выполнен истоковый повторитель напряжения.
Сетевое напряжение переменного тока поступает на мостовой диодный выпрямитель VD1 – VD4. Конденсатор С1 сглаживает пульсации выпрямленного напряжения. Резистор R1 уменьшает бросок тока через выпрямительные диоды и разряженный конденсатор С1, возникающий при включении устройства в сеть. Стабилитрон VD5 защищает полевой транзистор от пробоя высоким напряжением затвор-исток. Светящийся светодиод HL1 сигнализирует о наличии выходного напряжения, кроме того, цепь R3HL1 разряжает оксидные конденсаторы при отключенной нагрузке.
Резистор R1 должен быть проволочным. Его сопротивление и мощность выбирают исходя из параметров подключенной к стабилизатору нагрузки. Остальные резисторы любые из С2-33, МЛТ, РПМ соответствующей мощности. Сопротивление резистора R2 выбирают исходя из входного напряжения стабилизатора, при этом следует учитывать, что максимальный втекающий ток DA1 по выводу 2 не должен превышать 20 мА. Конденсаторы типа К50-68 или импортные аналоги. Если в вашей конструкции С1 будет, как и по схеме рис. 1, подключен к выходу мостового выпрямителя напряжения переменного тока 50 Гц, то его ёмкость следует выбирать исходя из 4 мкФ на каждый 1 Вт нагрузки. В общем случае, ёмкость конденсатора С2 должна быть равна ёмкости конденсатора С1. Выпрямительные диоды 1 N4007 можно заменить, например, на 1N4006, UF4006, RL105, КД234Д. Вместо стабилитрона BZV55C-12 подойдёт BZV55C-13, 1N4743A, 2С212Ц, КС212Ц. Светодиод подойдёт любого типа непрерывного свечения, желательно с повышенной светоотдачей. Полевой МДП транзистор HV82 рассчитан на максимальный ток стока 6,5 А, напряжение сток-исток 800 В и максимальную рассеиваемую мощность 150 Вт (с теплоотводом).
В высоковольтный стабилизатор постоянного напряжения его можно заменить, например, на IRF350, IRF352 или другой, подходящий по параметрам к подключенной нагрузке [2, 3]. Следует учитывать, что если, например, к выходу стабилизатора подключена нагрузка мощностью 30 Вт, то при питании устройства от сети 220 В, на транзисторе VT1 будет рассеиваться мощность около 80 Вт. Если же входным напряжением для стабилизатора будет, например, напряжение +180 В (выход выпрямителя «лампового» трансформатора), то при выходном напряжении 115 В и токе нагрузки 0,5 А установленный на теплоотвод транзистор будет рассеивать около 33 Вт тепловой мощности. Это немало, поэтому, линейные высоковольтные стабилизаторы напряжения целесообразно применять для питания слаботочной нагрузки, например, лампового активного щупа для осциллографа и в других местах, где применение импульсных высоковольтных стабилизаторов напряжения нежелательно.
Высоковольтный стабилизатор постоянного напряжения может быть смонтировано на печатной плате размерами 105×50 мм, эскиз которой показан на рис.
Ток потребления микросхемы SE115N по выв. 1 около 3 мА. Для увеличения выходного напряжения стабилизатора в цепь вывода 3 DA1 можно включить стабилитрон. Например, если у вас имеется микросхема SE140N «на 140 В», а вам нужен стабилизатор на выходное напряжение 180 В, то нужно последовательно с выв. 3 включить стабилитрон 1N4755A или два последовательно включенных стабилитрона КС520В. Через стабилитрон будет протекать сумма токов через выв. 1 и 2 DA1.
Кроме высоковольтных интегральных микросхем SE***N существуют также и низковольтные SE005N, SE012N, SE024N, SE034N, SE040N, на которых также можно изготавливать компенсационные стабилизаторы напряжения. Стабилизатор напряжения, изготовленный по тому же принципу, который показан на рис. 1, должен иметь входное напряжение постоянного тока (на обкладках С1), превышающее выходное не менее чем на 8 В. При изготовлении конструкции, собранной по рис. 1, учитывайте, что все её элементы находятся под напряжением сети.
vse-v-seti.ru
Стабилизатор тока на полевом транзисторе
Содержание:
- Работа стабилизаторов тока
- Устройство и работа полевого транзистора
- Полевые транзисторы в стабилизаторах тока
- Видео
Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.
Работа стабилизаторов тока
Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.
Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.
В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.
Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.
Устройство и работа полевого транзистора
Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.
Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.
В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.
В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.
Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.
Полевые транзисторы в стабилизаторах тока
Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы.
Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки.
Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне.
Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока.
Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока.
electric-220.ru
ВЫСОКОВОЛЬТНЫЙ СТАБИЛИЗАТОР С МАЛЫМ УРОВНЕМ ПУЛЬСАЦИЙ
john 29 октября, 2013 — 22:58
Евгений Карпов
ВЫСОКОВОЛЬТНЫЙ СТАБИЛИЗАТОР С МАЛЫМ УРОВНЕМ ПУЛЬСАЦИЙ
В статье описан относительно простой высоковольтный стабилизатор, обладающий малым уровнем шумов и пульсаций выходного напряжения. В стабилизатор встроены функции плавного нарастания выходного напряжения и защиты от перегрузок.
Стабилизатор предназначен для питания чувствительных схем предварительных усилителей и фонокорректоров, выполненных на электронных лампах.
Основные соображения
Основным назначением описанного ниже стабилизатора является питание высокочувствительных входных цепей ламповых усилителей. Это определило основное требование к стабилизатору – низкий уровень шума и пульсаций на выходе [1]. Конечно, было желательно получить и малое выходное сопротивление, но этот параметр не является определяющим из-за незначительного и мало меняющегося тока, потребляемого этим блоком усилителя.
За базовый вариант была принята классическая схема компенсационного стабилизатора с однокаскадным усилителем ошибки (Рис.1) [2]. Для получения малых пульсаций на выходе стабилизатора необходимо иметь значительную величину петлевого усиления, которое существенно зависит от коэффициента усиления усилителя ошибки. Для получения максимального коэффициента усиления в качестве коллекторной нагрузки транзистора VT1 применен источник тока I, и регулирующий элемент (VT2) выполнен на полевом транзисторе (можно считать, что каскад на транзисторе VT1 в области низких частот не нагружен).
Такая схемотехника позволяет получить в области низких частот усиление каскада порядка 55 — 63db (если b используемых транзисторов находится в пределах 40 — 100).
Читатель может задать закономерный вопрос: а почему не использовать стандартный операционный усилитель? Основным преимуществом такого решения является более простая схема при сравнимой величине усиления. Так же стабилизатор получается менее склонным к паразитной генерации.
Высокое выходное напряжение стабилизатора и относительно низкое опорное напряжение VR позволяет практически бесплатно и существенно (в 2 — 3 раза) повысить стабильность выходного напряжения за счет подключения резистора, задающего начальный ток стабилитрона (R1), к цепи выходного стабильного напряжения. Если вы посмотрите на схему, то увидите, что через стабилитрон текут три тока – стабильный ток I, заданный источником тока, стабильный ток IR1, заданный резистором R1 и нестабильный ток базы транзистора IB. Если учесть, что ток базы транзистора на несколько порядков меньше суммы стабильных токов I и IR1, то становится ясно, что влияние динамического сопротивления стабилитрона RD (Рис. 2) на выходное напряжение практически исключается.
Особое внимание было уделено вопросу минимизации уровня шумов на выходе стабилизатора. В схеме можно выделить два основных источника шума – это транзистор VT1 и стабилитрон VD. Шумом источника тока и резисторов делителя R2 и R3 можно в первом приближении пренебречь. Это связано с тем, что суммарное сопротивление резисторов делителя достаточно мало (сотни ом – единицы килоомм), а шум источника тока не усиливается.
Возможность минимизации уровня шумов выбором типа и режима работы транзистора VT1 весьма ограничена. Во-первых, транзистор VT1 должен быть высоковольтным, это существенно ограничивает номенклатуру пригодных типов. Во-вторых, снижение уровня шумов путем снижением величины коллекторного тока наталкивается на два ограничения: ухудшение частотных свойств каскада и снижение величины b транзистора.
Точный расчет параметров каскада весьма громоздок, и я не буду его приводить, а ограничусь несколькими практическими рекомендациями.
Для большинства высоковольтных транзисторов средней мощности, аналогичных MPSA42, 2N6517, ZTX658, ZTX458 удовлетворительное сочетание параметров достигается при токе коллектора 0.7 — 1.5mA.
(При установке транзистора в схему желательно проверить величину его b; хотя типовые значения лежат в пределах 50 — 100, могут попасться экземпляры с b = 17 — 20.)
Нежелательно использовать в качестве VT1 более мощные транзисторы (типа MJE13003), при малых токах коллектора они имеют очень малую величину b, для получения приемлемого усиления каскада придется значительно увеличивать ток коллектора. Конечно, частотные свойства стабилизатора улучшатся, но ценой этого будет значительное увеличение рассеиваемой мощности на элементах схемы и увеличение уровня шума на выходе.
Следующим объектом нашей заботы является стабилитрон VD, определяющий величину опорного напряжения VR. Как правило, выбор типа стабилитрона и его рабочих режимов производится исходя из необходимого напряжения и его стабильности. Его шумовые характеристики не учитываются и не приводятся в технических данных. Чаще всего, это и не надо, но в некоторых случаях шумовые характеристики стабилитрона важны. Например, если источник питания должен иметь низкий уровень шума на выходе, если стабилитрон используется в цепях сдвига уровня сигнала или для организации напряжения смещения во входных каскадах усилителей, и непосредственно включен в сигнальную цепь.
Простейшая эквивалентная схема стабилитрона, учитывающая его ЕДС шума EN, показана на рисунке 2. Если вы мысленно замените в схеме стабилизатора (Рис.1) стабилитрон VD на его эквивалентную схему, то становится очевидным, что шумовой генератор включен непосредственно во входную цепь усилительного каскада на транзисторе VT1 и, соответственно, его шум будет усилен.
Фактически, стабилитрон является почти идеальным источником белого шума в широкой полосе частот, простирающейся от постоянного тока до единиц мегагерц (это используется для создания генераторов шума)[3]. Уровень шумового напряжения, генерируемого стабилитроном, существенно зависит от его режима. Наибольший уровень шума стабилитрон генерирует, когда он начинает входить в режим стабилизации, и его рабочая точка находится на колене вольт-амперной характеристики. Этот режим характеризуется очень малыми токами, текущими через стабилитрон (десятки – сотни микроампер). Увеличение тока стабилитрона вызывает уменьшение уровня шумового напряжения, этот факт многократно описан в различных источниках, но численных данных о величине уровня шума мне обнаружить не удалось.
Поэтому я решил просто померить уровни шумов, генерируемых стабилитронами различных типов, и оценить влияние тока стабилизации. Измерения проводились по схеме, показанной на рисунке 3.
В качестве источника тока использовался довольно малошумящий полевой транзистор КП302Г. Уровень шума измерялся прибором ИСШ-НЧ в звуковой полосе частот (использовался внутренний фильтр). Конечно, полученные результаты не соответствуют абсолютно точному значению уровня шума, генерируемого стабилитроном, так как источник тока добавляет собственные шумы, но как показали измерения, они весьма малы, и этой погрешностью можно пренебречь.
www.radionic.ru
Мощные стабилизаторы напряжения: высоковольтный на полевом транзисторе
Для постоянного контроля сетевого напряжения и предохранения электрического оборудования от чрезмерного понижения или повышения показателя, а также резких его скачков целесообразно приобрести мощный стабилизатор напряжения. Это устройство, призванное держать значения параметра в рамках рабочего диапазона и выключать электрооборудование, если ситуация может ему навредить.
Автоматический стабилизатор напряжения
Виды устройств
Существуют различные типы стабилизирующих приборов: архаичные релейные, электромеханические, дорогие варианты с плавной регулировкой и сложной электронной начинкой. Важно выбрать вариант, подходящий для эксплуатируемой сети.
Электромеханический тип
В трансформатор, используемый в таком приборе, вмонтирован сервопривод на базе двигателя с функцией реверса (работы в обратную сторону). Управляется механизм посредством электронной платы. При изменении положения контактов число витков во вторичной катушке меняется. Регулировать напряжение с помощью изделия получается только резко, без ступеней.
Электромеханический прибор с сервоприводом
Электронные
В этом случае, напротив, получается ступенчатое управление, при этом одни ступени призваны понижать показатель, другие – повышать. В приборе использованы тиристорные или симисторные элементы. При одновременном замыкании обоих типов ступеней получается достаточный спектр регуляции, позволяющий плавно изменять напряжение. Кроме того, этот ход нивелирует мигание ламповых компонентов. Устройство отличается бесшумной работой, что делает возможной его установку практически в любом помещении.
Какие лучше
Электромеханические варианты пользуются большой популярностью из-за невысокой цены. Они не искажают синусоидальную кривую, могут выдерживать короткие перегрузки. Но применять их целесообразно в тех электросетях, для которых не характерны мощные скачки стабилизируемого показателя. Перед приобретением нужно проверить, на какую силу тока рассчитан прибор. Минусы этой группы приборов – медленная коррекция показателя и невозможность эффективной эксплуатации при низких температурах.
Важно! Время от времени, хотя бы раз в год, потребуется заменять графитовые щеточки (они склонны изнашиваться). Подвижные элементы механизма надо смазывать.
Электронные изделия контролируют ситуацию в сети не резко, быстро коммутируются, практически не издают шума, легче переносят перегрузки. Кроме того, они отличаются большим сроком службы, так как не имеют движущихся деталей, склонных к износу. При температуре ниже нуля аппараты сохраняют эксплуатационные свойства. Единственный недостаток этих устройств, помимо относительно высокой цены, – меньшая точность регулировки, чем у механических приборов.
Выбор по техническим параметрам
Приобретая стабилизатор пониженного напряжения или устройство, защищающее электрооборудование от избыточной нагрузки, важно выделить основные критерии выбора.
Основные характеристики
Выбрав тип исполнения изделия, нужно изучить его особенности:
- Число фаз. Для электросети 220 В подойдет устройство с одной фазой. Если жилище подсоединено к трехфазной сети, отталкиваются от того, есть ли в нем приборы, использующие все фазы. Если да, приобретается прибор с тремя фазами.
- Мощность. Не всегда рассмотрение стабилизаторов напряжения большой мощности является наиболее целесообразным. Можно опираться на номинальный параметр входного автоматического выключателя. Если стабилизатор будет работать с несколькими приборами, их мощностные значения суммируют и умножают на 1,3. Если электродвигатель относится к асинхронному типу, показатель умножают уже на 3. Обычно прибор со значением в 10 квт подходит для домашнего использования.
- Точность (отклонение от целевого показателя). Самое малое возможное отклонение – 0,5%. Если оно превышает 2%, такой прибор лучше не покупать.
- Спектр рабочих значений на входе. Если то напряжение, что поступает, находится в его границах, на выходе будет стабильно получаться четкий заданный показатель.
- Спектр предельных значений. Аппарат еще работает, но выходное напряжение может отличаться от целевого показателя. При выходе за рамки данного диапазона прибор выключится.
Детали
Помимо этого, качество работы прибора характеризуют дополнительные параметры:
- Температурный диапазон, при котором дозволяется эксплуатировать устройство. Электромеханические приборы не стоит ставить там, где градусник опускается ниже нуля, так как подвижные элементы в этом случае замерзают. Электронный – можно установить и в неотапливаемом помещении.
- Скорость реакции на изменения значения на входе (она зависит от вида устройства).
- Скорость процесса стабилизации (особенно важна при выравнивании сильных скачков).
- Способ охлаждения – естественный или с использованием вентилятора. Во втором случае спектр температур, при которых прибор функционирует нормально, выше.
- Механизм подсоединения в сеть. У мощных аппаратов есть клеммная колодка – туда ставится нагрузка и то напряжение, которое надо выпрямлением привести в линейный вид. Более скромные агрегаты имеют на корпусе розеточное гнездо, к которому включают нагрузку.
Стабилизация напряжения бытовой сети
Она необходима для поддержания бытовой техники в работоспособном состоянии и обеспечения безопасности электросетей. Чаще стабилизирующее оборудование применяется для работы с насосами, газовыми котлами, морозильными камерами.
Высоковольтный стабилизатор напряжения на полевом транзисторе
Для высоковольтной стабилизации используют силовое устройство трансформации и полевые транзисторы высокой мощности, например, вида IRF840. На первичную катушку подается показатель до 250 В. После ее прохождения ток идет к диодному мосту для выпрямления, затем к транзисторному компоненту. Одна из вторичных катушек работает в блоке с потенциометром и выпрямителем. Этот блок формирует сигнал управления, идущий к затвору IRF840.
Важно! При подскоке сетевого напряжения блоком управления снижается таковое у затвора, благодаря чему ключ закрывается, и на нагружаемых контактах ставится предел возможному росту напряжения. Если в сети показатель падает, действует обратный механизм.
Схемные решения стабилизации электросети 220В
Чтобы осуществить сборку прибора своими руками, нужно выбрать подходящую схему.
Вариант 1 Феррорезонансная схема
Она использует магнитно-резонансный эффект. Конструкция тяжеловесна, массивна, но проста и не требует обилия деталей: она включает два дросселя и конденсаторный компонент.
Вариант 2 Автотрансформатор или сервопривод
Автоматическая трансформация подаваемого напряжения реализуется посредством сервопривода (управление которым происходит через датчик) и реостата. Прибор подойдет для дачного домика или хозяйства в частном секторе. Еще один вариант – использование реле для изменения коэффициента трансформации через включение или выключение нужных катушек.
Вариант 3 Электронная схема
Она может включать в себя транзистор или симистор, усилитель, блок электронного управления. В некоторых видах применяются полевые силовые транзисторные компоненты.
Схема электронного устройства
На приведенной схеме цифрой 1 обозначаются входные зажимы, 4 – выходные (к ним подключают нагрузку), 2 – блок на симисторах, манипулирующий катушками трансформатора, 3 – микропроцессорный отдел.
Подробные инструкции по сборке
Для самодельного стабилизатора подойдет трансформатор, обеспечивающий на выходе нагрузку до 2 кВт. Иногда подходящее под эту задачу устройство можно демонтировать из вышедшего из эксплуатации телевизора.
Сетевой трансформатор для сборки стабилизатора
Шаг 1 Изготовление корпуса стабилизатора
Подойдет достаточно вместительный короб из диэлектрика: текстолита или пластика, в котором легко размещаются все элементы конструкции. Надо разместить на нем пазы для входа, выхода и выключателя.
Шаг 2 Изготовление печатной платы
Подготавливают макет, иллюстрирующий связи между компонентами системы (исключая трансформатор), делают по нему разметку листка покрытого фольгой текстолита. Потом по фольге рисуют подготовленную трассировку и приступают к травлению платы. Затем на луженую оловом плату монтируют электронные компоненты. Можно заказать печатную конфигурацию у стороннего мастера.
Шаг 3 Сборка стабилизатора напряжения
Плату крепят на диэлектрике, и от нее прокладываются коммуникационные линии к интерфейсам входа и выхода, выключателю, трансформирующему устройству. Подсоединяют внешние компоненты, вмонтированные в корпус. Транзистор-ключ ставят на радиатор.
Сейчас потребители могут выбрать из широкого спектра стабилизирующих устройств наиболее подходящее по эксплуатационным характеристикам. Простой вариант возможно смонтировать самому при наличии навыка травления печатных плат.
Видео
amperof.ru
Стабилизаторы тока. Виды и устройство. Работа и применение
Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.
Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы тока.
Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.
Устройство и принцип действия
На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.
В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)
Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.
Виды стабилизаторов тока
Существует множество разных видов стабилизаторов в зависимости от их назначения и принципа работы. Рассмотрим подробнее основные из таких устройств.
Стабилизаторы на резисторе
В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.
Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.
Стабилизаторы на транзисторах
Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.
Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.
Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.
Схема токового зеркала
Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.
Стабилизаторы тока на полевике
Схема с применением полевых транзисторов более простая.
Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.
Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.
При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.
Устройства на микросхеме
В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.
Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.
Импульсный стабилизатор
Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.
Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.
Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.
При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.
Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.
Стабилизаторы тока для светодиодов
Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
- Блок от принтера на 32 В.
- Блок от ноутбука на 19 В.
- Любой блок питания на 12 В.
Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.
Похожие темы:
electrosam.ru
Сообщества › Электронные Поделки › Блог › FAQ Че ставить-то? Стабилизатор напряжения или тока? Мотаем на ус!
Каждый раз, читая новые записи в блогах сообщества я сталкиваюсь с одной и той же ошибкой — ставят стабилизатор тока там, где нужен стабилизатор напряжения и наоборот. Постараюсь объяснить на пальцах, не углубляясь в дебри терминов и формул. Особенно будет полезно тем, кто ставит драйвер для мощных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. =)

Картинка для привлечения внимания. Думается, что тут все запитано абсолютно правильно =)
Сразу хочу извиниться перед всеми, чьи рисунки вдруг попадут в эту статью. Спасибо за труд, отмечайтесь в комментариях. Я добавлю авторство, если нужно.
Для начала разберемся с понятиями:
СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из названия — стабилизирует напряжение.
Если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это максимальный ток, который может отдать стабилизатор. Максимальный! А не «всегда отдает 3 ампера». То есть от может отдавать и 3 миллиампера, и 1 ампер, и два… Сколько ваша схема кушает, столько и отдает. Но не больше трех.
Собственно это главное.

Когда-то они были такие и подключали к ним телевизоры…
И теперь я перейду к описанию видов стабилизаторов напряжения:
Линейные стабилизаторы (те же КРЕН или LM7805/LM7809/LM7812 и тп)

Вот она — LM7812. Наш советский аналог — КРЕН8Б
Самый распространенный вид. Они не могут работать на напряжении ниже, чем указанное у него на брюхе. То есть если LM7812 стабилизирует напряжение на 12ти вольтах, то на вход ему подать нужно как минимум примерно на полтора вольта больше. Если будет меньше, то значит и на выходе стабилизатора будет меньше 12ти вольт. Не может он взять недостающие вольты из ниоткуда. Потому и плохая это идея — стабилизировать напряжение в авто 12-вольтовыми КРЕНками. Как только на входе меньше 13.5 вольт, она начинает и на выходе давать меньше 12ти.
Еще один минус линейных стабилизаторов — сильный нагрев при хорошей такой нагрузке. То есть деревенским языком — все что выше тех же 12ти вольт, то превращается в тепло. И чем выше входное напряжение, тем больше тепла. Вплоть до температуры жарки яичницы. Чуть нагрузили ее больше, чем пара мелких светодиодов и все — получили отличный утюг.
Импульсные стабилизаторы — гораздо круче, но и дороже. Обычно для рядового покупателя это уже выглядит как некая платка с детальками.

Например вот такая платка — импульсный стабилизатор напряжения.
Бывают трех видов: понижающие, повышающие и всеядные. Самые крутые — всеядные. Им все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим увеличения или уменьшения напряжения и держит заданное на выходе. И если написано, что ему на вход можно от 1 до 30 вольт и на выходе будет стабильно 12, то так оно и будет.
Но дороже. Но круче. Но дороже…
Не хотите утюг из линейного стабилизатора и огромный радиатор охлаждения впридачу — ставьте импульсный.
Какой вывод по стабилизаторам напряжения?
ЗАДАЛИ ЖЕСТКО ВОЛЬТЫ — а ток может плавать как угодно (в определенных пределах конечно)
СТАБИЛИЗАТОР ТОКА
В применении к светодиодам именно их еще называют «светодиодный драйвер». Что тоже будет верно.

Вот, к примеру, готовый драйвер. Хотя сам драйвер — маленькая черная восьминогая микросхема, но обычно драйвером называют всю схему сразу.
Задает ток. Стабильно! Если написано, что на выходе 350мА, то хоть ты тресни — будет именно так. А вот вольты у него на выходе могут меняться в зависимости от требуемого светодиодам напряжения. То есть вы их не регулируете, драйвер сделает все за вас исходя из количества светодиодов.
Если очень просто, то описать могу только так. =)
А вывод?
ЗАДАЛИ ЖЕСТКО ТОК — а напряжение может плавать.
Теперь — к светодиодам. Ведь весь сыр-бор из-за них.
Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо.
Вот берем самый распространненый вариант соединения светодиодов (такой почти во всех лентах используется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели (про расчет не пишу, в интернете навалом калькуляторов).
П
www.drive2.ru