
ПУЭ, ПТЭЭП
Если следовать «Методическим указаниям по испытаниям электрооборудования и аппаратов электроустановок Потребителей» гл. 3.6. ПТЭЭП, то нормы испытания электрооборудования электрических установок, а также периодичность, определяются техническим руководителем того или иного потребителя. Руководитель всегда должен основываться на приложении 3, а также правилах в соответствии с заводскими инструкциями, местных условиях и состоянии электроустановок. Практически для каждого вида электрического оборудования испытания проводятся с различной рекомендуемой периодичностью, которая может изменяться на основании решения технического руководителя потребителя.
Периодичность и нормы испытаний электрооборудования напрямую зависят от требований Раздела I «Общие правила» (гл. 1.8) и от действующих Правил устройства электрических установок, которые можно найти в седьмом издании.
Согласно ПТЭЭП приложение 3.1 таблица 37, элементы электрических сетей подвергаются измерениям сопротивления изоляции в следующие сроки:
- электрическая проводка, включая осветительные сети, в помещениях с повышенной опасностью, а также в установках наружного использования – 1 раз в год, а во всех других случаях – 1 раз в 3 года.
- стационарные электрические плиты – не реже 1 раза в год в состоянии нагрева;
- лифты и краны – не реже 1 раз в год;
Согласно п. 3.4.12 ПТЭЭП полное сопротивление петли «фаза-нуль» электроприемников во взрывоопасных зонах должно измеряться при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года. Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.
В иных случаях, периодичность измерения электроустановок и их испытания производятся согласно системе планово-предупредительного ремонта (ППР), утверждением которой должен заниматься технический руководитель потребителя. (ПТЭЭП п. 3.6.3)
Периодичность проведения электроизмерений в учреждениях здравоохранения
Периодичность проведения электроизмерений в учреждениях здравоохранения устанавливается ГОСТ Р 50571.28-2006 (МЭК 60364-7-710:2002), который утверждён приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2006 г. N 413-ст:
- 1. Проверка систем аварийного электроснабжение – 1 раз в год;
- 2. Измерения сопротивления изоляции – 1 раз в год;
- 3. Полное сопротивление петли «фаза-ноль» — 1 раз в год;
- 4. Визуальный осмотр электроустановок – 1 раз в год;
- 5. Измерения систем дополнительного уравнивания потенциалов – 1 раз в 3 года;
- 6. Измерения целостности системы уравнивания потенциалов – 1 раз в 3 года;
- 7. Измерение тока утечки трансформаторов медицинской системы IT – 1 раз в 3 года;
- 8. Замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО) – не реже 1 раза в год.
Периодичность проведения электроизмерений в зданиях и помещениях департамента образования
В зданиях и помещениях департамента образования (детские сады, школы, интернаты, институты и т. д.)
, электроизмерения проводят не реже чем 1 раз в год. Конкретный срок электроизмерений устанавливается системой планово-предупредительного ремонта (ППР), утвержденного техническим руководителем Потребителя. Ввиду того, что в зданиях и помещениях департамента образования (детские сады, школы, интернаты, институты и т. д.) пребывает большое количество дети, ответственные за электрохозяйство проводят электроизмерения не реже чем 1 раз в год.
Самый главный вопрос у большинства потребителей электрической энергии, – с какой периодичностью выполнять эксплуатационные испытания для электрооборудования? От правильного ответа на этот вопрос зависит планирование бюджета в долгосрочной перспективе. Затраты на проверку величины изоляции, переходного сопротивления и другие виды измерений являются прямыми инвестициями в безопасность персонала и надежность работы оборудования. С одной стороны, есть риск развития аварийной ситуации или получения штрафа от контролирующей организации за слишком длинный период между эксплуатационными испытаниями. С другой стороны, частые измерения являются причиной переплат, что неизбежно ведет к нерациональному расходованию финансовых средств. В этой статье приведены выдержки из большинства отраслевых нормативных документов относительно сроков проведения электрических измерений. Они помогут определить правильную периодичность между измерениями и испытаниями для многих сфер.
Цена на Периодичность проведения электрических измерений
Сколько стоитПериодичность проведения электрических измерений?
Сделаем расчет по вашим размерам за 5 минут!
Как все устроено?
В идеальном случае каждая организация составляет график планово-предупредительного ремонта (ППР) всего своего электрооборудования. Для выполнения этого вида работ на каждом предприятии, где есть электрооборудование, назначают лицо ответственное за электрохозяйство. В график ППР электрооборудования вносят все эксплуатационные (межремонтные, периодические, профилактические) электрические измерения и испытания. Периодичность подобных работ для каждой электроустановки определяет технический руководитель с учетом требований правил технической эксплуатации электроустановок потребителей (ПТЭЭП) и другой нормативно-технической документации.
Измерение сопротивления изоляции в соответствии с ПТЭЭП
При тщательном изучении таблицы 37 приложения 3.1. к ПТЭЭП можно найти ответы на большинство вопросов относительно периодичности измерения параметров электрической изоляции. В соответствии с этим нормативным документом измерение характеристик электрической прочности изоляции проводят:
- В наружных установках и помещениях с особой опасностью – один раз в год.
- Во всех других случаях один раз в три года.
Правила устройства электроустановок (ПУЭ) описывают особо опасное помещение, как помещение со следующими факторами:
- высокая температура на протяжении длительного периода времени;
- наличие в окружающем воздухе повышенного содержания токопроводящей пыли;
- возможность одновременного прикосновения человека к заземленным частям и корпусу электрооборудования;
- повышенный уровень влажности;
- полы, которые изготовлены из токопроводящих материалов;
- наличие в окружающей среде химически или органически активных веществ;
- сочетание двух и более опасных факторов;
- территория ОРУ относится к помещениям с особой опасностью.
На практике для большинства электроустановок периодичность проверки сопротивления изоляции по ПТЭЭП составляет один раз в три года. Исключение можно сделать для следующих объектов:тепловые пункты индивидуального типа (ИТП), промышленные здания и сооружения, помещения для распределительных устройств, автомобильные стоянки и др.
Как это выглядит в реальной жизни?
В реальности большинство компаний не назначают лицо ответственное за электрохозяйство. При этом график ППР либо отсутствует, либо не выделен отдельным документом из общего документооборота. Для подобных случаев, руководителям компании будет полезно ознакомиться с содержанием нашей статьи. На основании ПТЭЭП п. 3.6.2, технический руководитель в соответствии с приложением №3 этих же правил определяет конкретные сроки для измерений и испытаний характеристик электрического оборудования во время технического обслуживания. Указанная в ПТЭЭП периодичность является рекомендацией, поэтому может изменяться соответствующим решением технического руководителя.
ПТЭЭП содержат максимально допустимый интервал между профилактическими работами различного типа. При этом чаще производить электроизмерения разрешено, реже – нет. Для наглядности приведем выдержку из ПТЭЭП таблица 28 приложение 3:
Нормы испытаний которых не определены в разделах 2–27
В этой таблице представлены разновидности испытаний и измерений для электроустановок с номинальным рабочим напряжением до 1 кВ. В колонке №2 «Вид испытания» фигурируют следующие обозначения:
- «К» — капитальный ремонт;
- «Т» — текущий ремонт;
- «М» межремонтный испытания.
Понятия капитального и текущего ремонта достаточно знакомы для технических специалистов. Но, межремонтные виды работ у многих вызывают недоумение. К подобным работам относят широкий перечень операций:
- проверка УЗО;
- измерение сопротивления петли фаза-нуль;
- проверка переходного сопротивления между установками, которые подлежат заземлению и элементами заземляющего устройства;
- проверка работы защитных устройств в системе с заземленной нейтралью;
- измерение сопротивления изоляции электрооборудования.
Исходя из ПТЭЭП проверка работы УЗО выполняется не реже, чем раз в квартал. Периодичность проверки величины сопротивления изоляции приведена в таблице 37 приложения 3.1. к ПТЭЭП. Для двух последних видов измерений интервалы межремонтных периодов не указаны вовсе.
В реальной жизни период для проведения всех типов измерений определяют с учетом периодичности измерения сопротивления изоляции по нескольким причинам:
1. Этот тип измерений определен для всех типов электроустановок и имеет фиксированные сроки.
2. Определение сопротивления изоляции для электроустановок с напряжением до 1 кВ является наиболее востребованным испытанием.
Исключения из общих правил
Во многих сферах деятельности существуют свои внутренние требования и правила, которые регламентируют периодичность электрических измерений. Во многих случаях требования этой документации идентичны с ПТЭЭП или дублируют их. Но, в некоторых случаях отраслевые правила устанавливают более жесткие требования к проведению испытаний и измерений. В объеме данной статьи нет возможности перечислить полный перечень всех исключений, но основные из них мы приведем ниже:
1. Для заведений начального профессионального и высшего образования следует руководствоваться приказом N 662 от 11 марта 1998 г. Министерства общего и профессионального образования РФ:
п. 3.19.7
[В соответствии с основными направлениями работы на службу образовательного учреждения возлагаются функции осуществления контроля за] Проведением ежегодных проверок заземления электроустановок и изоляции электропроводки в соответствии с действующими правилами и нормами.
В этом случае руководство каждого образовательного учреждения обязано контролировать своевременное проведение испытаний и измерений параметров электрооборудования в соответствии с ПТЭЭП.
2. Периодичность замера сопротивления изоляции в средних учебных заведениях (школах) г. Москвы регламентирует приказ №156 от 29.03.2012 года городского департамента образования:
прил. 3, п. 2.17
Проведение замеров сопротивления изоляции эксплуатируемой электропроводки <..> в закрытых сооружениях и помещениях с нормальной средой один раз в год; в открытых сооружениях, а также в сырых, пожароопасных и взрывоопасных помещениях один раз в шесть месяцев.
Для школьных учреждений сроки замеров сопротивления изоляции четко определены, что освобождает руководство на местах от штудирования приложений ПТЭЭП.
3. Для объектов здравоохранения следует ориентироваться на Правила пожарной безопасности для учреждений здравоохранения ППБО 07-91:
п. 2.3.12а
Замеры сопротивления изоляции электрических сетей в открытых сооружениях, а также в сырых, пожароопасных и взрывоопасных помещениях производятся не реже одного раза в шесть месяцев; в закрытых сооружениях и помещениях с нормальной средой — не реже одного раза в год с оформлением актов или сопровождением соответствующих записей в специально заведенном журнале.
Подобные по содержанию требования включает ГОСТ Р 50571.28-2006 "Электроустановки зданий. Часть 7-710. Требования к специальным электроустановкам. Электроустановки медицинских помещений" и приказ №46
от 27.01.2015 департамента здравоохранения г. Москвы (ДЗМ):
приложение №1, п. 1.17
Проведение замеров сопротивления изоляции электрических сетей в соответствии с требованиями ПУЭ, ППБО 07-91 п. 2.3.12а. Срок проведения: один раз в год, один раз в шесть месяцев (в открытых сооружениях, а также в сырых, пожароопасных и взрывоопасных помещениях). Форма завершения: технический отчет.
Для заведений здравоохранения законодательная база уже четко определила сроки проведения замеров сопротивления изоляции, поэтому не потребуется прибегать к изучению другой нормативно-технической документации.
4. В соответствии с ПТЭЭП для лифтов и кранов действует норматив по измерению сопротивления изоляции кабелей не реже одного раза в год. Для определения нормы для подъемников необходимо дополнительно искать в Правилах устройства и безопасной эксплуатации строительных подъемников ПБ 10-518-02:
п. 4.3.2
Подъемники, находящиеся в работе, должны подвергаться полному техническому освидетельствованию, проводимому специализированными организациями или инженерными центрами не реже одного раза в двенадцать месяцев.
п. 4.3.1
Подъемники до пуска в работу должны быть подвергнуты полному техническому освидетельствованию.
п. 4.3.6
При полном техническом освидетельствовании подъемника должны быть осмотрены и проверены:
<..>
з) изоляция проводов и состояние заземления в соответствии с правилами устройства электроустановок с определением их сопротивления и отражением результатов в протоколах измерений.
Руководство этими пунктами позволяет построить график ППР с учетом всех возможных случаев технического обслуживания подъемников и кранов.
5. Для заведений общественного питания актуальны требования Межотраслевых правил по охране труда в общественном питании ПОТ РМ-011-2000.
п. 5.6.
Сопротивление изоляции электросети в помещениях без повышенной электроопасности следует измерять не реже одного раза в двенадцать месяцев, в особо опасных помещениях (или с повышенной опасностью) — не реже одного раза в шесть месяцев. Кроме того, проводятся испытания защитного заземления (зануления) не реже одного раза в двенадцать месяцев.
6. Компании по предоставлению услуг стирки и химчистки должны руководствоваться положениями Межотраслевых правил по охране труда при химической чистке и стирке ПОТ РМ-013-2000:
п. 3.7.6.
Сопротивление изоляции электросети в помещениях без повышенной опасности следует измерять не реже одного раза в двенадцать месяцев, в особо опасных помещениях (с повышенной опасностью) — не реже одного раза в шесть месяцев. Кроме того, проводятся испытания защитного заземления (зануления) не реже одного раза в двенадцать месяцев.
7. Для предприятий розничной торговли совсем недавно в соответствии с приказом Минтруда РФ от 23.01.2013 №24 были отменены ПОТ РМ-014-2000. По этой причине для объектов розничной торговли следует руководствоваться ПТЭЭП.
Этот перечень включает только самые главные отраслевые документы, поэтому осталось еще много направлений деятельности не охваченных этой статьей.
Заключение
Несмотря на многочисленную нормативно-техническую базу документации для различных сфер деятельности. Потребитель должен самостоятельно осознавать необходимость в эксплуатационных испытаниях для своего электрооборудования. Это связано с высоким риском для персонала при обслуживании неисправного электрооборудования. Своевременный контроль и обнаружение дефектов электрооборудования на ранних стадиях развития позволяет предупредить сложные системные аварии и человеческие жертвы.
Нужна подробная консультация?
Обслуживание автоматических систем пожаротушения в Москве
ООО «Комплексный Энерго Подряд» — это штат квалифицированных сотрудников, современная техническая база, многолетний опыт работы для быстрого и качественного решения поставленных задач. Мы обслуживаем системы пожаротушения любой сложности с гарантией качества. По результатам работ мы предоставим акты и другие документы для органов государственного надзора. Заявки на сотрудничество принимаются по электронной почте и по телефонам, указанным на сайте.
Почему стоит заказывать услуги монтажа, замера и ремонта в электролаборатории КЭП

Проводим электроизмерения с 2006 года

Тщательно следим за актуальностью разрешений и лицензий, всегда вовремя осуществляем их продление и переаттестацию

Предоставляем гарантию на все услуги от 12 месяцев

Собственная круглосуточная диспетчерская служба

Все сотрудники проходят соответствующее обучение и аттестацию
Портфолио
Вернуться назадПерейти в контакты
Какова периодичность проведения электроизмерений?
2014
Общее правило:
Потребитель электроэнергии определяет сроки проверки и испытания электрооборудования самостоятельно, но не реже чем раз в три года (ПТЭЭП).
2.12.17 ПТЭЭП
Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).
3.4.12 ПТЭЭП
В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.
Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.
3.6.2 ПТЭЭП
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее — К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее — М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.
3.6.3 ПТЭЭП
Для видов электрооборудования, не включенных в настоящие нормы, конкретные нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.
3.6.4 ПТЭЭП
Нормы испытаний электрооборудования иностранных фирм должны устанавливаться с учетом указаний фирмы-изготовителя.
______________________________
ПОТ РМ-021-2002 «МЕЖОТРАСЛЕВЫЕ ПРАВИЛА ПО ОХРАНЕ ТРУДА ПРИ ЭКСПЛУАТАЦИИ НЕФТЕБАЗ, СКЛАДОВ ГСМ, СТАЦИОНАРНЫХ И ПЕРЕДВИЖНЫХ АВТОЗАПРАВОЧНЫХ СТАНЦИЙ»
(утв. постановлением Минтруда РФ от 6 мая 2002 г. № 33)
5.3.14. Проверка заземляющих устройств, включая измерения сопротивлений растеканию тока, должна производиться не реже одного раза в год — летом, при сухой почве для зданий и сооружений I — II категории молниезащиты, для зданий и сооружений III категории молниезащиты — 1 раз в 3 года.
_____________________________
ПОТ РМ-011-2000 «МЕЖОТРАСЛЕВЫЕ ПРАВИЛА ПО ОХРАНЕ ТРУДА В ОБЩЕСТВЕННОМ ПИТАНИИ»
(утв. Постановлением Минтруда РФ от 24 декабря 1999 гoда № 52)
5.6. Сопротивление изоляции электросети в помещениях без повышенной электроопасности следует измерять не реже 1 раза в 12 месяцев, в особо опасных помещениях (или с повышенной опасностью) — не реже 1 раза в 6 месяцев. Кроме того, проводятся испытания защитного заземления (зануления) не реже 1 раза в 12 месяцев.
____________________________
ПОТ Р М 014-2000 «МЕЖОТРАСЛЕВЫЕ ПРАВИЛА ПО ОХРАНЕ ТРУДА В РОЗНИЧНОЙ ТОРГОВЛЕ»
(утв. Постановлением Минтруда РФ от 16 октября 2000 гoда № 74)
5.1.17. Нельзя эксплуатировать оборудование, не имеющее защитного заземления, при снятой крышке корпуса, закрывающей токонесущие части, а также после истечения срока очередного ежегодного испытания и проверки состояния защитного заземления. Замер сопротивления заземления и изоляции проводов производится периодически, не реже одного раза в год.
8.5.18. Сопротивление изоляции электросети в помещениях без повышенной опасности измеряется не реже одного раза в 12 месяцев, в особо опасных помещениях (или с повышенной опасностью) — не реже одного раза в 6 месяцев. Испытания защитного заземления (зануления) проводятся не реже одного раза в 12 месяцев. Испытания изоляции переносных трансформаторов и светильников 12 — 42 В проводятся два раза в год.
_____________________________
ПОТ РМ-013-2000 «МЕЖОТРАСЛЕВЫЕ ПРАВИЛА ПО ОХРАНЕ ТРУДА ПРИ ХИМИЧЕСКОЙ ЧИСТКЕ, СТИРКЕ»
(утв. Постановлением Минтруда РФ от 16 октября 2000 года № 75)
3.7.6. Сопротивление изоляции электросети в помещениях без повышенной опасности следует измерять не реже одного раза в двенадцать месяцев, в особо опасных помещениях (с повышенной опасностью) — не реже одного раза в шесть месяцев. Кроме того, проводятся испытания защитного заземления (зануления) не реже одного раза в двенадцать месяцев.
4.1.18. Не допускается эксплуатировать производственное оборудование, не имеющее защитного заземления, при снятой крышке корпуса, закрывающей токонесущие части, а также после истечения срока очередного ежегодного испытания и проверки состояния защитного заземления. Замер сопротивления заземления и изоляции проводов производится периодически, не реже одного раза в год.
_____________________________
ГОСТ Р 50571.28-2006 (МЭК 60364-7-710:2002) Электроустановки медицинских помещений
Проведение замеров сопротивления изоляции и защитного заземления оборудования должны производится в соответствии с требованием ГОСТ Р 50571.28-2006 «Электроустановки зданий. Часть 7-710. «Требования к специальным электроустановкам». «Электроустановки медицинских помещений» и приказа №46 от 27.01.2015 департамента здравоохранения г. Москвы (ДЗМ)/
710.61. Приемосдаточные испытания
Ниже приведены проверки, измерения и испытания, дополняющие требования ГОСТ Р 50571.16 при проведении визуальных осмотров и испытаний электроустановок медицинских помещений перед сдачей объектов в эксплуатацию и при проведении периодических осмотров и испытаний:
a) проверка устройств контроля сопротивления изоляции в медицинских системах IT, включая систему визуальной и акустической сигнализации;
b) измерения, подтверждающие соответствие системы дополнительного уравнивания потенциалов требованиям 710.413.1.6.1 и 710.413.1.6.2;
c) контроль соответствия системы уравнивания потенциалов по 710.413.1.6.3;
d) проверка соответствия требованиям в отношении обеспечения безопасности по 710.556;
e) измерение токов утечки в цепях питания конечных потребителей и защитных оболочках трансформаторов медицинских систем IT на холостом ходу.
710.62. Периодичность проведения испытаний электроустановок, находящихся в эксплуатации
Периодичность проведения проверок, измерений и испытаний параметров в соответствии с перечислениями a) — e) по 710.61 устанавливается «в ведомственных нормативных документах Министерства здравоохранения и социального развития Российской Федерации».
В случае отсутствия соответствующих нормативов рекомендуется следующая периодичность:
a) проверка систем переключения на аварийное электроснабжение — один раз в 12 мес;
b) проверка устройств контроля сопротивления изоляции — один раз в 12 мес;
c) визуальная проверка уставок устройств защиты — один раз в 12 мес;
d) измерения в системе дополнительного уравнивания потенциалов — один раз в 36 мес;
e) проверка целостности системы уравнивания потенциалов — один раз в 36 мес;
g) измерение тока утечки трансформаторов медицинской системы IT — один раз в 36 мес;
h) проверка отключения УЗО по дифференциальному току — не реже одного раза в 12 мес.
_________________________________________________________________
ПОТ РМ-027-2003 Межотраслевых правил по охране труда
на автомобильном транспорте
8.8. Проверка состояния элементов заземляющего устройства электроустановок и определение сопротивления заземляющего устройства должны проводиться не реже 1 раза в 3 года и не реже 1 раза в 12 лет должна быть проведена выборочная проверка осмотром со вскрытием грунта элементов заземлителя, находящихся в земле.
Измерения напряжения прикосновения должны проводиться после монтажа, переустройства и капитального ремонта заземляющего устройства, но не реже 1 раза в 6 лет.
8.9. Силовые и осветительные установки должны подвергаться внешнему осмотру не реже 1 раза в год. Измерение сопротивления изоляции электропроводок производится не реже 1 раза в 3 года, а в особо сырых и жарких помещениях, в наружных установках, а также в помещениях с химически активной средой не реже 1 раза в год.
8.10. Измерение сопротивления изоляции электросварочных установок должно проводится после длительного перерыва в их работе, перестановки оборудования, но не реже 1 раза в 6 мес.
8.11. Во взрывоопасных зонах в электроустановках напряжением до 1000 В с глухозаземленной нейтралью при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль.
_________________________________________________________________
Учреждения образования
Приказ Департамента образования города Москвы №156 от 29.03.2013 *
Приложение 3 План организационно-технических мероприятий, направленных на усиление противопожарной защиты учреждений образования
2.17. Проведение замеров сопротивления изоляции эксплуатируемой электропроводки <…> в закрытых сооружениях и помещениях с нормальной средой 1 раз в год; в открытых сооружениях, а также в сырых, пожароопасных и взрывоопасных помещениях 1 раз в 6 месяцев.
Cодержание:
- Понятие сопротивления изоляции
- Причины ухудшения изоляции
- Периодичность проведения замеров сопротивления изоляции
- Порядок проведения измерений сопротивления изоляции
Начнем наш разговор с определения самого понятия сопротивление изоляции.
Это отношение напряжения, приложенного к диэлектрику, к протекающему сквозь него току.
Диэлектрик это такое вещество, которое практически не проводит ток. В электротехнике в качестве диэлектриков используют:
- в проводах и кабелях диэлектрическую резину, бумагу, пропитанную маслом, различные пластики;
- в электродвигателях – лаковую пропитку обмоток;
- в электрооборудовании, шинопроводах – керамические и органические изоляторы.
Сопротивление изоляции считается удовлетворительным, если каждая цепь с соединенными электроприемниками имеет сопротивление не менее нормированного значения для конкретного вида оборудования.
Сопротивление изоляции измеряется в Омах, кОмах, МОмах и ГОмах.
Причины ухудшения изоляции
В процессе эксплуатации электрооборудования, как правило, происходит ухудшение изоляции. Основными причинами ухудшения изоляции являются следующие:
- электрические – в основном локальные (точечные) пробои изоляции, связанные с ионизацией при большой напряженности электрического поля;
- тепловые перегрузки – в результате повышенных нагрузок возникает процесс перегрева токоведущих частей электроустановок или жил кабельных линий и электропроводок, что приводит к изменениям свойств изоляции. Например, резина пересыхает и трескается, а пластик расплавляется;
- механические нагрузки – возникают в кабельных линиях, проложенных в земле в результате изменения температуры окружающей срезы, промерзания и оттаивания грунта или в керамических изоляторах в результате внутренних напряжений. Проявляются в порывах и тяжениях кабелей и трещинах и сколах на изоляторах.
- воздействие агрессивных сред и воды.
- неправильные действия персонала.
В конечном счете, ухудшение изоляции может приводить к однофазным и многофазным коротким замыканиям, а при неполных коротких замыканиях (без металлического контакта) — к возникновению пожаров.
Таким образом, становится понятно для чего необходимо регулярное проведение замеров сопротивления изоляции.
Периодичность проведения замеров сопротивления изоляции.
Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения замера сопротивления изоляции, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!
Если хотите заказать замер сопротивления изоляции или задать вопрос, звоните по телефону: +7 (495) 181-50-34.
Периодичность замеров сопротивления изоляции электрооборудования, кабельных линий и электропроводок определяется НТД: ПТЭЭП, РД 34.45-51.300-97 и др.
Согласно НТД замер сопротивления изоляции в электроустановках потребителей (жилые дома, помещения, производства) проводится один раз в три года.
В специальных установках и установках с наличием опасных факторов: повышенная влажность, агрессивная среда, проводящая пыль, взрывопожароопасные, пожароопасные один раз в год.
Для сварочных аппаратов измерение сопротивления изоляции проводится не реже 1 раза в 6 месяцев.
Максимальный же интервал между измерениями сопротивления изоляции может составлять не более 3 лет. Это связано с тем, что органы Ростехнадзора имеют право производить проверку состояния оборудования потребителей не чаще чем 1 раз в 3 года. При проверке инспектор обязательно потребует наличия протоколов, среди которых должен быть протокол измерения сопротивления изоляции.
Все выше перечисленное, в основном, касалось оборудования на напряжение до 1000 В. Для высоковольтного оборудования сопротивление изоляции является сопутствующим высоковольтным испытаниям и скорее контролирует состояние изоляции до и после испытания.
Но есть и исключения. Например, вентильные разрядники допускается не подвергать испытанию на пробой, если сопротивление изоляции не менее 1 000 МОм. Измерения же эти следует проводить ежегодно перед началом грозового сезона.
Порядок проведения измерений сопротивления изоляции.
Кто же может проводить периодические измерения сопротивления изоляции?
Согласно Правил по охране труда при эксплуатации электроустановок это специально обученный работник из числа электротехнического персонала.
Работники ЭТЛ, имеющей регистрационное свидетельство Ростехнадзора с правом проведения данного вида работ. По результатам измерений составляется отчет, в котором указывается выявленное дефектное оборудование, рекомендации по устранению выявленных дефектов, и выдаются протоколы на электрооборудование, кабельные линии и электропроводку, прошедшие измерения сопротивления изоляции, с заключением о соответствии параметров оборудования (в конкретном случае изоляции) требованиям нормативной документации и пригодности к дальнейшей эксплуатации.
Протокол, выданный зарегистрированной ЭТЛ, является законным документом, подтверждающим пригодность электрооборудования к эксплуатации.
Заказать услугу проверки, замера сопротивления изоляции можно в нашей электролаборатории. По телефону +7 (495) 308-34-45, специалисты «ПрофЭнергия» ответят на все Ваши вопросы!
Организации розничной торговли |
Помещения без повышенной опасности |
1 раз в год |
ПОТ РМ-014-2000 |
|
Организации розничной торговли |
Особо опасные помещения и помещения с повышенной опасностью |
1 раз в 6 месяцев |
ПОТ РМ-014-2000 |
|
Организации розничной торговли |
Переносные трансформаторы и светильники 12 — 42 В |
1 раз в 6 месяцев |
ПОТ РМ-014-2000 |
|
Организации, осуществляющие работы по химической чистке и стирке изделий |
Помещения без повышенной опасности |
1 раз в год |
ПОТ РМ-013-2000 |
|
Организации, осуществляющие работы по химической чистке и стирке изделий |
Особо опасные помещения и помещения с повышенной опасностью |
1 раз в 6 месяцев |
ПОТ РМ-013-2000 |
|
Организации, осуществляющие работы по химической чистке и стирке изделий |
Переносные трансформаторы и светильники 12 — 42 В |
1 раз в 6 месяцев |
ПОТ РМ-013-2000 |
|
Организации общественного питания |
Помещения без повышенной опасности |
1 раз в год |
ПОТ РМ-011-2000 |
|
Организации общественного питания |
Особо опасные помещения и помещения с повышенной опасностью |
1 раз в 6 месяцев |
ПОТ РМ-011-2000 |
|
Учреждения здравоохранения |
Открытые помещения |
1 раз в 6 месяцев |
ППБО 07-91 «ППБ для учреждений здравоохранения» |
|
Учреждения здравоохранения |
Сырые, пожароопасные и взрывоопасные помещения |
1 раз в 6 месяцев |
ППБО 07-91 «ППБ для учреждений здравоохранения» |
|
Учреждения здравоохранения |
Закрытые помещения с нормальной средой |
1 раз в год |
ППБО 07-91 «ППБ для учреждений здравоохранения» |
|
Краны и лифты |
1 раз в год |
ПТЭЭП |
||
Стационарные электроплиты |
1 раз в год |
ПТЭЭП |
||
Электроустановки особо опасных помещений и наружной установки |
1 раз в год |
ПТЭЭП |
||
Учреждения образования (школы, детские сады) |
1 раз в год |
Требование для подписание акта готовности учреждения образования к новому учебному году |
||
Остальные электроустановки |
1 раз в 3 года |
ПТЭЭП |
Дата: 29 января, 2010 | Рубрика: Вопросы и Ответы, Электроизмерения
Метки: Замеры, Периодичность электроизмерений, ПТЭЭП, ПУЭ, Электроизмерения, Электролаборатория
Нужен электромонтаж или электроизмерения? Звоните нам!
Татьяна
Как часто проводятся измерения сопротивления изоляции проводов, оборудования, кабелей и заземляющих устройств?
Ответ:
Потребитель электроэнергии обязан проводить обследования, испытания и электроизмерения электроустановок в соответствии с нормами и правилами. Периодичность выполнения электроизмерений строго регламентируется в ПУЭ (правила устройства электроустановок) и ПТЭЭП (правила технической эксплуатации электроустановок потребителей).
На основании ПТЭЭП, замеры сопротивления изоляции, замеры сопротивления цепи «фаза-нуль» и замеры цепи между заземлёнными установками и элементами заземлённой установки проводятся с периодичностью, установленной системой ППР (планово-предупредительный ремонт), утвержденной техническим руководителем Потребителя.
Визуальный осмотр между защитным проводником и электрооборудованием производиться не реже 1 раза в 6 месяцев.
Замеры сопротивления изоляции проводов и кабелей проводятся не реже чем 1 раз в 3 года.
При отказе устройств защиты электроустановок и после переустановки электрооборудования, требуется выполнить электроизмерения цепи между заземлёнными установками и элементами заземлённой установки и электроизмерения сопротивления петли «фаза-нуль».
1. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
2. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
3. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
4. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
5. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
6. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
7. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”
ПТЭЭП
2.7.9
Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.
При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.
Результаты осмотров должны заноситься в паспорт заземляющего устройства.
2.7.13
Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться:
измерение сопротивления заземляющего устройства;
измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;
измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;
измерение удельного сопротивления грунта в районе заземляющего устройства.
Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% железобетонных и металлических опор в населенной местности.
Измерения должны выполняться в период наибольшего высыхания грунта (для районов вечной мерзлоты — в период наибольшего промерзания грунта).
Результаты измерений оформляются протоколами.
На главных понизительных подстанциях и трансформаторных подстанциях, где отсоединение заземляющих проводников от оборудования невозможно по условиям обеспечения категорийности электроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11.
2.7.14
Измерения параметров заземляющих устройств – сопротивление заземляющего устройства, напряжение прикосновение, проверка наличия цепи между заземлителями и заземляемыми элементами — производится также после реконструкции и ремонта заземляющих устройств, при обнаружении разрушения или перекрытия изоляторов ВЛ электрической дугой.
При необходимости должны приниматься меры по доведению параметров заземляющих устройств до нормативных.
2.12.17
Проверка состояния стационарного оборудования и электропроводки аварийного и рабочего освещения, испытание и измерение сопротивления изоляции проводов, кабелей и заземляющих устройств должны проводиться при вводе сети электрического освещения в эксплуатацию, а в дальнейшем по графику, утвержденному ответственным за электрохозяйство Потребителя, но не реже одного раза в три года. Результаты замеров оформляются актом (протоколом) в соответствии с нормами испытания электрооборудования (Приложение 3).
3.4.12
В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.
Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.
3.6.2
Конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте (далее — К), при текущем ремонте (далее — Т) и при межремонтных испытаниях и измерениях, т.е. при профилактических испытаниях, выполняемых для оценки состояния электрооборудования и не связанных с выводом электрооборудования в ремонт (далее — М), определяет технический руководитель Потребителя на основе Приложения 3 настоящих Правил с учетом рекомендаций заводских инструкций, состояния электроустановок и местных условий.
Указанная для отдельных видов электрооборудования периодичность испытаний в разделах 1-28 является рекомендуемой и может быть изменена решением технического руководителя Потребителя.
3.6.3
Для видов электрооборудования, не включенных в настоящие нормы, конкретные нормы и сроки испытаний и измерений параметров должен устанавливать технический руководитель Потребителя с учетом инструкций (рекомендаций) заводов-изготовителей.
3.6.4
Нормы испытаний электрооборудования иностранных фирм должны устанавливаться с учетом указаний фирмы-изготовителя.
Приложение 3
26
Заземляющие устройства
К, Т, М — производятся в сроки, устанавливаемые системой ППP
28
Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27, и электропроводки напряжением до 1000 В К, Т, М — производятся в сроки, устанавливаемые системой ППP
28.4
Проверка срабатывания защиты при системе питания с заземленной нейтралью (TN-C, TNC-S, TN-S)
Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока короткого замыкания. У электроустановок, присоединенных к одному щитку и находящихся в пределах одного помещения, допускается производить измерения только на одной, самой удаленной от точки питания установке. У светильников наружного освещения проверяется срабатывание защиты только на самых дальних светильниках каждой линии. Проверку срабатывания защиты групповых линий различных приемников допускается производить на штепсельных розетках с защитным контактом.
28.5
Проверка наличия цепи между заземленными установками и элементами заземленной установки:
Производится на установках, срабатывание защиты которых проверено.
Приложение 3.1
Таблица 37
— Электропроводки, в том числе осветительные сети:
Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов.
В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
— Стационарные электроплиты:
Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год
Прочая и полезная информацияПрочая и полезная информация
Для чего вообще нужны электроизмерения и испытания?
Любая электроустановка состоит из большого числа различных элементов, которые, несомненно, подвержены старению, износу и поломкам. Каждая возникающая поломка может привести не только в выводу из строя дорогого электрооборудования, но и к различным аварийным ситуациям (в т.ч. пожару). Периодический осмотр и электроизмерения, соответственно, и проводятся для того, чтобы максимально снизить вероятность возникновения поломок и любых аварийных ситуаций, связанных с эксплуатацией электроустановок. Ну а если такие ситуация и возникнут, они бы не сильно повлияли на безопасность пользователя. Таким образом, для того чтобы электроустановка была работоспособна и безопасна для эксплуатации и проводятся электроизмерения и испытания.
Различают следующие виды электроизмерений
- Приемо-сдаточные испытания.
Каждая электроустановка после того, как все электромонтажные работы завершены, перед сдачей в эксплуатацию должна пройти такие испытания — приемо-сдаточные. По результатам проведенных электроизмерений оформляется так называемый технический отчет, который, в свою очередь, входит в документацию электроустановки, готовую к сдачи в эксплуатацию. - Периодические испытания.
Такого рода испытания как раз и проводятся с целью проверки всех составных элементов электроустановки. Здесь и проверка сопротивления изоляции, измерение сопротивления петли «фаза-нуль», испытания заземляющих устройств и т.д. Периодичность профессиональных электроизмерений устанавливается, прежде всего, характером эксплуатации электроустановки, ее конструктивными особенностями и требованиями нормативных документов. - Профилактические испытания.
Такие электроизмерения проводятся для того, чтобы вовремя выявить неисправность в электроустановке или оборудование, не соответствующее действующим нормативным требованиям. Проведения профилактических электроизмерений и испытаний снизит риск возникновения аварийных ситуаций, в том числе возгораний электроустановок.
Объем и нормы испытаний электрооборудования
С какой периодичностью необходимо проводить электроизмерения и испытания электроустановок? В общем случае необходимо руководствоваться следующим правилом: чем сложнее электросистема на предприятии, тем, соответственно, большую опасность она может представлять для пользователей и оборудования, и тем чаще необходимо проводить периодические и профилактические испытания. Но это — утопия.
Итак, в соответствии с Главой 3.6. ПТЭЭП «Методические указания по испытаниям электрооборудования и аппаратов электроустановок Потребителей» периодичность проведения испытаний электрооборудования должна определяться техническим руководителем потребителя на основании Приложения № 3 к ПТЭЭП в соответствии с рекомендациями инструкций по эксплуатации электрооборудования и местными условиями эксплуатации.
Нормы приемо-сдаточных испытаний должны соответствовать требованиям Раздела 1 «Общие правила» главы 1.8. «Нормы приемо-сдаточных испытаний» Правил устройства электроустановок (седьмое издание).
В соответствии с Приложением № 3 ПТЭЭП для проведения измерения сопротивления изоляции элементов электрических сетей установлена следующая периодичность:
- электропроводка (в том числе осветительная сеть) 1 раз в три года во всех случаях, за исключением особо опасных помещений и наружных установок, — здесь ежегодно;
- грузоподъемные механизмы, лифты и краны — ежегодно;
- для стационарных электроплит — также ежегодно при нагретом состоянии.
В остальных случаях электроизмерения и испытания проводятся с такой периодичностью, которая определяется в системе планово-предупредительного ремонта (ППР), которая, в свою очередь, определяется и утверждается техническим руководителем Потребителя в соответствии с п. 3.6.2. ПТЭЭП.
Для учреждений здравоохранения действуют внутриотраслевые нормативные документы, в которых определены следующие сроки проведения испытаний:
- проверять состояние элементов заземляющих устройств необходимо сразу после первого года их эксплуатации, а далее каждые 3 года;
- проверять наличие цепи между заземлителем и заземляемым оборудованием необходимо ежегодно, а также при любой перестановке оборудования;
- испытывать сопротивление заземляющих устройств — не реже 1 раза в год;
- проверять наличие полного сопротивления петли фаза-нуль необходимо сразу во время приемки в эксплуатацию и периодически не реже 1 раза в 5 лет.
Профилактические испытания проводятся с периодичностью, установленной ответственным за электрохозяйство потребителя с учетом инструкций по эксплуатации электрооборудования и условий эксплуатации. При этом, периодичность должна быть не реже, чем указано в соответствующих главах ПТЭЭП.
Электроизмерения при капитальном и текущем ремонте
Если электроустановка находится во взрывоопасной зоне напряжением до 1000 В с глухозаземленной нейтралью (система TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года необходимо выполнять измерение полного сопротивления петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.
В случае отказа устройства защиты электроустановки необходимо проводить внеплановые испытания и электроизмерения. Также проверяется соединение оборудования с заземляющим устройством после каждой его перестановки, а в сети напряжением до 1000 В с глухозаземленной нейтралью, кроме того, — сопротивление петли фаза-нуль.
Таким образом, конкретные сроки испытаний и измерений параметров электрооборудования электроустановок при капитальном ремонте, при текущем ремонте и при межремонтных испытаниях и измерениях (профилактические испытания), выполняемых для оценки состояния электрооборудования без вывода его в ремонт, определяет технический руководитель Потребителя, на основании ПТЭЭП и различных межотраслевых руководящих документов.
Ниже приведена таблица соответствующая Приложению 3 ПТЭЭП и др. НТД.
Измерение сопротивления изоляции (ИК)


Продолжение с первой части: Измерение сопротивления изоляции (IR) — Часть 1
Значения сопротивления изоляции (IR) — Индекс
1. IR-значения для электрических устройств и систем
2. IR-значение для трансформатора
3. IR-значение для ответвителя
4. IR-значение для электродвигателя
5. Значение IR для электрического кабеля и проводки
6. Значение IR для линии передачи / распределения
7. Значение IR для шинной панели
8. Значение IR для оборудования подстанции
9. Значение IR для бытового / Промышленная электропроводка
0. Необходимые меры предосторожности
1. ИК-значения для электрических приборов и систем
(PEARL Standard / NETA MTS-1997 Таблица 10.1)
Макс.Номинальное напряжение оборудования | Megger Размер | Min.IR Значение |
250 Вольт | 500 Вольт | 25 МОм |
600 Вольт | 1000 Вольт | 100 МОм |
5 кВ | 2500 Вольт | 1000 МОм |
8 кВ | 2500 Вольт | 2000 МОм |
15 кВ | 2500 Вольт | 5000 МОм |
25 кВ | 5000 Вольт | 20000 МОм |
35 кВ | 15000 Вольт | 100 000 МОм |
46 кВ | 15000 Вольт | 100 000 МОм |
69 кВ | 15000 Вольт | 100 000 МОм |
Правило одного мегагерца для значения ИК для оборудования
На основании рейтинга оборудования:
<1 кВ = 1 МОм минимум
> 1 кВ = 1 МОм / 1 кВ
Согласно правилам IE-1956
При давлении 1000 В, приложенном между каждым проводником под напряжением и землей в течение одной минуты, сопротивление изоляции высоковольтных установок должно составлять не менее 1 Мегаомметра или в соответствии с указаниями Бюро индийских стандартов.
Установки среднего и низкого напряжения — при давлении 500 В, приложенном между каждым проводником под напряжением и землей в течение одной минуты, сопротивление изоляции установок среднего и низкого напряжения должно составлять не менее 1 Мегаомметра или как указано Бюро Индийские Стандарты] время от времени.
В соответствии со спецификациями CBIP допустимые значения составляют 2 МегаОм на кВ
2. Значение ИК для трансформатора
Испытания сопротивления изоляции проводятся для определения сопротивления изоляции от отдельных обмоток к земле или между отдельными обмотками.Испытания сопротивления изоляции обычно измеряются непосредственно в мегоммах или могут быть рассчитаны на основе измерений приложенного напряжения и тока утечки.
Рекомендуемая практика измерения сопротивления изоляции — это всегда заземлять резервуар (и сердечник). Замкните накоротко каждую обмотку трансформатора на клеммах ввода. Затем проводятся измерения сопротивления между каждой обмоткой и заземлением всех других обмоток.


Обмотки трансформатора никогда не остаются плавающими для измерения сопротивления изоляции.Тщательно заземленная обмотка должна быть удалена, чтобы измерить сопротивление изоляции заземленной обмотки. Если заземление не может быть удалено, как в случае некоторых обмоток с заземленной нейтралью, сопротивление изоляции обмотки не может быть измерено. Относитесь к нему как к части заземленной цепи.
Нам нужно проверить обмотку на обмотку и обмотку на землю (E). Для трехфазных трансформаторов нам нужно протестировать обмотку (L1, L2, L3) с заменой заземления на дельта-трансформатор или обмотку (L1, L2, L3) с заземлением (E) и нейтральный (N) для тройных трансформаторов.
Значение ИК для трансформатора (Ссылка: Руководство по техническому обслуживанию трансформатора. JJ. Kelly. S.D Myer) | |
Трансформатор | Формула |
1-фазный трансформатор | ИК-значение (МОм) = C X E / (√KVA) |
3-фазный трансформатор (звезда) | ИК-значение (МОм) = C X E (P-n) / (√KVA) |
3-фазный трансформатор (Delta) | ИК-значение (МОм) = C X E (P-P) / (√KVA) |
, где С = 1.5 для T / C, заполненного маслом, с масляным баком, 30 для T / C, заполненного маслом без масляного бака или T / C сухого типа. |
Коэффициент поправки на температуру (база 20 ° C):
Коэффициент поправки на температуру | ||
O C | O F | поправочный коэффициент |
0 | 32 | 0,25 |
5 | 41 | 0.36 |
10 | 50 | 0,50 |
15 | 59 | 0,720 |
20 | 68 | 1,00 |
30 | 86 | 1,98 |
40 | 104 | 3,95 |
50 | 122 | 7,85 |
Пример: Для 1600 кВА, 20 кВ / 400 В, трехфазный трансформатор
- Значение IR на стороне высокого напряжения = (1.5 x 20000) / √ 1600 = 16000/40 = 750 МОм при 20 0 C
- Значение IR на стороне низкого напряжения = (1,5 x 400) / √ 1600 = 320/40 = 15 МОм при 20 0 C
- Значение IR при 30 0 C = 15X1,98 = 29,7 МОм
Сопротивление изоляции катушки трансформатора
Катушка трансформатора напряжения | Megger Размер | Мин.IR Значение Жидкостный T / C | Min.IR Value Dry Type T / C |
0 — 600 В | 1кВ | 100 МОм | 500 МОм |
600 В до 5 кВ | 2.5 кВ | 1000 МОм | 5000 МОм |
5 кВ до 15 кВ | 5 кВ | 5000 МОм | 25 000 МОм |
15 кВ до 69 кВ | 5 кВ | 10000 МОм | 50000 МОм |
Значение ИК трансформаторов
Напряжение | Испытательное напряжение (DC) со стороны низкого напряжения | Сторона высокого напряжения (DC) HV | мин. Значение ИК |
415 В | 500 В | 2.5 кВ | 100 МОм |
до 6,6 кВ | 500 В | 2,5 кВ | 200 МОм |
6,6кВ до 11кВ | 500 В | 2,5 кВ | 400 МОм |
11кВ до 33кВ | 1000 В | 5 кВ | 500 МОм |
33 кВ до 66 кВ | 1000 В | 5 кВ | 600 МОм |
66 кВ до 132 кВ | 1000 В | 5 кВ | 600 МОм |
от 132 кВ до 220 кВ | 1000 В | 5 кВ | 650 МОм |
Шаги для измерения ИК трансформатора:
- Отключите трансформатор и отсоедините перемычки и молниеотводы.
- Разрядить емкость обмотки.
- Тщательно очистите все втулки
- Короткое замыкание обмоток.
- Защитите клеммы, чтобы устранить поверхностную утечку через втулки клемм.
- Запишите температуру.
- Подсоедините измерительные провода (избегайте стыков).
- Подайте испытательное напряжение и отметьте показания. ИК. Значение через 60 секунд после приложения испытательного напряжения называется сопротивлением изоляции трансформатора при испытательной температуре.
- Нейтральный ввод трансформатора должен быть отсоединен от земли во время испытания.
- Все заземляющие соединения низковольтного разрядника должны быть отключены во время испытания.
- Из-за индуктивных характеристик трансформаторов показания сопротивления изоляции не должны приниматься до тех пор, пока не стабилизируется испытательный ток.
- Избегайте мегагермирования, когда трансформатор находится под вакуумом.
Испытательные соединения трансформатора для ИК испытаний (не менее 200 МОм)
Двухобмоточный трансформатор
1.(HV + LV) — GND
2. HV — (LV + GND)
3. LV — (HV + GND)
Трехобмоточный трансформатор
1. HV — (LV + TV + GND)
2. LV — (HV + TV + GND)
3. (HV + LV + TV) — GND
4. TV — (HV + LV + GND)
Автотрансформатор (две обмотки)
1. (ВН + НН) — GND
Автотрансформатор (три обмотки)
1. (HV + LV) — (ТВ + GND)
2. (HV + LV + TV) — GND
3. ТВ — (HV + LV + GND)
Для любой установки измеренное сопротивление изоляции должно быть не менее:
- HV — Земля 200 M Ω
- LV — Земля 100 M Ω
- ВН — LV 200 M Ω
Факторы, влияющие на значение ИК трансформатора
На значение ИК трансформаторов влияет
- Состояние поверхности клеммной втулки
- Качество масла
- Качество изоляции обмотки
- Температура масла
- Продолжительность приложения и значение испытательного напряжения
3.Значение ИК для Tap Changer
- ИК между ВН и НН, а также обмотки на землю.
- Минимальное значение ИК для устройства РПН составляет 1000 Ом на вольт, рабочее напряжение
4. Значение ИК для электродвигателя
Для электродвигателя мы использовали тестер изоляции для измерения сопротивления обмотки двигателя с заземлением (E).
- Для номинального напряжения ниже 1 кВ, измеренного с помощью мегомметра 500 В постоянного тока.
- Для номинального напряжения выше 1 кВ, измеренного с помощью мегомметра 1000 В постоянного тока.
- В соответствии с IEEE 43, пункт 9.3, должна применяться следующая формула.
- Мин. Значение ИК (для вращающейся машины) = (Номинальное напряжение (В) / 1000) + 1


Согласно стандарту IEEE 43 1974, 2000 | |
ИК Значение в МОм | |
ИК (мин) = кВ + 1 | Для большинства обмоток, сделанных до 1970 года, все обмотки возбуждения и другие, не описанные ниже |
ИК (мин.) = 100 МОм | Для большинства якорей постоянного тока и обмоток переменного тока, построенных после 1970 года (образуют намотанные катушки) |
ИК (мин.) = 5 МОм | Для большинства машин с катушками статора со случайной намоткой и катушками с намоткой с номинальным напряжением ниже 1 кВ |
Пример-1: Для трехфазного двигателя 11 кВ.
- Значение IR = 11 + 1 = 12 МОм, но согласно IEEE43 должно быть 100 МОм
- Пример 2: для 415 В, трехфазный двигатель
- Значение IR = 0,415 + 1 = 1,41 МОм, но согласно IEEE43 должно быть 5 МОм.
- В соответствии с IS 732 мин. ИК-значение двигателя = (20XVoltage (p-p / (1000 + 2XKW))
Значение IR двигателя согласно NETA ATS 2007. Раздел 7.15.1
Заводская табличка двигателя (V) | Испытательное напряжение | Мин. Значение ИК |
250 В | 500 В DC | 25 МОм |
600В | 1000 В постоянного тока | 100 МОм |
1000 В | 1000 В постоянного тока | 100 МОм |
2500 В | 1000 В постоянного тока | 500 МОм |
5000 В | 2500 В DC | 1000 МОм |
8000 В | 2500 В DC | 2000 МОм |
15000 В | 2500 В DC | 5000 МОм |
25000 В | 5000 В DC | 20000 МОм |
34500 В | 15000 В постоянного тока | 100000 МОм |
ИК-значение погружного двигателя:
IR Значение погружного двигателя | |
Отключение двигателя (без кабеля) | ИК-значение |
Новый мотор | 20 МОм |
Подержанный двигатель, который можно переустановить | 10 МОм |
Двигатель установлен в колодец (с кабелем) | |
Новый мотор | 2 МОм |
Подержанный двигатель, который можно переустановить | 0.5 МОм |
5. Значение ИК для электрического кабеля и проводки
Для проверки изоляции нам необходимо отключиться от панели или оборудования и изолировать их от источника питания. Проводка и кабели должны проверяться друг с другом (фаза-фаза) с помощью кабеля заземления (E). Ассоциация инженеров по изолированным силовым кабелям (IPCEA) предлагает формулу для определения минимальных значений сопротивления изоляции.
R = K x Log 10 (D / d)
R = значение ИК в МОм на 1000 футов (305 метров) кабеля.
K = постоянная изоляционного материала (лакированный кембрик = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
D = наружный диаметр изоляции проводника для одножильного провода и кабеля (D = d + 2c + 2b диаметр одножильного кабеля)
d — диаметр проводника
c — толщина изоляции проводника
b — толщина изоляции оболочки
Тест
HV на новом кабеле XLPE (согласно стандарту ETSA)
Заявка | Испытательное напряжение | Мин. Значение ИК |
Новые кабели — оболочка | 1KV DC | 100 МОм |
Новые кабели — Изоляция | 10 кВ постоянного тока | 1000 МОм |
После ремонта — Ножны | 1KV DC | 10 МОм |
После ремонта — шумоизоляция | 5KV DC | 1000 МОм |
Кабели 11 кВ и 33 кВ между сердечниками и землей (согласно стандарту ETSA)
Заявка | Испытательное напряжение | Мин. Значение ИК |
11KV Новые кабели — оболочка | 5KV DC | 1000 МОм |
11кВ После ремонта — Ножны | 5KV DC | 100 МОм |
33 кВ без подключения TF | 5KV DC | 1000 МОм |
33 кВ с подключенным TF. | 5KV DC | 15 МОм |


Измерение величины ИК (проводники к проводнику (перекрестная изоляция))
- Первый проводник, для которого измеряется поперечная изоляция, должен быть подключен к клемме линии мегомметра. Остальные проводники соединены петлей (с помощью зажимов «крокодил») i. е. Проводник 2 и далее подключен к клемме заземления мегомметра.Проводники на другом конце остаются свободными.
- Теперь поверните ручку мегомметра или нажмите кнопку мегомметра. Показание счетчика покажет поперечную изоляцию между проводником 1 и остальными проводниками. Показания изоляции должны быть записаны.
- Теперь подключите следующий провод к клемме линии мегомметра и подключите оставшиеся проводники к клемме заземления мегомметра и проведите измерения.
Измерение величины ИК (проводник с изоляцией земли)
- Подключите тестируемый провод к клемме линии мегомметра.
- Подключите клемму заземления мегомметра к земле.
- Поверните ручку мегомметра или нажмите кнопку мегомметра. Показание счетчика покажет сопротивление изоляции проводников. Показания изоляции должны регистрироваться после приложения испытательного напряжения в течение примерно минуты, пока не будет получено устойчивое значение.
Измерения ИК значения:
- Если во время периодических испытаний сопротивление изоляции кабеля находится между 5 и 1 МОм / км при скрытой температуре, соответствующий кабель следует запрограммировать на замену.
- Если сопротивление изоляции кабеля находится между 1000 и 100 кОм / км , при скрытой температуре кабель должен быть заменен в срочном порядке в течение года.
- Если сопротивление изоляции кабеля не превышает 100 кОм / км., Соответствующий кабель необходимо немедленно заменить в экстренном порядке.
6. Значение ИК для линии передачи / распределения
Оборудование | Megger Размер | Мин. Значение ИК |
S / S.Оборудование | 5 кВ | 5000 МОм |
EHVLines. | 5 кВ | 10 МОм |
H.T. Линии. | 1 кВ | 5 МОм |
LT / Линии обслуживания. | 0,5 кВ | 5 МОм |
7. Значение ИК для панельной шины
IR Значение для панели = 2 х кВ номинальной мощности панели.
Пример , для панели 5 кВ минимальная изоляция составляет 2 x 5 = 10 МОм.
8. Значение ИК для оборудования подстанции
Как правило, значения мегомметрии оборудования подстанции равны.
Типичное значение ИК оборудования S / S | |||
Оборудование | | Megger Размер | ИК значение (мин) |
Автоматический выключатель | (Фаза-Земля) | 5 кВ, 10 кВ | 1000 МОм |
(фаза-фаза) | 5 кВ, 10 кВ | 1000 МОм | |
Схема управления | 0.5 кВ | 50 МОм | |
CT / PT | (Pri-Earth) | 5 кВ, 10 кВ | 1000 МОм |
(вторая фаза) | 5 кВ, 10 кВ | 50 МОм | |
Цепь управления | 0,5 кВ | 50 МОм | |
Изолятор | (Фаза-Земля) | 5 кВ, 10 кВ | 1000 МОм |
(фаза-фаза) | 5 кВ, 10 кВ | 1000 МОм | |
Цепь управления | 0.5 кВ | 50 МОм | |
л.с. | (Фаза-Земля) | 5 кВ, 10 кВ | 1000 МОм |
Электродвигатель | (Фаза-Земля) | 0,5 кВ | 50 МОм |
LT Распределительное устройство | (Фаза-Земля) | 0,5 кВ | 100 МОм |
LT | (Фаза-Земля) | 0,5 кВ | 100 МОм |
Значение IR оборудования S / S согласно стандарту DEP | |||
Оборудование | Meggering | Значение IR во время ввода в эксплуатацию (МОм) | Значение IR во время технического обслуживания |
Распределительное устройство | HV Bus | 200 МОм | 100 МОм |
LV Автобус | 20 МОм | 10 МОм | |
LV проводка | 5 МОм | 0.5 МОм | |
Кабель (не менее 100 метров) | HV & LV | (10XKV) / км | (кВ) / км |
Мотор & Генератор | Фаза-Земля | 10 (КВ + 1) | 2 (КВ + 1) |
Трансформаторное масло погружено | HV & LV | 75 МОм | 30 МОм |
Трансформатор Сухой Тип | HV | 100 МОм | 25 МОм |
LV | 10 МОм | 2 МОм | |
Стационарное оборудование / Инструменты | Фаза-Земля | 5 кОм / вольт | 1 кОм / вольт |
подвижного оборудования | Фаза-Земля | 5 МОм | 1 МОм |
Распределительное оборудование | Фаза-Земля | 5 МОм | 1 МОм |
Автоматический выключатель | Главная цепь | 2 МОм / кВ | — |
Схема управления | 5 МОм | — | |
реле | Д.Цепь-Земля | 40 МОм | — |
LT Circuit-Earth | 50 МОм | — | |
LT-D.C Circuit | 40 МОм | — | |
LT-LT | 70 МОм | — |
9. Значение ИК для внутренней / промышленной проводки
Низкое сопротивление между фазными и нейтральными проводниками или от проводников под напряжением к земле приведет к току утечки.Это приводит к ухудшению изоляции, а также к потере энергии, которая увеличивает эксплуатационные расходы на установку.
Сопротивление между фазой-фазой-нейтралью-землей должно быть и никогда не должно быть меньше 0,5 мОм для обычных напряжений питания.
В дополнение к току утечки из-за сопротивления изоляции, есть еще одна утечка тока в реактивном сопротивлении изоляции, потому что она действует как диэлектрик конденсатора. Этот ток не рассеивает энергию и не представляет опасности, но мы хотим измерить сопротивление изоляции , поэтому постоянное напряжение используется для предотвращения включения реактивного сопротивления в измерение .
1-фазная проводка
> ИК-тестирование между фазой-природой и землей должно проводиться при полной установке с выключенным главным выключателем, с соединенной фазой и нейтралью, с отключенными лампами и другим оборудованием, но с включенными предохранителями, автоматическими выключателями и всей цепью. выключатели замкнуты.
Если используется двусторонняя коммутация, будет проверен только один из двух съемников. Чтобы проверить другое, оба двусторонних переключателя должны быть задействованы, а система проверена повторно.При желании установка может быть испытана целиком, когда должно быть достигнуто значение не менее 0,5 МОм.


3-фазная проводка
В случае очень большой установки, где параллельно проходит множество заземлений, показания должны быть ниже. Если это происходит, установка должна быть подразделена и повторно проверена, когда каждая часть должна соответствовать минимальным требованиям.


ИК-тесты должны проводиться между фазово-фазово-нейтральной землей с минимально допустимым значением для каждого теста 0.5 мОм
ИК-тестирование низкого напряжения | ||
Напряжение цепи | Испытательное напряжение | ИК-значение (мин) |
сверхнизкое напряжение | 250 В DC | 0,25 МОм |
до 500 В, кроме выше | 500 В пост. Тока | 0,5 МОм |
500 В до 1 кВ | 1000 В пост. Тока | 1,0 МОм |
Мин. Значение ИК = 50 МОм / Нет электрической розетки.(Все электрические точки с фитингами и вилками)
Мин. Значение ИК = 100 МОм / Нет электрической розетки. (Все электрические точки без фитингов и вилок).
Необходимые меры предосторожности
Электронное оборудование, такое как электронные флуоресцентные пусковые выключатели, сенсорные выключатели, диммеры, регуляторы мощности, таймеры задержки, которые могут быть повреждены при приложении высокого испытательного напряжения, должно быть отключено.
Конденсаторы и индикаторные или контрольные лампы должны быть отключены, иначе могут появиться неточные показания теста.
Если какое-либо оборудование отключено для целей тестирования, оно должно быть подвергнуто собственному испытанию изоляции с использованием напряжения, которое вряд ли приведет к повреждению. Результат должен соответствовать результату, указанному в соответствующем британском стандарте, или не менее 0,5 мОм, если стандарта нет.
,Измерение сопротивления изоляции (ИК)
Дефекты в изоляции
Измерение сопротивления изоляции — это обычное обычное испытание, проводимое на всех типах электрических проводов и кабелей. В качестве производственного испытания этот тест часто используется в качестве приемочного испытания потребителем, при этом минимальное сопротивление изоляции на единицу длины часто указывается заказчиком.


Результаты, полученные с помощью ИК-теста, не предназначены для определения локализованных дефектов изоляции, как в настоящем тесте HIPOT, а скорее дают информацию о качестве сыпучего материала, используемого в качестве изоляции.
Даже если конечный потребитель этого не требует, многие производители проводов и кабелей используют тест сопротивления изоляции, чтобы отслеживать свои процессы производства изоляции и выявлять возникающие проблемы, прежде чем переменные процесса выходят за допустимые пределы.
Выбор ИК-тестеров (мегомметр):
Доступны тестеры изоляциис испытательным напряжением 500, 1000, 2500 и 5000 В. Рекомендуемые рейтинги тестеров изоляции приведены ниже:
Уровень напряжения | ИК-тестер |
650В | 500 В постоянного тока |
1.1кв | 1KV DC |
3,3 кВ | 2,5 кВ постоянного тока |
66 кВ и выше | 5 кВ постоянного тока |
Испытательное напряжение для переключения:
Когда используется переменное напряжение, практическое правило:
Испытательное напряжение (A.C) = (2X напряжение на паспортной табличке) +1000.
При использовании напряжения постоянного тока (чаще всего используется во всех мегомметрах)
Испытательное напряжение (D.C) = (2X напряжение на паспортной табличке).
Оборудование / Кабельный рейтинг | DC Испытательное напряжение |
24 В до 50 В | 50 В до 100 В |
50 В до 100 В | 100 В до 250 В |
100 В до 240 В | 250 В до 500 В |
440 В до 550 В | 500 В до 1000 В |
2400В | 1000 В до 2500 В |
4100В | 1000 В до 5000 В |
Диапазон измерения мегомметра:
Испытательное напряжение | Диапазон измерений |
250 В постоянного тока | Отдо 250 Гм |
500 В постоянного тока | МОм до 500 ГОм |
1KV DC | 0 МОм до 1 ТОм |
2.5KV DC | Отдо 2,5Ом |
5 кВ постоянного тока | 0 МОм до 5 ТОм |
Меры предосторожности при меггроминге
До того, как начать:
Убедитесь, что все соединения в тестовой цепи надежны. Перед использованием проверьте мегомметр, выдает ли он значение INFINITY , если он не подключен, и НОЛЬ, когда две клеммы соединены вместе и ручка повернута.
Во время меггринга:
Убедитесь, что при проверке заземления дальний конец проводника не соприкасается, в противном случае проверка покажет дефектную изоляцию, если на самом деле это не так.
Убедитесь, что заземление, используемое при проверке заземления и разомкнутых цепей, является хорошим, иначе тест даст неверную информацию. Запасные проводники не должны включаться, когда другие рабочие провода того же кабеля подключены к соответствующим цепям.
После завершения кабеля Meggering:
- Убедитесь, что все проводники были правильно подключены.
- Проверьте правильность реакции функций точек, дорожек и сигналов, подключенных через кабель.
- В случае сигналов, аспект должен быть проверен лично.
- В случае точек, проверьте позиции на сайте. Проверьте, случайно ли заземлена какая-либо полярность любого кабеля, проходящего через кабель.
Требования безопасности для мегаггинга:
- Все проверяемое оборудование ДОЛЖНО быть отключено и отключено.
- Оборудование должно разряжаться (шунтироваться или замыкаться), по крайней мере, до тех пор, пока испытательное напряжение приложено, чтобы быть абсолютно безопасным для человека, проводящего испытание.
- Никогда не используйте Megger во взрывоопасной атмосфере.
- Убедитесь, что все переключатели заблокированы, а концы кабелей помечены правильно для безопасности.
- Концы кабеля, которые должны быть изолированы, должны быть отсоединены от источника питания и защищены от контакта с источником питания, заземления или случайного контакта.
- Установка защитных барьеров с предупреждающими знаками и открытый канал связи между персоналом, проводящим испытания.
- Не мегагерзировать при влажности более 70%.
- Хорошая изоляция: показания мегомметра сначала увеличиваются, затем остаются постоянными.
- Плохая изоляция: чтение мегомметра сначала увеличивается, а затем уменьшается.
- Ожидаемое значение IR для Temp. От 20 до 30 градусов по Цельсию.
- Если вышеуказанная температура снижается на 10 градусов, значения ИК будут увеличены в два раза.
- Если температура выше 70 градусов Цельсия, то значение ИК уменьшается в 700 раз.
Как использовать Megger
Мегомметрыоснащены тремя соединительными клеммами линии (L), клеммой заземления (E) и защитной клеммой (G).


Сопротивление измеряется между клеммами линии и земли, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых испытаний, когда одно сопротивление должно быть изолировано от другого. Давайте проверим одну ситуацию, в которой сопротивление изоляции должно быть проверено в двухпроводном кабеле.
Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить провод «линии» мегомметра к одному из проводников и подключить провод «заземления» мегомметра к проводу, обмотанному вокруг оболочки кабель.


В этой конфигурации мегомметр должен считывать сопротивление между одним проводником и внешней оболочкой.
Мы хотим измерить сопротивление между проводником-2 к оболочкам, но фактически измеряем сопротивление мегомметром параллельно с последовательной комбинацией сопротивления проводника-проводника ( R c1-c2 ) и первого проводника в оболочке ( R c1-s ).
Если нас не волнует этот факт, мы можем продолжить тестирование в соответствии с настройками.Если мы хотим измерить только сопротивления между вторым проводником и оболочкой ( R c2-s ), то нам нужно использовать клемму « Guard » мегомметра.


При подключении клеммы «Guard» к первому проводнику оба проводника размещаются с практически равным потенциалом .
При небольшом или нулевом напряжении между ними сопротивление изоляции почти бесконечно, и, таким образом, между двух проводников не будет тока .Следовательно, индикация сопротивления мегомметра будет основываться исключительно на токе через изоляцию второго проводника, через оболочку кабеля и на намотанный провод, а не на ток, протекающий через изоляцию первого проводника.
Защитная клемма (если установлена) действует как шунт для удаления подключенного элемента из измерения. Другими словами, это позволяет вам быть избирательным при оценке определенных конкретных компонентов в большом электрическом оборудовании.Например, рассмотрим двухжильный кабель с оболочкой.
Как показано на диаграмме ниже, необходимо учитывать три сопротивления.


Если мы проводим измерения между сердечником B и оболочкой без подключения к защитному терминалу, некоторый ток пройдет от B к A и от A к оболочке. Наше измерение будет низким. При подключении защитного терминала к A две жилы кабеля будут иметь практически одинаковый потенциал, и, таким образом, эффект шунтирования устраняется.
Продолжение здесь — Измерение сопротивления изоляции (IR). Часть 2.
,Как измерить сопротивление изоляции двигателя
Сопротивление изоляции обмотки
Если двигатель не вводится в эксплуатацию сразу по прибытии, важно защитить его от внешних факторов , таких как влага, высокая температура и загрязнения, чтобы избежать повреждения изоляции. Перед вводом двигателя в эксплуатацию после длительного хранения необходимо измерить сопротивление изоляции обмотки.


Если двигатель находится в месте с высокой влажностью, необходимо периодически проверять .
Практически невозможно определить правила для фактического минимального значения сопротивления изоляции двигателя, поскольку сопротивление варьируется в зависимости от метода изготовления, состояния используемого изоляционного материала, номинального напряжения, размера и типа. На самом деле, многолетний опыт определяет, готов ли двигатель к работе или нет.
Общее эмпирическое правило составляет 10 МОм или более.
Значение сопротивления изоляции | Уровень изоляции |
2 МОм или меньше | Плохо |
2-5 МОм | Критическое |
5-10 МОм | Ненормальный |
10-50 МОм | хорошо |
50-100 МОм | Очень хорошо |
100 МОм или более | Отлично |
Измерение сопротивления изоляции осуществляется с помощью мегомметра — омметра с высоким сопротивлением.Вот как работает тест: постоянного тока напряжением 500 или 1000 В подается между обмотками и землей двигателя.


Во время измерения и сразу после него некоторые клеммы имеют опасное напряжение, и НЕ ДОЛЖНЫ БЫТЬ ПРИКЛЮЧЕНЫ .
В этой связи стоит упомянуть три момента: Сопротивление изоляции, Измерение и проверка.
1.Сопротивление изоляции
2. Измерение
- Минимальное сопротивление изоляции обмотки на землю измеряется при 500 В пост. Тока . Температура обмотки должна быть 25 ° C ± 15 ° C .
- Максимальное сопротивление изоляции должно измеряться при 500 В постоянного тока с обмотками при рабочей температуре 80 — 120 ° C в зависимости от типа двигателя и КПД.
3. Проверка
- Если сопротивление изоляции нового, очищенного или отремонтированного двигателя, которое хранилось в течение некоторого времени, меньше 10 МОм , причина может заключаться в том, что обмотки влажные и их необходимо высушить.
- Если двигатель работал в течение длительного периода времени, минимальное сопротивление изоляции может упасть до критического уровня . Пока измеренное значение не падает ниже расчетного значения минимального сопротивления изоляции, двигатель может продолжать работать.
Однако, если он падает ниже этого предела, двигатель должен быть немедленно остановлен , чтобы избежать травм людей из-за высокого напряжения утечки.
Ссылка: Grudfos — Motor Book
,Измерители Изоляции | Instrumart
Мегомметры, иногда называемые тестерами изоляции или, неофициально, мегомметрами, представляют собой электрические счетчики, используемые для определения состояния изоляции. на проводах и обмотках двигателя. Мегомметры вводят заряд высокого напряжения и постоянного тока (постоянного тока) и измеряют сопротивление для определения тока утечка и выявление неисправной или поврежденной изоляции, которая может привести к дуговым повреждениям, разрывам цепей и риску поражения электрическим током и / или пожара.Обычно используя Мегомметр для проверки изоляции как в новых установках, так и в рамках программы технического обслуживания — разумный способ обеспечить безопасность ваших цепей.
Изоляция проводов, кабелей и обмоток двигателя служит для защиты провода и отделения его от других проводов. Случайное касание двух проводников провода могут привести к повреждению дуги. Изоляция, однако, начинает ухудшаться с того момента, как она изготовлена, и с возрастом ее изоляционные свойства снижаются.Воздействие экстремальных условий окружающей среды и / или химического загрязнения ускоряет этот процесс. Мегомметры позволяют быстро и легко проверить определить повреждение изоляции до того, как оно приведет к условиям, которые могут повредить дорогое оборудование, привести к незапланированному отключению или создать угрозу личной безопасности.
Как работают мегомметры
Мегомметры — это просто омметры большой емкости, способные создавать постоянное напряжение от внутренней батареи.Уровень сопротивления, необходимый для испытания изоляции и обмотки двигателя намного выше, чем обычно на мультиметрах или стандартных омметрах. В зависимости от стандартов, допустимых сопротивление изолятора значения обычно составляют от 1 до 10 МОм (миллионы Ом).
Мегомметры должны иметь возможность генерировать напряжения в диапазоне от 50 до 15 000 вольт для точного измерения таких высоких сопротивлений. Небольшой внутренний генератор, либо ручной коленчатый или с внутренним двигателем, используется для создания этого напряжения.Напряжение подается при очень слабом токе, чтобы не повредить чувствительное оборудование или быть опасным для тестера.
При испытаниях с помощью мегомметра низкие значения сопротивления указывают на утечку тока, что свидетельствует о нарушении изоляции.
Хотя ценные инструменты, мегомметры также имеют ограничения. При использовании мегомметров важно помнить следующее:
- Высокое напряжение, создаваемое этими приборами, следует всегда учитывать при испытании электрооборудования.
- Испытательное напряжение мегомметра не должно превышать рабочее напряжение испытываемого оборудования с слишком большим запасом, поскольку это может привести к необратимому повреждению.
- Несмотря на то, что они выявляют проблемы с изоляцией, мегомметры не указывают точное место утечки тока.
- Никогда не используйте тестер изоляции, если обмотки двигателя находятся под вакуумом.
Использование мегомметра
Проверка сопротивления изоляции дает числовое значение для представления состояния изоляции проводника и внутренней изоляции электрооборудования.Но как мы можем прийти к этому значению и что означает это число?
Во время тестирования высокое постоянное напряжение, генерируемое мегомметром, приведет к тому, что небольшой ток протечет через проводник и изоляцию. Количество тока зависит от величины приложенного напряжения, емкости системы, общего сопротивления и температуры материала. В общем, чем выше ток, чем ниже сопротивление. Значение сопротивления изоляции, отображаемое на счетчике, является функцией следующих трех независимых субтоков.
1. Ток проводящей утечки: Ток проводимости — это небольшое количество тока, которое обычно протекает через изоляцию, между проводниками или от проводник на землю. Этот ток увеличивается по мере разрушения изоляции и становится преобладающим после исчезновения тока поглощения. Потому что это довольно устойчиво и не зависит от времени, это наиболее важный ток для измерения сопротивления изоляции.
2. Ток утечки емкостной зарядки: Когда два или более проводника идут параллельно друг другу, они действуют как конденсатор.Из-за этого емкостного В результате ток утечки протекает через изоляцию проводника. Этот ток длится всего несколько секунд, когда подается постоянное напряжение, и падает после Изоляция заряжена до полного испытательного напряжения. В оборудовании с низкой емкостью емкостный ток выше, чем ток утечки, но это рассеивается очень быстро. При использовании оборудования с высокой емкостью ток утечки при емкостной зарядке может длиться очень долго. По этой причине важно позволить чтению уладиться перед записью.
3. Ток утечки при поляризации поглощения: Ток поглощения вызван поляризацией молекул в диэлектрическом материале. В оборудование с низкой емкостью, ток высокий в течение первых нескольких секунд и медленно уменьшается почти до нуля.