Защитное заземление: Защитное заземление — устройство, принцип работы, виды, расчет и схемы

Чем отличается защитное заземление от рабочего?

Для защиты от поражения электрическим током используют защитное заземление, а рабочее необходимо для функционирования оборудования. В чем разница между защитным и рабочим заземлением?

Электрический ток не виден глазом, не имеет запаха, его нельзя определить на слух. Поэтому приборы, работающие от электрического тока, относятся к электроустановкам повышенной опасности. Для защиты обслуживающего персонала от поражения электрическим током применяется защитное заземление. А для обеспечения нормальной работы оборудования в штатном или аварийном режимах используется рабочее заземление. Для того чтобы понять разницу, необходимо разобраться, чем отличается защитное и рабочее заземление. Об этом мы и поговорим далее.

Содержание:

Защитное заземление

Основное назначение защитного заземления (ЗЗ) состоит в том, чтобы защитить обслуживающий персонал от поражения электрическим током в аварийной ситуации. В случае, когда на металлической нетоковедущей поверхности электроустановок внезапно появляется опасное напряжение.

Это может произойти в результате пробоя изоляции или обрыва провода и его касании корпуса. В результате человек подвержен опасному напряжению.

На рисунке снизу показана схема защитного заземления. Из него понятно устройство и принцип работы ЗЗ.

ПУЭ дает определение:

Защитное заземление (ЗЗ) – это преднамеренное соединение металлических частей корпуса оборудования с землей, заземлителем или его аналогом. Основная задача состоит в том, чтобы обезопасить обслуживающий персонал от травм, вызванных поражением электрическим током.

Для расчетов необходимо знать, сколько Ом должно иметь защитное устройство (ЗУ). Его значение в основе расчета не должно превышать 4 Ом.

ЗЗ используется в следующих случаях:

  • В трехфазных сетях с изолированной нейтралью переменного напряжения до 1 кВ.
  • В однофазных сетях переменного тока.
  • В сетях постоянного тока с изолированной средней точкой обмоток источника тока.
  • В сетях переменного и постоянного тока с любым режимом обмоток источника при напряжении выше 1 кВ.

Рабочее заземление

Предназначено для обеспечения нормальной работы оборудования во всех режимах работы. Это относится и к аварийным ситуациям.

Рабочее или функциональное заземление — это заземление точки или точек токоведущих частей оборудования, предназначенное для обеспечения работоспособности электрооборудования, не в целях электробезопасности.

На рисунке снизу показана схема из учебника рабочего заземления для различных сетей.

Функциональным назначением данной опции является поддержание работоспособности оборудования и защитных аппаратов в штатном и аварийном режимах. Зачастую она используется для срабатывания специальных устройств.

Это могут быть плавкие предохранители, резисторы и т.п. Основным назначениям функции является препятствие сбоям, их локализации и препятствие их распространению.

Правила техники безопасности запрещают совмещать защитное и рабочее заземление. Что связано с тем, что электрические атмосферные помехи, например, от грозозащиты зданий и сооружений, могут совместиться с токами сети.

Это может привести к сбоям оборудования, например, компьютеров, сложной электронной техники и т.п. А так же к выходу оборудования из строя.

Кроме этого, такое совмещение сделает защиту от напряжения не эффективной. А в аварийной ситуации она вообще перестанет функционировать.

В качестве заземлителей применяют металлические стержни. Их должно быть не менее двух, и расстояние между ними составляет 1 м.

При этом необходимо соблюдать следующие правила, определяемые по ПУЭ:

  1. В качестве рабочего заземления запрещается использовать трубопроводы в любой ситуации.
  2. Запрещается выводить кабель наружу и подключать к шине в месте неподготовленном для этого. Так как плохой контакт не обеспечит надежной защиты, а в процессе эксплуатации он ухудшится из-за коррозии металла.
  3. Последовательное подключение оборудование к шине заземления категорически запрещается.
  4. Запрещено к одной контактной площадке на шине заземления подсоединять несколько кабелей от оборудования.

На вышеприведенном рисунке показан пример металлосвязи с электрооборудованием.

Отличия

Определить разницу в этих заземляющих устройствах не посвященному довольно сложно. Оба вида защиты используют одинаковые защитные устройства. Т.е. они выполняются по единой методике. Разница заключается в их назначении.

Отличие рабочего от защитного заземления заключаются в следующем:

  • Рабочее ЗУ обеспечивает защиту оборудования и приборов, подключенных к электрическим сетям от выхода из строя.
  • Для этого допускается использовать грозозащиту и системы выравнивания потенциалов, подключенных к местному контуру.
  • Оно не предназначено для защиты людей от поражений электрическим током.

Защитное заземление к работе оборудования никакого отношения не имеет. Оно служит для обеспечения безопасности работающего персонала. Характерной особенностью является то, что все металлические детали корпусов, шкафов, щитов учета на опоре и т.п. должны быть заземлены.

Заземлителями могут быть искусственно созданные конструкции или проложенные в земле трубы, экраны кабелей, на ЖД для этого можно использовать рельсы и т.п. Кроме трубопроводов транспортируемых взрывоопасные газы и жидкости. Для обеспечения работоспособности оборудования применяют рабочее зануление.

Оборудование и его части, подлежащие обязательному занулению или заземлению:

  1. Электроприводы электрических аппаратов.
  2. Корпуса электрических машин, асинхронных двигателей, понижающих трансформаторов, технологического оборудования и т.д.
  3. Испытательные установки, обмотки измерительных преобразователей.
  4. Металлические остовы и корпуса передвижных электроприемников, таких как краны, тельферы и т.д.
  5. Все открытые части работающего в данный момент оборудования.

Если невозможно осуществить подключение оборудования к занулению или заземлению, согласно требованию ПУЭ, применяют электроприемники на пониженное напряжение 42 Вольта. Например, для подключения механизмов в помещениях с повышенной опасностью, например, в шахте.

Заключение

Рабочее ЗУ и зануление предназначено для корректной работы оборудования в электроустановках в различных режимах. Оно не предназначено для обеспечения безопасности людей.

Защитное заземление и зануление используется для защиты человека от поражения электрическим током при аварийных ситуациях. Когда на корпусе возникает опасное напряжение, происходит защитное отключение напряжения. Кроме этого, происходит уравнивание потенциалов. В результате чего уменьшается вероятность поражения человека шаговым напряжением.

Опубликовано: 30.07.2020 Обновлено: 30.07.2020 нет комментариев

Защитное заземление. Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Служит для превращения замыкания на корпус в замыкание на землю с целью уменьшения напряжения на корпусе относительно земли до безопасной величины.

Заземлить – означает металлически надежно, с помощью проводов, не имеющих изоляции, или шин, соединить с заземлителями подлежащие защите элементы или части оборудования. Заземлители бывают естественные и искусственные.

Естественные заземлители – металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей (трубопроводы, элементы конструкции зданий, баки для воды).

Искусственные заземлители – любые металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей, специально закладываемые в землю для целей заземления (трубы, уголки, профили, пруты).

Естественные и искусственные заземлители соединяют друг с другом металлической стальной шиной, сечение которой обуславливается значением токов замыкания на землю и механической прочностью заземлителей.

Заземляющим проводником называют провод, соединяющий защищаемое оборудование с находящимся в земле заземлителем.

Качество заземлителя определяется значением сопротивления заземления и изменением напряжения относительно земли. Под сопротивлением заземления заземлителя понимают сопротивление между заземлителем (у места соприкосновения с грунтом) и землей. Значение сопротивления заземления определяется как отношение полного напряжения относительно земли к полному току замыкания на землю. Под полным напряжением относительно земли понимается напряжение, возникающее в цепи тока замыкания на землю между заземлителем и землей (зона нулевого потенциала).


Физическая сущность защитного заземления показана на рисунке, где слева изображен любой трехфазный электроприемник (электродвигатель, трансформатор, прибор), справа – источник электроэнергии, нейтраль которого наглухо заземлена. На этом же рисунке представлена зависимость изменения напряжения U от L, где L – расстояние между заземлителем и зоной нулевого потенциала.

 
 

Принципиальная схема заземления для защиты от напряжения, возникшего на корпусе оборудования. 1 – электроприемник; 2, 3 – заземлители; 4 – источник элктроэнергии; z
чел
– полное сопротивление тела человека; Uп – полное напряжение относительно земли; Uпр – напряжение прикосновения; Uшаг – напряжение шага; r – активное сопротивление изоляции; с – емкость провода относительно земли.

Если изоляция электроприемника повредилась, то его токоведущая часть электрически соединилась с незаземленным металлическим корпусом технологического оборудования или защитного устройства. Коснувшись такого корпуса или же поддерживающей его конструкции, оставленной без заземления, человек оказывается под напряжением прикосновения, значение которого равно фазному или близко к нему. Таким образом, сущность защиты с помощью устройства заземлений заключается в создании такого заземления, которое обладало бы сопротивлением, достаточно малым для того, чтобы падение напряжения на нем (а именно оно и будет поражающим) не достигло значения, опасного для человека. В поврежденной цепи необходимо обеспечить такое значение тока, которое было бы достаточным для надежного срабатывания защитных устройств, установленных на источнике питания.

Нормирование сопротивления заземления. Для сетей напряжением ниже 1000 В на основании статистических данных “Правилами устройства электроустановок” определено лишь верхнее численное значение допустимого предела сопротивления заземления, а именно 40 м.

6. Зануление (заземляющая система с нулевым заземленным проводом).

Занулением называется защитное мероприятие, применяемое только в сетях с заземленной нейтралью напряжением ниже 1000 В, предназначенное для защиты людей от напряжения, возникающего на металлических частях оборудования, нормально не находящихся, но могущих оказаться под напряжением при тех или иных повреждениях изоляции, и заключающееся в создании в поврежденной цепи значения тока, достаточного для надежной работы защиты.

 
 

Занулить – это значит металлически (электрически) надежно соединить подлежащие защите части оборудования с нулевым проводом. Зануление требует применения заземлителей для присоединения к ним нулевого провода. Но значение этих заземлителей иное, чем при заземлении.

Принципиальная схема зануления для защиты людей от напряжения, возникающего на корпусе оборудования при повреждении изоляции. 1 – электроприемник; 2, 3 – заземлители; 4 – источник электроэнергии; 5 – распределение Uпр при отсутствии заземления; 6 – то же при его наличии; zчел – полное сопротивление тела человека; Rз,n – сопротивление повторного заземления; Rзм – сопротивление заземлителя нейтрали генератора; Uо – падение напряжения на нулевом проводе; Uпр – падение напряжения при отсутствии повторного заземления; Uпр – то же при его наличии.

Физическая сущность защиты в системе зануления поясняется на рисунке, на котором представлена принципиальная схема зануления с одним электроприемником. Показано соединение нейтралей источника электроэнергии с корпусом электроприемника; приведена диаграмма, характеризующая изменение напряжения относительно земли, возникающего при повреждении изоляции в двух случаях:

– нулевой провод имеет единственное заземление у источника электроэнергии;

– нулевой провод имеет повторное заземление у электроприемника.

В первом случае напряжение прикосновения увеличивается в сторону электроприемника и достигает максимального значения у его корпуса; численно это напряжение будет равно падению напряжения на нулевом проводе при коротком замыкании, возникающем в электроприемнике между фазным и нулевым проводом. Если сопротивление фазного провода rф будет равно сопротивлению нулевого провода r0, то напряжение прикосновения в момент короткого замыкания на корпусе электроприемника при отсутствии повторного заземлителя будет равно половине фазного. Если же сопротивление нулевого провода будет больше сопротивления фазного, то напряжение прикосновения будет больше половины фазного. Уменьшить напряжение прикосновения можно двумя путями: увеличив сечение нулевого провода или устроив повторные заземлители.

Вывод: физическая сущность защиты посредством системы зануления заключается в снижении напряжения прикосновения путем уменьшения сопротивления нулевого провода и перераспределения напряжения прикосновения между основным (нейтраль трансформатора) и повторным (у электроприемника) заземлителями с помощью повторных заземлителей, численные значения сопротивлений которых роли не играют.

7. Защитное отключение.

Защитное отключение – это система защиты, основанная на автоматическом отключении электроприемника, если на металлических частях его, нормально не находящихся под напряжением, появляется напряжение, значение которого опасно для человека.

Такую систему, предназначенную для сети с изолированной нейтралью, принципиально можно использовать и для сети с заземленной нейтралью.

 
 

Принцип работы:

Принципиальная схема защитного отключения.

1 – корпус электроприемника; 2 – оттягивающая пружина; 3 – защелка, удерживающая ножи отключателя; 4 – отключающая катушка; 5, 6 – заземлители.

При защите человека от напряжения, возникающего на корпусе одиночного электроприемника вследствие повреждения его изоляции, возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.

Первому случаю соответствует рисунок (I) – контакт с заземлителем разомкнут. На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель. Далее ставят сам отключатель или защитный выключатель. На рисунке все элементы этого выключателя для наглядности принципа действия разобщены. Защитный выключатель (отключатель) имеет катушку, разрывающую цепь при подаче на нее напряжения. Он может иметь и включающую катушку, позволяющую производить включение нажатием кнопки. Отключающая катушка удерживает выключатель в замкнутом включенном состоянии с помощью защелки. Один конец катушки подсоединен к корпусу электроприемника, второй – к выносному заземлителю. В случае повреждения изоляции, между корпусом электроприемника и выносным заземлителем появляется фазное напряжение. Отключающая катушка окажется под напряжением, и через нее пойдет ток. Ее сердечник втянется и освободит удерживающую защелку. Пружина оттянет ножи выключателя, и цепь разорвется. Напряжение прикосновения на корпусе электроприемника пропадет, соприкосновение с ним станет безопасным.

Если корпус электроприемника заземлен, то разъединитель заземлителя будет включен. При повреждении изоляции на корпусе электроприемника появится напряжение, но оно уже не будет равно фазному. Значение возникшего напряжения определит падение напряжения на заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. В этом случае катушка выключателя должна быть рассчитана на действие от меньшего напряжения. Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника. Чем меньше время действия отключающего устройства, тем надежнее система защиты. Одним из преимуществ защитного отключения является то, что оно может срабатывать и не при полном замыкании, а уже в начале развития повреждения. Это его существенное преимущество.

отличия от рабочего, назначение, схема и устройство

Содержание статьи:

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

Основные цели и задачи заземления

Заземление представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Устройство контура заземления

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Схема защиты дома от молний

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Устройства защиты от импульсных перенапряжений

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройстваНазначение защитного заземления
Большая мощность приборовТрехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудованиеОдно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборыТехника мощностью более 1 кВт
Электронная техника, которая является носителем важной информацииВ схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Необходимо обязательно обрабатывать сварные швы заземления от коррозии

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Заземление ванны в квартире

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Использование защитного заземления и отличие его от зануления

Устройство защитного заземления – способ, электротехнического присоединения защитного проводника с нетоковедущими корпусами электроустановок, подвергаемые действию токов короткого замыкания фазного электротока. Защитный контур, главной задачей которого, является предохранение нанесения электротравм, связанных, с пиковыми значениями тока при коротком замыкании.

Для понимания сути устройства, следует знать основные теоретические вопросы.

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок.

При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением.

Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • станки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств.

Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали.

Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника.

Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства.

Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование.

При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник.

В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

Защитное заземление применяется в сетях переменного тока до 1кВ с глухозаземленной нейтралью, свыше этого значения напряжения со всеми видами проведения нейтрального провода.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

«Что такое защитное заземление?» – Яндекс.Кью

Под защитным заземлением следует понимать преднамеренное соединение корпуса любого электрического прибора, нагревательного элемента, арматуры или других металлических конструкций с землей. Так как наиболее важным для защиты человека параметром заземления является его переходное сопротивление, то его значение стараются улучшить всеми возможными способами. Чем меньше переходное сопротивление, тем лучше защита, для уменьшения этого параметра в грунт и забиваются заземлители, соединяются в специальную структуру и т.д.

В случае повреждения изоляции между корпусом и любым из токоведущих элементов на корпус перейдет потенциал сети – 220В. Соответственно, в случае отсутствия защитного заземления, прикоснувшийся к такому корпусу человек рискует получить удар электрическим током, который может оказаться для него смертельным. В случае подключения защитного заземления к корпусу такого прибора, часть потенциала будет перетекать на землю и опасность для человека будет сведена к минимуму. Принцип действия защитного заземления детально показан на рисунке ниже:

На практике защитное заземление может иметь как отдельно выделенную линию, так и совмещать или вовсе отсутствовать как единица. Разнообразие систем питания по отношению к наличию или отсутствию заземления оговаривается п.1.7.3 ПУЭ. Но для бытовых нужд лучше все, же обеспечить защитное заземление у себя дома.

Заземление. Что это такое и как его сделать (часть 1) / Хабр

Мой рассказ будет состоять из трёх частей.

1 часть. Заземление
(общая информация, термины и определения)

2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.



1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.
А. Термины и определения
Б. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети
В. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).
И попытаюсь “перевести” эти определения на “простой” язык.

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).
Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).
Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:


Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:


Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро 🙂 и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:


Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:


Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).
Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.
Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

Подробнее защитное назначение заземления можно рассмотреть на двух примерах:

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты
Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.


Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)
УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.


Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд 🙂 между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети
Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).
В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды

В1.1. Площадь контакта заземлителя с грунтом.
Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)
Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.
В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

Для ориентирования приведу следующие значения:

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

Подробнее о строительстве — в следующих частях.

Продолжение:


Алексей Рожанков, специалист технического центра «ZANDZ.ru»

При подготовке данной части использовались следующие материалы:

  • Публикации на сайте “Заземление на ZANDZ.ru”
  • Правила Устройства Электроустановок (ПУЭ), часть 1.7 в редакции седьмого издания (гуглить)
  • ГОСТ Р 50571.21-2000 (МЭК 60364-5-548-96)
    Заземляющие устройства и системы уравнивания электрических потенциалов в электроустановках, содержащих оборудование обработки информации (гуглить)
  • Инструкция по устройству молниезащиты зданий и сооружений РД 34.21.122-87 (гуглить)
  • Собственный опыт и знания

Заземление: теория и практика

В данной статье будут рассмотрены следующие вопросы:

  • Для чего нужно заземление (защитное зануление)
  • Требования Правил устройства электроустановок (ПУЭ) к заземлению (защитному занулению)
  • Способы реализации заземления (защитного зануления).

Итак, для чего же заземление все-таки нужно? Компьютер без него вполне работоспособен и, как правило, с успехом выполняет возложенные на него пользователем задачи. В общем и целом все так. Но… есть ряд небольших нюансов.

Помехи

В большинстве блоков питания компьютеров на входе стоит элементарный фильтр, состоящий из двух конденсаторов, задача которого сводится к тому, чтобы не пропустить высокочастотную составляющую. Фильтр может быть и более продвинутым, включающим в себя катушки индуктивности (зависит от «серьезности» производителя БП), но, в большинстве случаев, это фильтр, показанный на рисунке. В результате, в зависимости от емкости конденсаторов, мы получаем на корпусе компьютера потенциал порядка 100 В относительно фазного (L) и нулевого (N) провода. Иначе говоря, при определенных условиях при прикосновении к корпусу компьютера можно получить удар электрическим током. Впрочем, в помещениях, где разводка сети выполнена по трехфазной схеме, ситуация гораздо хуже: разность потенциалов между корпусами компьютеров, сидящих на разных фазах, пойдет уже на сотни вольт. В результате, при объединении компьютеров, к примеру, в сеть, практически гарантированно получаем повреждение аппаратного обеспечения.

Кстати, те господа, которые применяют сетевые фильтры (ZIS, APC и т. д.) при отсутствии заземления (защитного зануления), в свете вышесказанного на самом деле используют просто удлинители за $20 и выше.

Защита от электромагнитного излучения

В смысле того излучения, которое оказывает вредное влияние на организм человека. Фирмы-производители постоянно борются за снижение электромагнитного излучения. Приходится им бороться — постоянно ужесточаются стандарты и требования. В общем, частоты растут, а уровень излучения должен снижаться. Так вот, все эти мероприятия практически сводятся к нулю в результате неправильного подключения аппаратуры.

Подведем итог. Заземление нужно, чтобы:

  • Уменьшить электромагнитное излучение высокой частоты
  • Уменьшить выброс помех в электрическую сеть
  • Уменьшить влияние внешних помех на аппаратуру
  • Обеспечить нормальную работу аппаратуры в составе сети
  • Исключить поражение человека емкостным током

Теперь попробуем разобраться, какие требования предъявляются к электрической сети в общем, и к заземлению в частности.

Основным документом в данном вопросе, безусловно, являются «Правила устройства электроустановок» (ПУЭ). Все монтажные работы и, впоследствии, приемо-сдаточные испытания базируются на требованиях ПУЭ. Здесь стоит отметить один, на мой взгляд, любопытный факт. Дело в том, что те или иные требования к электроустановкам определяются в первую очередь исходя из категории помещения с точки зрения электробезопасности. Согласно ПУЭ существует три категории помещений:

  1. Без повышенной опасности
  2. С повышенной опасностью
  3. Особо опасные

Согласно этой классификации квартиры попадают в категорию помещений с повышенной опасностью. Но при этом, в ПУЭ до 1999 года они относятся к так называемым жилым помещениям где, оказывается, нет необходимости в заземлении (занулении). И только в седьмом издании ПУЭ (утверждено 06.10.1999) эта позиция была пересмотрена. Более того: были введены требования, которые уже давно применяются в, скажем так, передовых странах.

Ниже будут приведены некоторые пункты правил, касающиеся заземления, но вначале хотелось бы остановиться на некоторых понятиях.

Электрические сети делятся на сети с изолированной и глухозаземленной нейтралью. В наше стране для питания жилых помещений, как правило, используются сети с глухозаземленной нейтралью (заземлена средняя точка генератора), поэтому корректнее говорить не «заземление», а «защитное зануление» (РЕ).Фазное напряжение Напряжение между фазным (L) и рабочим нулевым (N) проводниками. Для сети 380/220 В — 220 В.Линейное напряжение Напряжение между двумя фазными (L) проводниками. Для сети 380/220 В — 380 В.Рабочий ноль (N) Проводник, обеспечивающий вместе с фазным проводником питание потребителя.УЗО — устройство защитного отключенияПринцип работы устройства основан на правиле Кирхгофа (сумма токов равна нулю). Устройство отслеживает токи утечки, возникающие при прикосновении человека к токоведущему проводу, повреждении изоляции и т. п. Наиболее распространены УЗО с током отсечки 10 мА, 30 мА и 300 мА. При этом в жилых и общественных помещениях, как правило, применяются УЗО с током отсечки 30 мА. Основная задача УЗО — защита человека от поражения электрическим током и от возникновения пожара.

Выдержки из ПУЭ

7.1.21.

При питании однофазных потребителей зданий от многофазной распределительной сети допускается для разных групп однофазных потребителей иметь общие N и PE проводники (пятипроводная сеть), проложенные непосредственно от ВРУ1, объединение N и PE проводников (четырехпроводная сеть с PEN) не допускается.

При питании однофазных потребителей от многофазной питающей сети ответвлениями от воздушных линий, когда PEN проводник воздушной линии является общим для групп однофазных потребителей, питающихся от разных фаз, рекомендуется предусматривать защитное отключение потребителей при превышении напряжения выше допустимого, возникающего из-за несимметрии нагрузки при обрыве PEN проводника. Отключение должно производиться при вводе в здание, например воздействием на независимый расцепитель вводного автоматического выключателя посредством реле максимального напряжения, при этом должны отключаться как фазный (L), так и нулевой рабочий (N) проводники.

При выборе аппаратов и приборов, устанавливаемых на вводе, предпочтение, при прочих равных условиях, должно отдаваться аппаратам и приборам, сохраняющим работоспособность при превышении напряжения выше допустимого, возникающего из-за несимметрии нагрузки при обрыве PEN или N проводника, при этом их коммутационные и другие рабочие характеристики могут не выполняться.

Во всех случаях в цепях PE и PEN проводников запрещается иметь коммутирующие контактные и бесконтактные элементы.

Допускаются соединения, которые могут быть разобраны при помощи инструмента, а также специально предназначенные для этих целей соединители.

7.1.34.

В зданиях следует применять кабели и провода с медными жилами².

В жилых зданиях сечения медных проводников должны соответствовать расчетным значениям, но быть не менее указанных в таблице:

Наименование линийНаименьшее сечение кабелей и проводов с медными жилами, мм²
Линии групповых сетей1,5
Линии от этажных до квартирных щитков и к расчетному счетчику2,5
Линии распределительной сети (стояки) для питания квартир4
7.1.36.

Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего назначения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный — L, нулевой рабочий — N и нулевой защитный — РЕ проводники).

Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий.

Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Сечения проводников должны отвечать требованиям п. 7.1.45.

7.1.45.

Выбор сечения проводников следует проводить согласно требованиям глав ПУЭ.

Однофазные двух- и трехпроводные линии, а также трехфазные четырех и пятипроводные линии при питании однофазных нагрузок, должны иметь сечение нулевых рабочих (N) проводников, равное сечению фазных проводников.

Трехфазные четырех- и пятипроводные линии при питании трехфазных симметричных нагрузок должные иметь сечение нулевых рабочих (N) проводников, равное сечению фазные проводников, если фазные проводники имеют сечение до 16 мм² по меди и 25 мм² по алюминию, а при больших сечениях — не менее 50% сечения фазных проводников.

Сечение РЕN проводников должно быть не менее сечения N проводников и не менее 10 мм² по меди и 16 мм² по алюминию независимо от сечения фазных проводников.

Сечение PE проводников должно равняться сечению фазных при сечении последних до 16 мм², 16 мм² при сечении фазных проводников от 16 до 35 мм² и 50% сечения фазных проводников при больших сечениях.

Сечение PE проводников, не входящих в состав кабеля, должно быть не менее 2,5 мм² — при наличии механической защиты и 4 мм² — при ее отсутствии.

7.1.49

В зданиях при трехпроводной сети (см. п. 7.1.36) должны устанавливаться штепсельные розетки на ток не менее 10 А с защитным контактом.

Штепсельные розетки, устанавливаемые в квартирах, жилых комнатах общежитий, а также в помещениях для пребывания детей в детских учреждениях (садах, яслях, школах и т.п.) должны иметь защитные устройство, автоматически закрывающие гнезда штепсельной розетки при вынутой вилке.

7.1.68.

Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т. п.) к нулевому защитному проводнику.

7.1.69.

В помещениях зданий металлические корпуса однофазных переносных электроприборов и настольных средств оргтехники класса I по ГОСТ 12.2.007.0.-75 «ССБТ. Изделия электротехнические. Общие требования безопасности» должны присоединяться к защитным проводникам трехпроводной групповой линии (см. п. 7.1.36).

К защитным проводникам должны подсоединяться металлические каркасы перегородок, дверей и рам, используемых для прокладки кабелей.

7.1.72.

Если устройство защиты от сверхтока (автоматический выключатель, предохранитель) не обеспечивает время автоматического отключения 0.4 с при номинальном напряжении 220 В из-за низких значений токов короткого замыкания и установка (квартира) не охвачена системой уравнивания потенциалов, установка УЗО является обязательной.

7.1.74.

В зоне УЗО нулевой рабочий проводник не должен иметь соединений с заземленными элементами и нулевым защитным проводником.

7.1.75.

Во всех случаях применении УЗО должно обеспечить надежную коммутацию цепей нагрузки с учетом возможных перегрузок.

7.1.76.

Рекомендуется использовать УЗО, представляющее собой единый аппарат с автоматическим выключателем, обеспечивающим защиту от сверхтока.

Не допускается использовать УЗО в групповых линиях, не имеющих защиты от сверхтока, без дополнительного аппарата, обеспечивающего эту защиту.

При использовании УЗО, не имеющих защиты от сверхтока, необходима их расчетная проверка в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

7.1.77.

В жилых зданиях не допускается применять УЗО автоматически отключающие потребителя от сети при исчезновении или недопустимом падении напряжения сети. При этом УЗО должно сохранять работоспособность на время не менее 5 с при снижении напряжения до 50% номинального.

7.1.78.

В зданиях могут применяться УЗО типа «А», реагирующие как на переменные, так и на пульсирующие токи повреждений, или «АС», реагирующие только на переменные токи утечки.

Источником пульсирующего тока являются, например, стиральные машины с регуляторами скорости, регулируемые источники света, телевизоры, видеомагнитофоны, персональные компьютеры и др.

7.1. 79.

В групповых сетях, питающих штепсельные розетки, следует применять УЗО с номинальным током срабатывания не более 30 мА. Допускается присоединение у одному УЗО нескольких групповых линий через отдельные автоматические выключатели (предохранители).

Установка УЗО в линиях, питающих стационарное оборудование и светильники, а также в общих осветительных сетях, как правило, не требуется.

7.1.80.

В жилых зданиях УЗО рекомендуется устанавливать не квартирных щитках, допускается их установка на этажных щитках.

7.1.81.

Установка УЗО запрещается для электроприемников, отключение которых может привести к ситуациям, опасным для потребителей (отключению пожарной сигнализации и т.п.).

7.1.82.

Обязательной является установка УЗО с номинальным током срабатывания не более 30 мА для групповых лини, питающих розеточные сети, находящиеся вне помещений и в помещениях особо опасных и с повышенной опасностью, например, в зоне 3 ванных и душевых помещений квартир и номеров гостиниц.

7.1.86.

Если УЗО предназначено для защиты от поражения электрическим током и возгорания или только для защиты от возгорания, то оно должно отключать как фазный, так и нулевой рабочие проводники, защита от сверхтока в нулевом рабочем проводнике не требуется.

7.1.87.

На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:

  • Основной (магистральный) проводник
  • Основной (магистральный) заземляющий проводник или основной заземляющий зажим.
  • Стальные трубы, коммуникаций зданий и между зданиями.
  • Металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание
  • Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

Примечания:

  1. Вводно-распределительное устройство
  2. До 2001г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами.

 

Теперь можно поговорить о возможности зануления оргтехники. Если ваш дом сдан после 1998–1999 года, то, скорее всего, на розетки в квартире заведен защитный ноль. Если вас мучают сомнения, то можно удостовериться в наличии нуля на заземляющем контакте розетки следующим образом. Найти фазу (при помощи, например, однополюсного индикатора). Далее один из способов:

  1. Замерить напряжение между фазой и нулем и, затем, между фазой и заземляющим контактом. В обоих случаях показания должны быть одинаковы.
  2. Зарядить патрон Е27 (обычный бытовой) проводниками достаточной длины. Вкрутить в него лампу накаливания мощностью не менее 100 Вт. Один провод вставить в фазное гнездо, вторым коснуться поочередно рабочего и защитного нуля (ВНИМАНИЕ! При наличии УЗО произойдет его отсечка, что подтверждает наличие защитного нуля). Лампа должна гореть одинаково ярко и ровно.

Желательно также отследить отходящие концы от распределительного щитка на вашу квартиру. Как правило, заводится группа на освещение (L+N), группа на розетки (L+N+PE), группа на электроплиту (L+N+PE). То есть на розетки у вас должны отходить 3 конца, причем N и PE, согласно ПУЭ, не должны заводиться под один болт.

 

Ниже будет рассмотрен вариант самостоятельного подключения защитного нуля.

ВНИМАНИЕ! Работы в распределительном устройстве могут вестись только лицами из электротехнического персонала обслуживающего предприятия с группой допуска по электробезопасности не ниже III.

Категорически не рекомендую при отсутствии опыта заниматься прокладкой защитного зануления в организации, где на розетки заводятся все три фазы: при использовании одного рабочего нуля и случайном повреждении или ослаблении его во время монтажных работ, вы получаете две фазы на входе аппаратуры. Могу только сказать, что при таком раскладе перегорают (плавятся) даже варисторы сетевых фильтров.

Для домашней сети вам понадобится медный провод соответствующей длины и сечением не менее 1,5 мм² (чем больше, тем лучше — я, например, использовал провод сечением 4 мм²) и, конечно, розетка с заземляющим контактом. Короб, плинтус, скоба — дело эстетики. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на заземляющий контакт розетки. Не допускается заводить под один болт N и РЕ проводники. При наличии в щите УЗО РЕ проводник не должен учитываться (болтить именно на корпус щита) и не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

К вопросу о заземлении на батарею (водопровод) — не советую. Теоретически должна быть где-то в подвале система выравнивания потенциалов (собственно трубы, проложенные в земле, это естественный заземлитель), фактически же на батарее может вдруг появиться потенциал, отличный от нуля. К примеру, сосед ваш сверху использует ее в качестве рабочего нуля по причине отгорания проводника в штробе.

И еще один момент, касающийся монтажа. Сеть в квартирах пока выполняется алюминиевым проводом. При необходимости нарастить концы (например для переноса розетки) и использовании медного провода, никогда не скручивайте медь с алюминием — возникает гальваническая пара, металл в месте контакта активно разрушается, переходное сопротивление растет, возникает подгорание, что, в конце концов, может привести к пожару. Медный и алюминиевый проводники соединяются между собой либо через переходную колодку, либо через переходные шайбы. Допускается использовать в качестве переходника стальные шайбы.

защитное заземление — это … Что такое защитное заземление?

  • Земляное укрытие — это архитектурная практика использования земли напротив стен зданий для создания внешней тепловой массы, чтобы уменьшить потери тепла и легко поддерживать стабильную температуру воздуха в помещении. Земляное укрытие популярно в наше время среди сторонников пассивного…… Wikipedia

  • Земля (Жемчуг Дракона) — Земля (также известная как Мир Дракона) — это вымышленная планета (основанная на вымышленной планете), населенная людьми, демонами, инопланетянами и т. П., Являющаяся основным местом действия большинства сюжета манги «Жемчуг дракона», Жемчуг дракона… Wikipedia

  • Автоматический выключатель утечки на землю — Автоматический выключатель утечки на землю (ELCB) — это устройство безопасности, используемое в электрических установках с высоким сопротивлением заземления для предотвращения удара.Назначение Многие электрические установки имеют относительно высокое сопротивление заземления. Это может быть связано с использованием…… Wikipedia

  • Земляная батарея — Земляная батарея состоит из пары электродов, изготовленных из двух разнородных металлов, таких как железо и медь, которые закопаны в почву или погружены в море. Устройство, помещенное в воду, называется морской батареей. Он может действовать как приемник… Wikipedia

  • Защитное реле — См. Также: Защита энергосистемы В электротехнике защитное реле представляет собой сложное электромеханическое устройство, часто с более чем одной катушкой, предназначенное для расчета рабочих условий в электрической цепи и отключения автоматических выключателей… Википедия

  • Земля — Эта статья о планете.Для использования в других целях, см Земля (значения). Земля… Википедия

  • Повышение потенциала земли — В электротехнике повышение потенциала земли (EPR), также называемое повышением потенциала земли (GPR), происходит, когда большой ток течет на землю через полное сопротивление сети заземления. Потенциал относительно удаленной точки на Земле наиболее высок в…… Wikipedia

  • Бомба землетрясения — Бомба землетрясения была изобретена британским авиационным инженером Барнсом Уоллисом перед Второй мировой войной и впоследствии разработана и использована во время войны против стратегических целей в Европе.DevelopmentWallis понял, что… Wikipedia

  • земляной столб — высокий конический столб из рыхлых или полууплотненных грунтовых материалов (например, глинистая тилла или оползневые обломки), образовавшийся в результате дифференциальной эрозии и обычно покрытый плоским твердым фрагментом породы, который защищает нижележащий, более мягкий материал … Глоссарий форм рельефа и геологических терминов

  • Please Save My Earth — Аниманга Infobox / Название заголовка = Please Save My Earth caption = Обложка первого тома ja name = ぼ く の 地球 を 守 て ja name trans = Boku no Chikyū o Mamotte жанр = научная фантастика, город fantasyInfobox animanga / Manga title = author = Saki Hiwatari…… Wikipedia

  • Список персонажей «Пожалуйста, спасите мою Землю» — Пожалуйста, спасите мою Землю (ぼ く の 地球 を 守 っ て, Boku no Chikyū o Mamotte?) — это научно-фантастическая манга сёдзё, написанная Саки Хиватари.Он был опубликован Hakusensha с 1987 по 1994 год в Hana to Yume и собран в 21 томе танкобона. Сериал был адаптирован как шестерка…… Wikipedia

  • .

    защитное заземление — это … Что такое защитное заземление?

  • Земляное укрытие — это архитектурная практика использования земли напротив стен зданий для создания внешней тепловой массы, чтобы уменьшить потери тепла и легко поддерживать стабильную температуру воздуха в помещении. Земляное укрытие популярно в наше время среди сторонников пассивного…… Wikipedia

  • Земля (Жемчуг Дракона) — Земля (также известная как Мир Дракона) — это вымышленная планета (основанная на вымышленной планете), населенная людьми, демонами, инопланетянами и т. П., Являющаяся основным местом действия большинства сюжета манги «Жемчуг дракона», Жемчуг дракона… Wikipedia

  • Автоматический выключатель утечки на землю — Автоматический выключатель утечки на землю (ELCB) — это устройство безопасности, используемое в электрических установках с высоким сопротивлением заземления для предотвращения удара.Назначение Многие электрические установки имеют относительно высокое сопротивление заземления. Это может быть связано с использованием…… Wikipedia

  • Земляная батарея — Земляная батарея состоит из пары электродов, изготовленных из двух разнородных металлов, таких как железо и медь, которые закопаны в почву или погружены в море. Устройство, помещенное в воду, называется морской батареей. Он может действовать как приемник… Wikipedia

  • Защитное реле — См. Также: Защита энергосистемы В электротехнике защитное реле представляет собой сложное электромеханическое устройство, часто с более чем одной катушкой, предназначенное для расчета рабочих условий в электрической цепи и отключения автоматических выключателей… Википедия

  • Земля — Эта статья о планете.Для использования в других целях, см Земля (значения). Земля… Википедия

  • Повышение потенциала земли — В электротехнике повышение потенциала земли (EPR), также называемое повышением потенциала земли (GPR), происходит, когда большой ток течет на землю через полное сопротивление сети заземления. Потенциал относительно удаленной точки на Земле наиболее высок в…… Wikipedia

  • Бомба землетрясения — Бомба землетрясения была изобретена британским авиационным инженером Барнсом Уоллисом перед Второй мировой войной и впоследствии разработана и использована во время войны против стратегических целей в Европе.DevelopmentWallis понял, что… Wikipedia

  • земляной столб — высокий конический столб из рыхлых или полууплотненных грунтовых материалов (например, глинистая тилла или оползневые обломки), образовавшийся в результате дифференциальной эрозии и обычно покрытый плоским твердым фрагментом породы, который защищает нижележащий, более мягкий материал … Глоссарий форм рельефа и геологических терминов

  • Please Save My Earth — Аниманга Infobox / Название заголовка = Please Save My Earth caption = Обложка первого тома ja name = ぼ く の 地球 を 守 て ja name trans = Boku no Chikyū o Mamotte жанр = научная фантастика, город fantasyInfobox animanga / Manga title = author = Saki Hiwatari…… Wikipedia

  • Список персонажей «Пожалуйста, спасите мою Землю» — Пожалуйста, спасите мою Землю (ぼ く の 地球 を 守 っ て, Boku no Chikyū o Mamotte?) — это научно-фантастическая манга сёдзё, написанная Саки Хиватари.Он был опубликован Hakusensha с 1987 по 1994 год в Hana to Yume и собран в 21 томе танкобона. Сериал был адаптирован как шестерка…… Wikipedia

  • .

    защитное заземление — определение — английский

    Примеры предложений с «защитным заземлением», память переводов

    патент-wipo В качестве альтернативы, ток, протекающий через соединение защитного заземления (180), соединяющее контролируемое устройство с защитным заземлением, измеряется до получить измерительный сигнал. патент-wipo Для этого в корпусе устройства (5) имеется входной порт (38) для системы подключения устройства, в котором зажим для подключения защитного заземления, который является составной частью корпуса (5) устройства и / или фиксирующего узла для системы подключения устройств, формируется во входном порте (38) для системы подключения устройств и может быть в прямом, механическом, активном соединении с соответствующим образом сконструированным заземляющим контактом защитного соединения системы подключения устройств. QEDI присоединился к армии Сирии с целью защиты людей, как мы называли Хумат Аль Дьяр (защитная земля), чтобы защитить людей нашего врага Израиля, но после преступлений, которые я видел в Дараа и Сирии спрингер Допустимые риски можно вывести время отключения для защиты от короткого замыкания путем автоматического отключения питания для защитного заземления нейтрали (система TN) и защитного отдельного заземления (система TT) на научной основе. патентов-wipo Для разработки погружного насоса, обеспечивающего надежное прерывание подачи напряжения, если вода попадает в область корпуса, в которой находится электродвигатель, в изобретении предлагается, чтобы корпус для удерживания электрических компонентов образовывал камеру управления, которая расположена над электрическим двигателем. электродвигатель, когда погружной насос находится в рабочем положении, в котором в камере управления размещено устройство электрических защитных контактов, которое может быть подключено к проводу защитного заземления, причем устройство защитных контактов проходит в области камеры управления, которые образуют самая низкая точка в камере управления, когда погружной насос перевернут или принимает устойчивое лежачее положение. WikiMatrix Обычно третий проводник, называемый заземлением (или «защитным заземлением») (США) или защитным заземлением (Великобритания, Европа, IEC), используется в качестве защиты от поражения электрическим током и обычно пропускает значительный ток только при наличии цепи. вина. QEDНу, но мы должны защищать землю. Каким-то образом частью нашей миссии является «защита земли» tmClassProtective тестеры заземляющих проводов WikiMatrixHelios и Endymion никогда не встречались, хотя они знали друг о друге и о том, что они разделяют такое же желание защиты Земли. WikiMatrix В течение следующих нескольких лет она добавила в команду Юки Сайко, Ликер Кацуми и Лум Ченг, помогая в борьбе за защиту Земли от злобного Ястреба Люцифера. WikiMatrix Когда многие герои Земли исчезают после победы над Натиском, Лиландра (которая восстановила контроль над Ши’аром) приказывает Гладиатору и многим из Имперской Гвардии защищать Землю. MultiUnCanada увеличивает свою приверженность наблюдению Земли как ключу к мониторингу, пониманию и защите суши, льда и морской среды Земли, измерению воздействия изменения климата, поддержке международного реагирования на стихийные бедствия и поддержке устойчивого развития в Канаде и за рубежом WikiMatrix С тех пор Мар-Велл борется за защиту Земли от всех угроз. WikiMatrixSuperboy объясняет Легионерам, что Ловец Времени защищал Землю в его эпоху от разрушения во время Кризиса, и обещал сохранить ее в обмен на сотрудничество Супербоя в победе над Легионом. oj4 Если использование материалов, плохо проводящих электричество, например, в шарнирных подшипниках или осевых коробках, не позволяет получить указанные выше значения, транспортные средства должны быть снабжены, где это применимо, следующими соединениями защитного заземления OpenSubtitles2018.v3 На самом деле, это предназначено для защиты Земли, не позволяя противникам заполучить наши технологии. WikiMatrixВ качестве главы НБК он призвал активизировать усилия по защите Земли от опасности возможных столкновений с астероидами. PolishPatents Система для проверки целостности жилы защитного заземления в четырехжильных кабелях WikiMatrix конференции по планетарной обороне, проведенные в 2004 г. в Лос-Анджелесе и 2007 г. в Вашингтоне, округ Колумбия.C., а в 2009 году в Гранаде, Испания. UN-2SGAC был официальным спонсором 1-й конференции IAA по планетарной защите: защита Земли от астероидов, состоявшейся в Гранаде, Испания, в апреле 2009 года, и два члена SGAC входили в состав организационного комитета. hunglish «Возможно, мы не зайдем так далеко, в то время как удача многих Тилы Браун защищает Землю. UN-2 Миссия Don Quijote была представлена ​​международному сообществу на конференции по защите планет: защита Земли от астероидов, проходившей в округе Ориндж , Калифорния, Соединенные Штаты Америки, в феврале 2004 года, в качестве примера миссии-предшественника ОСЗ, прокладывая путь к эффективной миссии по отражению ОСЗ. opensubtitles2Дружба или ваша работа, которая заключается в защите Земли OpenSubtitles2018.v3Это должно выдерживать силовое поле, достаточно сильное, чтобы защитить Землю от горданианцев.

    Показаны страницы 1. Найдено 4195 предложения с фразой защитная земля.Найдено за 23 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

    .

    защитное заземление — это … Что такое защитное заземление?

  • Земляное укрытие — это архитектурная практика использования земли напротив стен зданий для создания внешней тепловой массы, чтобы уменьшить потери тепла и легко поддерживать стабильную температуру воздуха в помещении. Земляное укрытие популярно в наше время среди сторонников пассивного…… Wikipedia

  • Земля (Жемчуг Дракона) — Земля (также известная как Мир Дракона) — это вымышленная планета (основанная на вымышленной планете), населенная людьми, демонами, инопланетянами и т. П., Являющаяся основным местом действия большинства сюжета манги «Жемчуг дракона», Жемчуг дракона… Wikipedia

  • Автоматический выключатель утечки на землю — Автоматический выключатель утечки на землю (ELCB) — это устройство безопасности, используемое в электрических установках с высоким сопротивлением заземления для предотвращения удара.Назначение Многие электрические установки имеют относительно высокое сопротивление заземления. Это может быть связано с использованием…… Wikipedia

  • Земляная батарея — Земляная батарея состоит из пары электродов, изготовленных из двух разнородных металлов, таких как железо и медь, которые закопаны в почву или погружены в море. Устройство, помещенное в воду, называется морской батареей. Он может действовать как приемник… Wikipedia

  • Защитное реле — См. Также: Защита энергосистемы В электротехнике защитное реле представляет собой сложное электромеханическое устройство, часто с более чем одной катушкой, предназначенное для расчета рабочих условий в электрической цепи и отключения автоматических выключателей… Википедия

  • Земля — Эта статья о планете.Для использования в других целях, см Земля (значения). Земля… Википедия

  • Повышение потенциала земли — В электротехнике повышение потенциала земли (EPR), также называемое повышением потенциала земли (GPR), происходит, когда большой ток течет на землю через полное сопротивление сети заземления. Потенциал относительно удаленной точки на Земле наиболее высок в…… Wikipedia

  • Бомба землетрясения — Бомба землетрясения была изобретена британским авиационным инженером Барнсом Уоллисом перед Второй мировой войной и впоследствии разработана и использована во время войны против стратегических целей в Европе.DevelopmentWallis понял, что… Wikipedia

  • земляной столб — высокий конический столб из рыхлых или полууплотненных грунтовых материалов (например, глинистая тилла или оползневые обломки), образовавшийся в результате дифференциальной эрозии и обычно покрытый плоским твердым фрагментом породы, который защищает нижележащий, более мягкий материал … Глоссарий форм рельефа и геологических терминов

  • Please Save My Earth — Аниманга Infobox / Название заголовка = Please Save My Earth caption = Обложка первого тома ja name = ぼ く の 地球 を 守 て ja name trans = Boku no Chikyū o Mamotte жанр = научная фантастика, город fantasyInfobox animanga / Manga title = author = Saki Hiwatari…… Wikipedia

  • Список персонажей «Пожалуйста, спасите мою Землю» — Пожалуйста, спасите мою Землю (ぼ く の 地球 を 守 っ て, Boku no Chikyū o Mamotte?) — это научно-фантастическая манга сёдзё, написанная Саки Хиватари.Он был опубликован Hakusensha с 1987 по 1994 год в Hana to Yume и собран в 21 томе танкобона. Сериал был адаптирован как шестерка…… Wikipedia

  • .

    0 comments on “Защитное заземление: Защитное заземление — устройство, принцип работы, виды, расчет и схемы

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *